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Abstract
Laguerre polynomials   Ln

α(x) are shown to be the transforms of monomials by the special operators (1-Dx)
n+α . From this their 

current properties such as Rodrigues formula, Lucas symbolic formula, orthogonality, generating functions, etc… are systematically 
obtained. This success opens the way for the study of special functions from special operators by the powerful operator calculus.
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Introduction
The Laguerre polynomials Ln(x) introduced by and the generalized 
polynomials Ln

α(x) by are utilized in quantum mechanics in the 
resolution of the Schrödinger equation as every physicist knows 
[1, 2]. Although their properties are well-known in literatureand on 
the net such as in Wikipediaby different approaches for examples 
by determining them from Rodrigues formulae, from explicit ex-
pression or by lengthy resolution of its  differential equation by in-
tegral factors, etc…, we would like in this work expose the studies 
of them firstly by resolving their differential equations by operator 
calculus, i.e. by utilizing the differential operator Dx side by side 
with the position operato      as in quantum mechanics [3,4]. By this 
approach, we obtain that the special operators (1-Dx)

n+α transform 
monomials into them. Thank to these operators, we get also easily 
many properties of Laguerre and generalized polynomials, spe-
cially the Rodrigues formulae, the Lucas symbolic formulae, the 
orthogonality, the generating functions, etc…as will be exposed in 
the following paragraphs.

Study of Laguerre Polynomials by Operator Calculus
Summary About Operator Calculus for Laguerre Poly-
nomials
Consider the linear differential equation for Laguerre polynomials 
[1,3].

In order to resolve this equation by operator calculus let us intro-
duce the derivative operator Dx and the Eckaert’s “multiply with 
the argument  ”that we will call position operator     [5].

From the property

we obtain the commutation relation

For generalizing the above relation we have proven the following-
fundamentalidentitiesbetweenoperators [6]:

« If A(x)and B(x) are two entire functions and A(Dx), B(   ) two 
operators then

                                                                                     
                                                                                      »
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For clarity we will expose the proofs of these fundamental identi-
ties in Appendix.
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i.e.

In order to resolvethis ODE, let us apply an operator A(Dx) onto 
both sides of it and utilizing the fundamental identity (6) we have, 
in writing A for A(Dx) and D for Dx simplicity, 

Observing the above equation, it is natural to think of searching for 
an operator A=A(Dx ) such that                   contains A . For this we 
have two choices

A≡D-m and A≡(D-1)-m

With the second choice we have

and may transform the Laguerre differential equation (9) into
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we choice m = n and see that (14) leads to

For conclusion, we may state that 

“The differential equation

has as particular solution

If we define the Laguerre polynomial as a particular solution ver-
ifying the condition

Ln(0) = 1

then we obtain a very interesting formula saying that 
“ A Laguerre polynomial is the transform of a monomial by the 
special differential operator (Dx - 1)n ”
i.e.

The formula (19) leads directly to many applications as we can see 
hereinafter.

Properties of Laguerre Polynomials
From the formula (19) we get 
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The Lucas Symbolic Formula 
From (19) we get

i.e. the Lucas symbolic formula for calculating explicitly Ln(x)

which is similar to the famous Lucas formula for Bernoulli poly-
nomials [7].

The Derivatives of Laguerre Polynomials
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The orthogonality of Laguerre Polynomials
Remarking from the definition of gamma function
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we get
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Calculus
Resolution of Differential Equation 

Consider the ODE of generalized Laguerre polynomials

Under operator calculus it has the form

Applying an operator A(Dx) onto both sides and utilizing the fun-
damental identity (6) we have, in writing A for A(Dx) and D for Dx 
for simplicity,

Searching for an operator A ≡ A(Dx) such that A'(Dx ) Dx (Dx - 1)
contains , A(Dx) we have two choices

and

With the second choice we have from (39)

and consequently

Remarking that

we choice m = n and see that

i.e. with the convention

With the notation (an) = a(a+1)...(a+n-1) we have the explicit for-
mula

which may be put under the Lucas symbolic form

where for given undefined terms (Lα)k are to be replaced with

For examples

Properties of 
The Representation by Hypergeometric Operator

(41)
!m

x)1D()(
)!kn(

x)x(L
!n

x)1D(
m

k1m
x

k
n

0k

kn

m

n
1

x
−−

=

−
− −−

−
=− ∑ k1

x
k

n

0k

knn
1

x )1D(!k)(
)!kn(

X̂
!k

1
!n

X̂)1D( −−

=

−
− −−

−
≡− ∑ (30)

