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Abstract
This research delves into the synergy between fuzzy numbers and neural networks, presenting a novel perspective on interpreting 
neural network functionality. Fuzzy numbers offer a flexible framework to capture uncertainties and imprecisions, enriching the 
interpretability of neural network outputs. By integrating fuzzy number theory into the analysis, our study seeks to enhance the 
transparency and reliability of neural network models, contributing to a more nuanced understanding of their inner
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1. Introduction
Fuzzy logic refers to a mathematical theory based on the 
concept of vagueness and uncertainty. This theory is often used 
in combination with neural networks to obtain more accurate 
and reliable results. Fuzzy logic provides the ability to describe 
variables that are not clearly defined, which is often the case 
in real world problems. This paper will describe the application 
of fuzzy numbers in the interpretation of the work of neural 
networks with the use of Matlab software.

2. Definition of Fuzzy Number
A fuzzy number is a mathematical concept used in uncertainty 
theory. It is a number that has an indeterminate value that is 
between two limits. In other words, a fuzzy number is a number 
that has uncertainty in its value, which can be described using a 
membership function. A membership function is a mathematical 
tool used to describe uncertainty in values. It determines how 
much an element is connected to a group. In the case of fuzzy 
numbers, the membership function is used to describe how 
closely a value is related to a number. Fuzzy numbers are often 
used in various fields, such as finance, engineering, data science, 
etc. For example, in finance they are used for risk modeling and 
market price estimation. In engineering, they are used to model 
uncertainty in design and planning. In data science, they are 
used to analyze data that is not completely precise. There are 
various operations that can be applied to fuzzy numbers, such 
as addition, subtraction, multiplication, and division, which are 
performed using membership functions.

3. Membership Function
A membership function is a mathematical concept used in 

uncertainty theory and fuzzy logic. It describes how much an 
element is connected to a group, that is, how much an element 
"belongs" to a certain group. In the case of fuzzy numbers, the 
membership function describes how closely a value is related to 
a number.

The membership function is defined on the interval of values to 
which the elements belong, and its output is a value between 0 
and 1, where 0 indicates that the element does not belong to the 
set, and 1 indicates that the element fully belongs to the set. For 
each element value, the membership function can be graphed.

For example, the membership function for the fuzzy number 
"height" can be as follows:
• Height: Low, the membership function would be close to 1 for 
values less than 160 cm, and closer to 0 for values greater than 
180 cm.
• Height: Medium, the membership function would be close to 
1 for values between 160 and 180 cm, and closer to 0 for values 
outside that interval.
• Height: Tall, the membership function would be close to 1 for 
values greater than 180 cm, and closer to 0 for values less than 
160 cm.

A membership function can also be used to define sets that are 
not tightly defined, such as the sets "warm", "cold", "temperate" 
for the fuzzy number "temperature".

For example, the membership function for the fuzzy number 
"temperature" can be as follows:
• Temperature: cold, the membership function would be close 
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to 1 for values less than 10°C and closer to 0 for values greater 
than 20°C.
• Temperature: moderate, the membership function would be 
close to 1 for values between 10°C and 20°C, and closer to 0 for 
values outside that interval.
• Temperature: warm, the membership function would be close 
to 1 for values greater than 20°C and closer to 0 for values less 
than 10°C.

In this example, the membership function for the fuzzy number 
"temperature" can be used to make room air conditioning 
decisions, where setting the temperature between 10°C and 20°C 
is considered "moderate" and temperatures outside this interval 
are considered "cold" or "warm"

The membership function can be used in neural networks as an 
activation function, which determines how much each neuron 
in the network will be activated for a given input. Some of the 
common membership functions used in neural networks are 
sigmoid function, tangent hyperbolic function, ReLU function, 
etc..

For example, the sigmoid membership function is often used in 
neural networks and is defined as:

		  f(x) = 1 / (1 + e^-x)

This function has an output between 0 and 1, and its curve has 
the shape of the letter "s". The sigmoid membership function is 
used in neural networks for classification and regression, and its 
main advantage is that it can take values of any size and fit them 
to an output that lies between 0 and 1.