(31)

(32)

(33)

(34)

(35)

(36)

(37)

(38)

6

Remarking from the definition of gamma function )!1()(1

0
−=Γ=−∞ −∫ nndxxe nx

(26)

and from the fundamental identity (6)

)1(ˆˆ −≡−
x

X
x

X DeDe (27)

1ˆˆ )1( −− −≡∫ x
XX Dee (28)

k1
x

k
n

0k

knn
1

x )1D(!k)(
)!kn(

X̂
!k

1
!n

X̂)1D( −−

=

−
− −−

−
≡− ∑                                                                                                                            

(29)

we get

!m
x)1D()(

)!kn(
x)x(L

!n
x)1D(

m
k1m

x
k

n

0k

kn

m

n
1

x
−−

=

−
− −−

−
=− ∑

(30)

so that for mn0 <<

0x!m
x)1D()(

)!kn(
xe0dx)x(L

!n
xe

m
k1m

x
k

n

0k

kn
x

m

n

0

x

=
−−

−
−= −−

=

−
−∞ − ∑∫

0
0!

)1()( 1 =
=

−−−= −−

xm
xD

m
nm

x
n

(31)

although for mn0 =≤ , according to (26) and (28)

1)1(
!

1
0!

)1()()(
!

1

0
=+Γ=

=
−−−= −∞ −∫ n

nxn
xDdxxL

n
xe

n

x
n

n

n
x

6

Remarking from the definition of gamma function )!1()(1

0
−=Γ=−∞ −∫ nndxxe nx

(26)

and from the fundamental identity (6)

)1(ˆˆ −≡−
x

X
x

X DeDe (27)

1ˆˆ )1( −− −≡∫ x
XX Dee (28)

k1
x

k
n

0k

knn
1

x )1D(!k)(
)!kn(

X̂
!k

1
!n

X̂)1D( −−

=

−
− −−

−
≡− ∑                                                                                                                            

(29)

we get

!m
x)1D()(

)!kn(
x)x(L

!n
x)1D(

m
k1m

x
k

n

0k

kn

m

n
1

x
−−

=

−
− −−

−
=− ∑

(30)

so that for mn0 <<

0x!m
x)1D()(

)!kn(
xe0dx)x(L

!n
xe

m
k1m

x
k

n

0k

kn
x

m

n

0

x

=
−−

−
−= −−

=

−
−∞ − ∑∫

0
0!

)1()( 1 =
=

−−−= −−

xm
xD

m
nm

x
n

(31)

although for mn0 =≤ , according to (26) and (28)

1)1(
!

1
0!

)1()()(
!

1

0
=+Γ=

=
−−−= −∞ −∫ n

nxn
xDdxxL

n
xe

n

x
n

n

n
x

7

                                                                                                                                (32) Because the polynomial

)x(Ln begins with the term 
!n

x)(
n

n− we have for mn0 <≤

mnmn
x dxxLxLe ,0

)()( δ=∫
∞ −

QED (33)

Generating Functions 

From (23) we have

n
x10

knn

0k

k
n

n x)D,1,(F
!k

x
k
n

)()
x
1(Lx −−=








−=

−

=
∑ (34)

so that for 1xt <

xt1
t

11
x10

0n

n
n

n e)xt1()xt1)(D,1,(Ft)
x
1(Lx −

−−−
∞

=

−=−−−=∑
(35)

i.e, putting
x
1z = , uxt =

.
u

uz

n

n
n euuzL −

−−
∞

=

−=∑ 11

0
)1()( (36)

Study of Generalized Laguerre Polynomials by Operator Calculus

Resolution of Differential Equation 

Consider the ODE of generalized Laguerre polynomials

0')1(" =+−++ nyyxxy α (37)

Under operator calculus it has the form

0y)nD)1()1D(DX̂( xxx =+++− α (38)