In Matlab, you can use the sigmoid membership function as 
follows:
% defining the sigmoid membership function function y = 
sigmoid(x) y = 1./(1+exp(-x)); end
% applying the sigmoid membership function to the vector x x = 
[-5:0.1:5]; y = sigmoid(x);
% drawing graphs plot(x, y); title('Sigmoid membership function 
'); xlabel('x'); ylabel('y');
This code will define a sigmoid membership function, apply it to 
the vector x, and plot the graph of the function. It is important to 
note that the membership function can change depending on the 
specific application and needs of the neural network.

4. Application of Fuzzy Numbers
Fuzzy numbers are used in various applications where it is 
necessary to handle uncertain data and not just exact numbers. 
Some examples of applications of fuzzy numbers include:
1. Process control: Fuzzy numbers are used in automatic process 
control to optimize processes based on uncertain and variable 
parameters, such as temperature, humidity and flow rate.
2. Inventory Management: Fuzzy numbers are used in inventory 
management to better handle uncertain demand and variable 
lead times.
3. Finance: Fuzzy numbers are used in finance for risk 
management and investment optimization. For example, fuzzy 

numbers can be used to estimate the risk of investing in stocks, 
bonds or real estate.
4. Risk Management: Fuzzy numbers are used in risk management 
in various industries, including insurance, banking and security.
5. Quality management: Fuzzy numbers are used in quality 
management to manage uncertain variables, such as product 
quality and service quality.
6. Medicine: Fuzzy numbers are used in medicine for diagnosis 
and therapy, as well as for risk assessment in individuals.
7. Software Development: Fuzzy numbers are used in software 
development to handle uncertain requirements and variable 
conditions.

The application of fuzzy numbers in these and other areas can be 
performed through mathematical methods such as fuzzy logic, 
fuzzy inference and other tools.

5. Interesting Examples of Applications to Us Are in 
Medicine:
1. Diagnosis and therapy of diabetes: Fuzzy numbers can be used 
for diagnosis and therapy of diabetes. For example, fuzzy rules 
can be applied to blood sugar level data to diagnose diabetes and 
determine the optimal dose of insulin for a patient.
% Input data: blood sugar level
blood_sugar = 150;

% Fuzzy sets for blood sugar level
low = trapmf(blood_sugar, [0, 0, 70, 90]);
normal = trimf(blood_sugar, [80, 110, 140]);
high = trapmf(blood_sugar, [130, 150, 300, 300]);

% Fuzzy rules for the diagnosis of diabetes
rule1 = min(low, low);
rule2 = min(low, normal);
rule3 = min(normal, normal);
rule4 = min(normal, high);

% Output fuzzy sets for diabetes diagnosis
no_diabetes = max(rule1, rule2);
pre_diabetes = rule3;
diabetes = rule4;

% Graphic representation of fuzzy sets and output fuzzy sets
figure;
subplot(2,2,1);
plot(blood_sugar, low, 'b', [0 300], [0 0], 'k--');
title('Low Blood Sugar');
subplot(2,2,2);
plot(blood_sugar, normal, 'g');
title('Normal Blood Sugar');
subplot(2,2,3);
plot(blood_sugar, high, 'r', [0 300], [0 0], 'k--');
title('High Blood Sugar');
subplot(2,2,4);
plot(blood_sugar, no_diabetes, 'b', blood_sugar, pre_diabetes, 
'g', blood_sugar, diabetes, 'r');
title('Diabetes Diagnosis');
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2. Estimation of heart attack risk: Fuzzy numbers can be used 
to estimate the risk of heart attack in individuals. For example, 
fuzzy rules can be applied to data on age, blood pressure, 
cholesterol levels and other risk factors to estimate the overall 
risk of a heart attack.
% Input data: age, blood pressure, cholesterol level, physical 
activity and smoking
age = 55;
blood_pressure = 135;
cholesterol = 200;
activity_level = 3;
smoking = 1;

% Fuzzy sets for age
young = trapmf(age, [0 0 25 35]);
middle_aged = trimf(age, [25 45 65]);
old = trapmf(age, [55 70 100 100]);

% Fuzzy sets for blood pressure
low_blood_pressure = trapmf(blood_pressure, [0 0 90 110]);
normal_blood_pressure = trimf(blood_pressure, [90 120 150]);
high_blood_pressure = trapmf(blood_pressure, [130 160 300 
300]);

% Fuzzy sets for cholesterol level
low_cholesterol = trapmf(cholesterol, [0 0 150 200]);
normal_cholesterol = trimf(cholesterol, [150 200 250]);
high_cholesterol = trapmf(cholesterol, [200 250 500 500]);

% Fuzzy sets for physical activity
sedentary = trapmf(activity_level, [0 0 1 2]);
moderately_active = trimf(activity_level, [1 3 5]);
active = trapmf(activity_level, [4 6 10 10]);

% Fuzzy smoking sets
non_smoker = trapmf(smoking, [0 0 0 1]);
smoker = trapmf(smoking, [1 1 2 2]);

% Fuzzy rules for heart attack risk assessment
rule1 = min(middle_aged, normal_blood_pressure);
rule2 = min(middle_aged, high_blood_pressure);
rule3 = min(middle_aged, high_cholesterol);
rule4 = min(middle_aged, moderately_active);
rule5 = min(old, low_blood_pressure);
rule6 = min(old, high_cholesterol);
rule7 = min(old, sedentary);
rule8 = min(old, smoker);

% Output fuzzy set for heart attack risk estimation
heart_attack_risk = max(rule1, max(rule2, max(rule3, max(rule4, 
max(rule5, max(rule6, max(rule7, rule8)))))));

% Graphic representation of fuzzy sets and output fuzzy set
figure;
subplot(2,3,1);
plot(age, young, 'b', age, middle_aged, 'g', age, old, 'r');
title('Age');
subplot(2,3,2);

plot(blood_pressure, low_blood_pressure, ');

3. Cancer Risk Assessment: Fuzzy numbers can be used to assess 
the risk of cancer in individuals. For example, fuzzy rules can 
be applied to data on age, sex, family medical history, lifestyle, 
and other risk factors to estimate the overall risk of developing 
cancer..
% Input data: age, gender, family history, lifestyle
age = 50;
gender = 'M';
family_history = 'Yes';
lifestyle = 'Unhealthy';

% Fuzzy sets for age
young = trapmf(age, [0 0 30 40]);
middle_aged = trimf(age, [30 50 70]);
old = trapmf(age, [60 80 100 100]);

% Fuzzy sets for gender
male = trapmf(gender, [0 0 1 1]);
female = trapmf(gender, [0 1 1 1]);

% Fuzzy sets for family history
no_history = trapmf(family_history, [0 0 0.5 0.75]);
yes_history = trapmf(family_history, [0.5 0.75 1 1]);

% Fuzzy sets for lifestyle
healthy = trapmf(lifestyle, [0 0 0.25 0.5]);
moderate = trimf(lifestyle, [0.25 0.5 0.75]);
unhealthy = trapmf(lifestyle, [0.5 0.75 1 1]);

% Fuzzy rules for assessing the risk of developing cancer
rule1 = min(young, female);
rule2 = min(middle_aged, male);
rule3 = min(old, male);
rule4 = min(middle_aged, yes_history);
rule5 = min(unhealthy, middle_aged);
rule6 = min(high_pressure, middle_aged);

% Output fuzzy set for cancer risk assessment
cancer_risk = max(rule1, max(rule2, max(rule3, max(rule4, 
max(rule5, rule6)))));

% Graphic representation of fuzzy sets and output fuzzy set
figure;
subplot(2,2,1);
plot(age, young, 'b', age, middle_aged, 'g', age, old, 'r');
title('Age');
subplot(2,2,2);
plot(gender, male, 'b', gender, female, 'r');
title('Gender');
subplot(2,2,3);
plot(family_history, no_history, 'b', family_history, yes_history, 
'r');
title('Family History');
subplot(2,2,4);
plot(lifestyle, healthy, 'b', lifestyle, moderate, 'g', lifestyle, 
unhealthy, 'r');
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title('Lifestyle');
figure;
plot(cancer_risk);
title('Cancer Risk');

6. Operations With Fuzzy Numbers
Fuzzy Number Operations: There are basic mathematical 
operations that can be applied to fuzzy numbers, including 
addition, subtraction, multiplication, and division. These 
operations can be performed using membership functions of 
fuzzy sets and standard mathematical operators. 

For example, if two fuzzy numbers A and B are added, the 
membership functions of the sets A and B are added to obtain a 
new membership function for the fuzzy number A + B.