Applying an operator )D(A x onto both sides and utilizing the fundamental identity (6) we have, in writing A

for )D(A x and D for xD for simplicity,

ynDDDXA ))1()1(ˆ( +++− α

7

                                                                                                                                (32) Because the polynomial

)x(Ln begins with the term 
!n

x)(
n

n− we have for mn0 <≤

mnmn
x dxxLxLe ,0

)()( δ=∫
∞ −

QED (33)

Generating Functions 

From (23) we have

n
x10

knn

0k

k
n

n x)D,1,(F
!k

x
k
n

)()
x
1(Lx −−=








−=

−

=
∑ (34)

so that for 1xt <

xt1
t

11
x10

0n

n
n

n e)xt1()xt1)(D,1,(Ft)
x
1(Lx −

−−−
∞

=

−=−−−=∑
(35)

i.e, putting
x
1z = , uxt =

.
u

uz

n

n
n euuzL −

−−
∞

=

−=∑ 11

0
)1()( (36)

Study of Generalized Laguerre Polynomials by Operator Calculus

Resolution of Differential Equation 

Consider the ODE of generalized Laguerre polynomials

0')1(" =+−++ nyyxxy α (37)

Under operator calculus it has the form

0y)nD)1()1D(DX̂( xxx =+++− α (38)

Applying an operator )D(A x onto both sides and utilizing the fundamental identity (6) we have, in writing A

for )D(A x and D for xD for simplicity,

ynDDDXA ))1()1(ˆ( +++− α

7

                                                                                                                                (32) Because the polynomial

)x(Ln begins with the term 
!n

x)(
n

n− we have for mn0 <≤

mnmn
x dxxLxLe ,0

)()( δ=∫
∞ −

QED (33)

Generating Functions 

From (23) we have

n
x10

knn

0k

k
n

n x)D,1,(F
!k

x
k
n

)()
x
1(Lx −−=








−=

−

=
∑ (34)

so that for 1xt <

xt1
t

11
x10

0n

n
n

n e)xt1()xt1)(D,1,(Ft)
x
1(Lx −

−−−
∞

=

−=−−−=∑
(35)

i.e, putting
x
1z = , uxt =

.
u

uz

n

n
n euuzL −

−−
∞

=

−=∑ 11

0
)1()( (36)

Study of Generalized Laguerre Polynomials by Operator Calculus

Resolution of Differential Equation 

Consider the ODE of generalized Laguerre polynomials

0')1(" =+−++ nyyxxy α (37)

Under operator calculus it has the form

0y)nD)1()1D(DX̂( xxx =+++− α (38)

Applying an operator )D(A x onto both sides and utilizing the fundamental identity (6) we have, in writing A

for )D(A x and D for xD for simplicity,

ynDDDXA ))1()1(ˆ( +++− α

7

                                                                                                                                (32) Because the polynomial

)x(Ln begins with the term 
!n

x)(
n

n− we have for mn0 <≤

mnmn
x dxxLxLe ,0

)()( δ=∫
∞ −

QED (33)

Generating Functions 

From (23) we have

n
x10

knn

0k

k
n

n x)D,1,(F
!k

x
k
n

)()
x
1(Lx −−=








−=

−

=
∑ (34)

so that for 1xt <

xt1
t

11
x10

0n

n
n

n e)xt1()xt1)(D,1,(Ft)
x
1(Lx −

−−−
∞

=

−=−−−=∑
(35)

i.e, putting
x
1z = , uxt =

.
u

uz

n

n
n euuzL −

−−
∞

=

−=∑ 11

0
)1()( (36)

Study of Generalized Laguerre Polynomials by Operator Calculus

Resolution of Differential Equation 

Consider the ODE of generalized Laguerre polynomials

0')1(" =+−++ nyyxxy α (37)

Under operator calculus it has the form

0y)nD)1()1D(DX̂( xxx =+++− α (38)

Applying an operator )D(A x onto both sides and utilizing the fundamental identity (6) we have, in writing A

for )D(A x and D for xD for simplicity,

ynDDDXA ))1()1(ˆ( +++− α

7

                                                                                                                                (32) Because the polynomial

)x(Ln begins with the term 
!n

x)(
n

n− we have for mn0 <≤

mnmn
x dxxLxLe ,0

)()( δ=∫
∞ −

QED (33)