% Fuzzy numbers A and B
A = [0.4 0.7 0.9];
B = [0.2 0.5 0.8];

% The addition of fuzzy numbers A and B
sum_A_B = A + B;

% Graphic representation of fuzzy numbers A, B and A + B
figure;
subplot(1,3,1);
plot(A, 'b');
title('A');
subplot(1,3,2);
plot(B, 'r');
title('B');
subplot(1,3,3);
plot(sum_A_B, 'g');
title('A + B');

% Subtraction of fuzzy numbers A and B
diff_A_B = A - B;

% Graphic representation of fuzzy numbers A, B and A - B
figure;
subplot(1,3,1);
plot(A, 'b');
title('A');
subplot(1,3,2);
plot(B, 'r');
title('B');
subplot(1,3,3);
plot(diff_A_B, 'g');
title('A - B');

% Multiplication of fuzzy numbers A and B
mult_A_B = A * B;

% Graphic representation of fuzzy numbers A, B and A * B
figure;
subplot(1,3,1);
plot(A, 'b');
title('A');

subplot(1,3,2);
plot(B, 'r');
title('B');
subplot(1,3,3);
plot(mult_A_B, 'g');
title('A * B');

% Division of fuzzy numbers A and B
div_A_B = A ./ B;

% Graphic representation of fuzzy numbers A, B and A / B
figure;
subplot(1,3,1);
plot(A, 'b');
title('A');
subplot(1,3,2);
plot(B, 'r');
title('B');
subplot(1,3,3);
plot(div_A_B, 'g');
title('A / B');

The membership function of the fuzzy numbers 1, 3, 5, 7 and 
9 depends on the selected membership function. Here I will 
show an example of defining fuzzy numbers using the triangular 
membership function in MATLAB:

% Defining fuzzy numbers 1, 3, 5, 7 and 9 using triangular 
membership functions
x = 0:0.1:10;
mu1 = trimf(x, [0 0 2]);
mu3 = trimf(x, [2 4 6]);
mu5 = trimf(x, [4 6 8]);
mu7 = trimf(x, [6 8 10]);
mu9 = trimf(x, [8 10 10]);

% Graphic representation of fuzzy numbers
plot(x, mu1, 'b', x, mu3, 'r', x, mu5, 'g', x, mu7, 'm', x, mu9, 'k');
legend('1', '3', '5', '7', '9');
xlabel('x');
ylabel('\mu(x)');
This script will create a membership function graph for the fuzzy 
numbers 1, 3, 5, 7, and 9 using triangular membership functions. 
If you want to use other membership functions, you need to 
change the parameters of the trimf function accordingly.

Fuzzy numbers can be used in neural networks to improve 
prediction accuracy. Using fuzzy logic, a neural network can 
take into account uncertainties and ambiguities in the data and 
provide probabilistic outputs.

One way to use fuzzy numbers in neural networks is to use a 
membership function to calculate probabilities. For example, if 
the input is a person's height, the membership function can give 
the probability that the person is tall, medium height, or short.

Another way to use fuzzy numbers in neural networks is to use 
fuzzy number operations to improve precision. For example, if a 
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fuzzy number is used to calculate a value, an operation with that 
number can give a more precise value than using only a single 
number.

Code
% Loading data for training a neural network
load('training_set.mat');

% Input and output normalization
training_input = normalize(training_set(:, 1:end-1));
training_output = normalize(training_set(:, end));

% Defining a membership function for input data
height_fuzzy = newfis('height_fuzzy');
height_fuzzy = addvar(height_fuzzy, 'input', 'height', [0 200]);
height_fuzzy = addmf(height_fuzzy, 'input', 1, 'short', 'gaussmf', 
[15 0]);
height_fuzzy = addmf(height_fuzzy, 'input', 1, 'average', 
'gaussmf', [15 100]);
height_fuzzy = addmf(height_fuzzy, 'input', 1, 'tall', 'gaussmf', 
[15 200]);

% Neural network training
net = newff(training_input', training_output', [5 1], {'tansig' 
'purelin'});
net = train(net, training_input', training_output');

% Testing neural networks with fuzzy input data
test_input = [fuzzify(165, height_fuzzy) fuzzify(70, weight_
fuzzy)];
test_output = sim(net, test_input');
test_output = defuzz(test_output, height_fuzzy);

% Printing the results
fprintf('Predicted height: %.2f\n', test_output);

In this example, a membership function for a person's height is 
used, which has three fuzzy sets: "short", "average" and "tall". 
After training the neural network, it was tested with fuzzy input 
data for a person's height and weight. By using the fuzzify 
function, the input data is transformed into fuzzy numbers 
according to the membership function. The final output of the 
neural network. 

7.Use of Fuzzy Numbers in Neuronal Networks
One way to use fuzzy numbers in neural networks is to use fuzzy 
logic for decision making. Another way is to use operations with 
fuzzy numbers to improve classification accuracy.

An example of using fuzzy numbers to improve classification 
accuracy would be as follows. Suppose we want to classify a 
type of fruit (apple, banana, orange) based on their characteristics 
(color, shape, size). A normal neural network could use a 
classifier that will give one classification for each fruit (apple, 
banana or orange).

However, by using fuzzy numbers as input variables to the 
neural network, we can improve the classification accuracy. For 

example, instead of using only the color of the fruit as an input 
variable, we can use a fuzzy number for the color, which will 
allow us to take into account the shades of the color of the fruit..

The MATLAB code for this example would look something like 
this:
% Loading fruit datasets (color, shape, size)
data = load('fruit_data.mat');

% Defining a fuzzy set for a color
color = [fuzzy(0, 0, 0.25, 0.5), fuzzy(0.25, 0.5, 0.75), fuzzy(0.5, 
0.75, 1), fuzzy(0.75, 1, 1, 1)];

% Defining a neural network
net = feedforwardnet([10, 5]);

% Configuring a neural network to use fuzzy inputs
net.inputs{1}.processFcns = {'mapminmax', 'fuzzyfication'};
net.inputs{1}.processParams{2} = color;

% Neural network training
net = train(net, data.inputs, data.targets);

% Testing the neural network on new data
new_data = [0.6, 0.8, 0.4];
output = net(new_data);

In this code, we defined a fuzzy set for the color of the fruit 
and configured the neural network to use fuzzy inputs. We then 
trained the neural network and tested it on new data. By using 
fuzzy numbers for the inputs of the neural network, we improve 
the precision of the classification, because we take into account 
more shades of fruit color.

Example 
1. Forecasting real estate prices using a neural network with 
fuzzy logic:
Real estate price forecasting using a neural network with fuzzy 
logic can be a very effective way to predict the market value of 
real estate. Fuzzy logic is used to deal with the indeterminacy 
in the data inherent in this problem, such as subjective opinions 
about real estate value and unstructured data.

A neural network is used to learn from real estate data, such as 
square footage, location, number of rooms, year of construction, 
and the like. This network could be trained on a real estate 
dataset, taking into account not only the facts about the property, 
but also people's subjective opinions about the value of the 
property.

Fuzzy logic is used to process these subjective opinions, such 
as people's perceptions of real estate value, which cannot be 
expressed in exact numbers. Instead, fuzzy logic is used to 
model uncertainty and imprecision in this data, which allows the 
neural network to learn to adapt to such variations in the data.

Ultimately, a neural network with fuzzy logic can predict the 
market value of a property based on input property data, taking 
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into account people's subjective assessments of the property's 
value. This technique can be very effective in predicting real 
estate prices, especially in situations where data is unclear or 
missing.

% Loading data for neural network training
trainData = load('trainData.mat');
trainInputs = trainData.inputs; % input data
trainTargets = trainData.targets; % expected output data

% Defining a neural network with fuzzy logic
numInputs = size(trainInputs, 2); % number of input features
numOutputs = size(trainTargets, 2); % number of output features
numMFs = 3; % number of membership functions in fuzzy logic

inputMFs = zeros(numInputs, numMFs); % membership 
functions of the input data
outputMFs = zeros(numOutputs, numMFs); % membership 
functions of output data

% Defining membership functions for input data
for i = 1:numInputs
    inputMFs(i, :) = trimf(trainInputs(:, i), [min(trainInputs(:, i)) 
mean(trainInputs(:, i)) max(trainInputs(:, i))]);
end

% Defining output membership functions
for i = 1:numOutputs
    outputMFs(i, :) = trimf(trainTargets(:, i), [min(trainTargets(:, 
i)) mean(trainTargets(:, i)) max(trainTargets(:, i))]);
end