Generating Functions 

From (23) we have

n
x10

knn

0k

k
n

n x)D,1,(F
!k

x
k
n

)()
x
1(Lx −−=








−=

−

=
∑ (34)

so that for 1xt <

xt1
t

11
x10

0n

n
n

n e)xt1()xt1)(D,1,(Ft)
x
1(Lx −

−−−
∞

=

−=−−−=∑
(35)

i.e, putting
x
1z = , uxt =

.
u

uz

n

n
n euuzL −

−−
∞

=

−=∑ 11

0
)1()( (36)

Study of Generalized Laguerre Polynomials by Operator Calculus

Resolution of Differential Equation 

Consider the ODE of generalized Laguerre polynomials

0')1(" =+−++ nyyxxy α (37)

Under operator calculus it has the form

0y)nD)1()1D(DX̂( xxx =+++− α (38)

Applying an operator )D(A x onto both sides and utilizing the fundamental identity (6) we have, in writing A

for )D(A x and D for xD for simplicity,

ynDDDXA ))1()1(ˆ( +++− α

n
x10

knn

0k

k
n

n x)D,1,(F
!k

x
k
n

)()
x
1(Lx −−=








−=

−

=
∑

u
uz

n

n
n euuzL −

−−
∞

=

−=∑ 11

0
)1()(

uz

0y)nD)1()1D(DX̂( xxx =+++− α

ynDDDXA ))1()1(ˆ( +++− α

8

0)1('))1()1(ˆ( =−++++−= yDDAAynDDDX α (39)

Searching for an operator )D(AA x≡ such that )1D(D)D('A xxx − contains )D(A x , we have two 

choices

α−−≡ m
xx D)D(A (40)

and

α−−−≡ m
xx DDA )1()( (41)

With the second choice we have from (39)

11 )1)((ˆ)1)((ˆ'ˆˆ −−−−−− −+−≡−+−≡+≡ αα αα mm DmAXDmAXAAXXA
(42) y)nD)1()1D(DX̂(A +++− α

Ay)D)m()nD)1()1D(DX̂(( αα +−+++−=

0y)1D)(mDA)nD)1D(DX̂(( m =−−++−= −− α

(43)

and consequently

0y)1D))(nDX̂(D)1mDX̂(( m
xxxx =−−−+− −− α

(44)

Remarking that

0xD)1nDX̂(x)nDX̂( n
xx

n
x =+−=−
(45)

we choice nm = and see that

n
n

n
x xcyD =− −− α)1(

i.e. with the convention !n/)1()0(L nn αα +=

!
)1()()(

n
xDxL

n
n

x
n

n
αα +−−= (46)

)()1(
!

)1()1( xLD
n
xDD nx

n
n

xx
αα −=−−= (47)

(39)

α−−≡ m
xx D)D(A (40)

α−−−≡ m
xx DDA )1()(

8

0)1('))1()1(ˆ( =−++++−= yDDAAynDDDX α (39)

Searching for an operator )D(AA x≡ such that )1D(D)D('A xxx − contains )D(A x , we have two 

choices

α−−≡ m
xx D)D(A (40)

and

α−−−≡ m
xx DDA )1()( (41)

With the second choice we have from (39)

11 )1)((ˆ)1)((ˆ'ˆˆ −−−−−− −+−≡−+−≡+≡ αα αα mm DmAXDmAXAAXXA
(42) y)nD)1()1D(DX̂(A +++− α

Ay)D)m()nD)1()1D(DX̂(( αα +−+++−=

0y)1D)(mDA)nD)1D(DX̂(( m =−−++−= −− α

(43)

and consequently

0y)1D))(nDX̂(D)1mDX̂(( m
xxxx =−−−+− −− α

(44)

Remarking that

0xD)1nDX̂(x)nDX̂( n
xx

n
x =+−=−
(45)

we choice nm = and see that

n
n

n
x xcyD =− −− α)1(

i.e. with the convention !n/)1()0(L nn αα +=

!
)1()()(

n
xDxL

n
n

x
n

n
αα +−−= (46)

)()1(
!