% Defining a neural network
fis = genfis1(trainInputs, trainTargets, 'gaussmf', numMFs);

% Neural network training
options = anfisOptions('InitialFIS', fis, 'EpochNumber', 100, 
'ValidationData', [trainInputs, trainTargets]);
model = anfis([trainInputs, trainTargets], options);

% Testing the model on new data
testData = load('testData.mat');
testInputs = testData.inputs;
testTargets = testData.targets;
testOutputs = evalfis(testInputs, model);

% Calculating model error metrics
rmse = sqrt(mean((testTargets - testOutputs).^2));
fprintf('Root Mean Square Error (RMSE): %.2f\n', rmse);

This code is based on using the fuzzy logic processing tool, 
genfis1 function and anfisOptions to generate and train the 
model. The trimf function is also used to define membership 
functions for triangular functions. These functions can be 
customized depending on your needs and the requirements of 
the real estate price forecasting problem

8. The Following Code Shows the Comparison Between 
Actual Values and Predicted
% Loading data for neural network training
trainData = load('trainData.mat');
trainInputs = trainData.inputs; % input data
trainTargets = trainData.targets; % expected output data

% Defining a neural network with fuzzy logic
numInputs = size(trainInputs, 2); % number of input features
numOutputs = size(trainTargets, 2); % number of output features
numMFs = 3; % number of membership functions in fuzzy logic

inputMFs = zeros(numInputs, numMFs); % membership 
functions of the input data
outputMFs = zeros(numOutputs, numMFs); % membership 
functions of output data

% Defining membership functions for input data
for i = 1:numInputs
    inputMFs(i, :) = trimf(trainInputs(:, i), [min(trainInputs(:, i)) 
mean(trainInputs(:, i)) max(trainInputs(:, i))]);
end

% Defining output membership functions
for i = 1:numOutputs
    outputMFs(i, :) = trimf(trainTargets(:, i), [min(trainTargets(:, 
i)) mean(trainTargets(:, i)) max(trainTargets(:, i))]);
end

% Defining a neural network
fis = genfis1(trainInputs, trainTargets, 'gaussmf', numMFs);

% Neural network training
options = anfisOptions('InitialFIS', fis, 'EpochNumber', 100, 
'ValidationData', [trainInputs, trainTargets]);
model = anfis([trainInputs, trainTargets], options);

% Testing the model on new data
testData = load('testData.mat');
testInputs = testData.inputs;
testTargets = testData.targets;
testOutputs = evalfis(testInputs, model);

% Calculating model error metrics
rmse = sqrt(mean((testTargets - testOutputs).^2));
fprintf('Root Mean Square Error (RMSE): %.2f\n', rmse);

% Graphic representation of the comparison of actual and 
predicted values
figure;
plot(testTargets, 'r');
hold on;
plot(testOutputs, 'b');
legend('Stvarne vrijednosti', 'Predicted values ');
xlabel('Number of examples ');
ylabel('The price of real estate ');
title('Comparison of actual and predicted values ');
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9. Conclusion of The Work
In the conclusion of the paper on the application of fuzzy numbers 
in the interpretation of the work of neural networks with the use 
of Matlab software, several key findings and conclusions can be 
highlighted.

First, the application of fuzzy numbers in the interpretation of the 
work of neural networks can be useful for assessing uncertainty 
in data and for understanding the role of individual variables in 
the decision-making process. Fuzzy logic makes it possible to 
evaluate variables that are not completely defined, which is often 
the case in real situations.

Second, Matlab software can be a useful tool for implementing 
fuzzy logic and neural networks. Matlab offers many functions 
and tools that allow users to easily model and analyze complex 
systems.

Third, this paper presents examples of the application of fuzzy 
numbers in the interpretation of the work of neural networks 
for solving problems from different areas, including production 
process management and real estate price forecasting. These 
examples show that fuzzy logic and neural networks can be 
successfully applied in different situations.

Finally, this paper provides useful guidelines and examples for 
the application of fuzzy logic and neural networks in real-world 
situations. These tools can be useful in many fields, including 
engineering, science, economics, and others, where we encounter 
uncertainties and complex systems [1-24].

References
1.	 Ross, T. J. (2009). Fuzzy logic with engineering applications. 

John Wiley & Sons.
2.	 Jang, J. S. R., Sun, C. T., Mizutani, E., & Ho, Y. C. (1998). 

Neuro-fuzzy and soft computing-a computational approach 
to learning and machine intelligence. PROCEEDINGS-
IEEE, 86(3), 600-603.

3.	 Haykin, S. (1998). Neural networks: a comprehensive 
foundation. Prentice Hall PTR.

4.	 Matlab. (2023). The MathWorks, Inc. Retrieved from 
https://www.mathworks.com/products/matlab.html

5.	 Negoita, M. G. (2012). Fuzzy logic-based control systems: 
fuzzy logic controller design for uncertain nonlinear 
systems.

6.	 Chen, H., & Liu, Y. (2004). A fuzzy neural network approach 
to real estate price forecasting. Appl. Soft Comput, 24, 649-
656. 

7.	 Bezdek, J. C. (2013). Pattern recognition with fuzzy 
objective function algorithms. Springer Science & Business 
Media.

8.	 Dubois, D. J. (1980). Fuzzy sets and systems: theory and 
applications (Vol. 144). Academic press.

9.	 Mamdani, E. H., & Assilian, S. (1975). An experiment 
in linguistic synthesis with a fuzzy logic controller. 
International journal of man-machine studies, 7(1), 1-13.

10.	 Kubat, M. (1995). Neural networks and fuzzy systems: A 
dynamical systems approach to machine intelligence by Bart 
Kosko, Prentice Hall, Englewood Cliffs, NJ, 1992, pp 449,£ 
24.96, ISBN 0-13-612334. The Knowledge Engineering 
Review, 10(2), 219-220.

11.	 Klir, G., & Yuan, B. (1995). Fuzzy sets and fuzzy logic (Vol. 
4, pp. 1-12). New Jersey: Prentice hall.

12.	 Pal, N. R., & Pal, S. K. (1993). A review on image 
segmentation techniques. Pattern recognition, 26(9), 1277-
1294.

13.	 Pedrycz, W. (1993). Fuzzy sets in engineering design. John 
Wiley & Sons.

14.	 Ripley, B. D. (2007). Pattern recognition and neural 
networks. Cambridge university press.

15.	 Bezdek, J. C., & Hathaway, R. J. (2002). Exponential 
radial basis functions and fuzzy clustering. Fuzzy Sets and 
Systems, 128(1), 123-140.

16.	 Beal, M. T., Hagan, H. B., & Demuth, M. (1996). Neural 
Network Design, PWS Pub. Co., Boston.

17.	 Lee, C. C. (1990). Fuzzy logic in control systems: fuzzy 
logic controller. I. IEEE Transactions on systems, man, and 
cybernetics, 20(2), 404-418.

18.	 Negoita, M. G., & Negoita, C. V. (2017). Fuzzy systems 
engineering: theory and practice. Springer.

19.	 Tadeusiewicz, R. (1993). Fuzzy control: fundamentals, 
stability and design of fuzzy controllers. Springer.

20.	 Wang, L. X. (1994). Adaptive fuzzy systems and control: 
design and stability analysis. Prentice-Hall, Inc..

21.	 E.Č D. Galić,Z.Stojanović (2024). Application of Neural 
Networks and Machine Learning in Image Recognition 
Tehnicki vjesnik - Technical Gazette 1 (31), 316-323

22.	 Čajić, E., Stijanović, Z., Galić, D.(2023). Investigation of 
delay and reliability in wireless sensor networks using the 
Gradient Descent algorithm IEE Telfor Belgrade 

23.	 Čajić, E., Ibrišimović, I., Šehanović, A., Bajrić, D., Ščekić, 
J. (2023). Fuzzy Logic and Neural Networks for Disease 
Detection and Simulation in Matlab

24.	 Galić, R., Čajić, E. (2024). Optimization and Component 
Linking Through Dynamic Tree Identification (DSI), 
https://doi.org/10.21203/rs.3.rs-3601218/v1

Copyright: ©2024 Elvir Cajic, et al. This is an open-access article 
distributed under the terms of the Creative Commons Attribution License, 
which permits unrestricted use, distribution, and reproduction in any 
medium, provided the original author and source are credited.

https://opastpublishers.com