)1()1( xLD
n
xDD nx

n
n

xx
αα −=−−= (47)

8

0)1('))1()1(ˆ( =−++++−= yDDAAynDDDX α (39)

Searching for an operator )D(AA x≡ such that )1D(D)D('A xxx − contains )D(A x , we have two 

choices

α−−≡ m
xx D)D(A (40)

and

α−−−≡ m
xx DDA )1()( (41)

With the second choice we have from (39)

11 )1)((ˆ)1)((ˆ'ˆˆ −−−−−− −+−≡−+−≡+≡ αα αα mm DmAXDmAXAAXXA
(42) y)nD)1()1D(DX̂(A +++− α

Ay)D)m()nD)1()1D(DX̂(( αα +−+++−=

0y)1D)(mDA)nD)1D(DX̂(( m =−−++−= −− α

(43)

and consequently

0y)1D))(nDX̂(D)1mDX̂(( m
xxxx =−−−+− −− α

(44)

Remarking that

0xD)1nDX̂(x)nDX̂( n
xx

n
x =+−=−
(45)

we choice nm = and see that

n
n

n
x xcyD =− −− α)1(

i.e. with the convention !n/)1()0(L nn αα +=

!
)1()()(

n
xDxL

n
n

x
n

n
αα +−−= (46)

)()1(
!

)1()1( xLD
n
xDD nx

n
n

xx
αα −=−−= (47)

(42)

y)nD)1()1D(DX̂(A +++− α

8

0)1('))1()1(ˆ( =−++++−= yDDAAynDDDX α (39)

Searching for an operator )D(AA x≡ such that )1D(D)D('A xxx − contains )D(A x , we have two 

choices

α−−≡ m
xx D)D(A (40)

and

α−−−≡ m
xx DDA )1()( (41)

With the second choice we have from (39)

11 )1)((ˆ)1)((ˆ'ˆˆ −−−−−− −+−≡−+−≡+≡ αα αα mm DmAXDmAXAAXXA
(42) y)nD)1()1D(DX̂(A +++− α

Ay)D)m()nD)1()1D(DX̂(( αα +−+++−=

0y)1D)(mDA)nD)1D(DX̂(( m =−−++−= −− α

(43)

and consequently

0y)1D))(nDX̂(D)1mDX̂(( m
xxxx =−−−+− −− α

(44)

Remarking that

0xD)1nDX̂(x)nDX̂( n
xx

n
x =+−=−
(45)

we choice nm = and see that

n
n

n
x xcyD =− −− α)1(

i.e. with the convention !n/)1()0(L nn αα +=

!
)1()()(

n
xDxL

n
n

x
n

n
αα +−−= (46)

)()1(
!

)1()1( xLD
n
xDD nx

n
n

xx
αα −=−−= (47)

8

0)1('))1()1(ˆ( =−++++−= yDDAAynDDDX α (39)

Searching for an operator )D(AA x≡ such that )1D(D)D('A xxx − contains )D(A x , we have two 

choices

α−−≡ m
xx D)D(A (40)

and

α−−−≡ m
xx DDA )1()( (41)

With the second choice we have from (39)

11 )1)((ˆ)1)((ˆ'ˆˆ −−−−−− −+−≡−+−≡+≡ αα αα mm DmAXDmAXAAXXA
(42) y)nD)1()1D(DX̂(A +++− α

Ay)D)m()nD)1()1D(DX̂(( αα +−+++−=

0y)1D)(mDA)nD)1D(DX̂(( m =−−++−= −− α

(43)

and consequently

0y)1D))(nDX̂(D)1mDX̂(( m
xxxx =−−−+− −− α

(44)

Remarking that

0xD)1nDX̂(x)nDX̂( n
xx

n
x =+−=−
(45)

we choice nm = and see that

n
n

n
x xcyD =− −− α)1(

i.e. with the convention !n/)1()0(L nn αα +=

!
)1()()(

n
xDxL

n
n

x
n

n
αα +−−= (46)

)()1(
!

)1()1( xLD
n
xDD nx

n
n

xx
αα −=−−= (47)

(43)

8

0)1('))1()1(ˆ( =−++++−= yDDAAynDDDX α (39)

Searching for an operator )D(AA x≡ such that )1D(D)D('A xxx − contains )D(A x , we have two 

choices

α−−≡ m
xx D)D(A (40)

and

α−−−≡ m
xx DDA )1()( (41)

With the second choice we have from (39)

11 )1)((ˆ)1)((ˆ'ˆˆ −−−−−− −+−≡−+−≡+≡ αα αα mm DmAXDmAXAAXXA
(42) y)nD)1()1D(DX̂(A +++− α

Ay)D)m()nD)1()1D(DX̂(( αα +−+++−=

0y)1D)(mDA)nD)1D(DX̂(( m =−−++−= −− α

(43)

and consequently

0y)1D))(nDX̂(D)1mDX̂(( m
xxxx =−−−+− −− α

(44)

Remarking that

0xD)1nDX̂(x)nDX̂( n
xx

n
x =+−=−
(45)

we choice nm = and see that

n
n

n
x xcyD =− −− α)1(

i.e. with the convention !n/)1()0(L nn αα +=

!
)1()()(

n
xDxL

n
n

x
n

n
αα +−−= (46)

)()1(
!

)1()1( xLD
n
xDD nx

n
n

xx
αα −=−−= (47)

(44)

0xD)1nDX̂(x)nDX̂( n
xx

n
x =+−=− (45)

n
n

n
x xcyD =− −− α)1(

!n/)1()0(L nn αα +=

!
)1()()(

n
xDxL

n
n

x
n

n
αα +−−= (46)

)()1(
!

)1()1( xLD
n
xDD nx

n
n

xx
αα −=−−= (47)

9
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we get

But from [8]
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By similar calculation we get also

Remarks and Conclusion
This work firstly proposes the use of a special operator, say 
(Dx- 1)n+α, for resolving ordinary differential equations, say those 
of Laguerre and generalized Laguerre polynomials. This leads to 
the result that Laguerre polynomials and generalized one’s are the 
transforms of monomials by the said special operator.

Secondly we obtain quasi all the well-known properties of 
Laguerre polynomials by utilizing this special operator together 
with the couple of operators            , exactly as in quantum mechan-
ics we utilize simultaneously the momentum and position opera-
tors respecting the Dirac permutation relation. 

Last but not least the aim of this work is to interest readers in 
utilizing operator calculus, not only differential calculus, in math-
ematics and physics. For that we cite in references some works of 
some authors in this domain [9-11]. For facilitate readers aiming 
to follow this direction we give as example in Appendix the proofs 
of fundamental identities in Operator calculus [12].
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Appendix
The fundamental identity in operator calculus

Proof of the identity

From the identity

we may deduce successively, in writing Dm for Dx
m   and Xm for                 

      , that

and so on.

Thank to this remark we suppose that

In order to prove (6) by recurrence we utilize (1) to proceed
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Combining the above result and the fact that

we conclude that (6) is correct.

Transforming F(D) g(X) into sum of operators in which 
X precedes D.
Under the form (6) we can’t proceed further because the mixed 
coefficient (m - k) ! doesn’t permit summations with respect to m. 

In order to bypass this obstacle, we make use of the relation
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Combining the above result and the fact that

)D(fXX)D(f 00 ≡ (9)

we conclude that (6) is correct. 

Transforming )X(g)D(f into sum of operators in which X precedes D
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where             is obtained by replacing          in the function with 
the operator    . 

Finally we may conclude that for and  expandable into Taylor se-
ries 

The formulae (12) and (13) form the fundamentalidentities of op-
eratorcaculus.

Apply the fundamental identity (12) on a function h(x) we find 
again the formula

that Forsyth had found in 1888 by generalizing the Leibnitz formu-
la but did not give details of calculations [9].

Invariance of the fundamental identity 
Inspecting the way we obtain the fundamental identity in operator 
calculus we see that it is the consequence of one and only one 
condition which is that the dual couple of operators               must 
respect the canonical identity                 We thus obtain an extremely 
important corollary saying that “The fundamental identity is in-
variant under replacing the couple of operators             with any 
other couple respecting the condition ”[A,B] ≡ I.

For example, by remarking that

we get

By replacing (D, X)  with (αa+ + βa,γa+ +δa) where a+, a are cre-
ation and annihilation operators in quantum mechanics and 
αδ-βγ =1 in (12) we obtain many other identities for operator cal-
culus.
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