
Abstract
Over the years, the number of applications supporting enterprise business processes has increased. The challenge of integrat-
ing diverse systems is one of the many reasons why many organizations fail to achieve greater automation. To overcome this
obstacle, they are turning to Enterprise Application Integration (EAI). Enterprise Application Integration is a process that
enables the integration of different applications. This allows the users to easily modify the functionality, share the information
among the various applications and reuse the methods. The paper presents a formal method that includes the various levels
of EAI. It highlights the various formal methods that can be used to achieve EAIs seamless interoperation. It also supports the
concurrent and dynamic system. This paper also proposes a new architecture for EAI that will help them achieve their goals.
There are many formal methods for programming languages in software engineering, but most of them are not adequate for
the development of complex systems. The author proposes a new methodology based on Petri net which is a graphical repre-
sentation of semantics.

Citation: Kotha, S. S. R., Gopal T. V. (2023). Formalisms for Enterprise Application Integration (EAI): A Survey of Methodologies. J
Robot Auto Res, 4(1), 337-342.

 Volume 4 | Issue 1 | 337

Formalisms for Enterprise Application Integration (EAI): A Survey of Methodologies
Research Article

Sivasankara Rao Kotha1*, Gopal T V2

1Research Scholar, Department of Computer Science and
Engineering, Anna University, College of Engineering
Guindy Campus, Chennai, India

2Professor, Department of Computer Science and
Engineering, Anna University, College of Engineering
Guindy Campus., Chennai, India

*Corresponding Author
Sivasankara Rao Kotha, Research Scholar, Department of Computer
Science and Engineering, Anna University, College of Engineering Guindy
Campus, Chennai, India

 Submitted: 01 Feb 2023; Accepted: 06 Mar 2023: Published: 15 Mar 2023

Journal of Robotics and Automation Research
ISSN: 2831-6789

J Robot Auto Res , 2023

Keywords: Enterprise Application Integration (EAI), Formal Methods, Grammar rules, Interoperability, Multi-Agent System (MAS),
Petri net, Unified Modeling Language (UML), Verification and Validation, Z Specification Language

Introduction
Application integration is not new in enterprises, but the methods
for conducting EAI are presently being understood. The enterpris-
es have many applications that have been developed using het-
erogeneous environments and platforms. Enterprise Application
Integration (EAI) is a methodology to integrate the different appli-
cations at the enterprise level. The core functionality of EAI is the
ability to create meaningful messages and the ability to guarantee
the delivery of these messages to both source and target applica-
tions [1].

A point-to-point method was used to exchange the data between
the different applications [2]. Later middle ware technologies were
used for the same thing to integrate the different applications.
Identify some of the most successful technologies in the middle-
ware market and show the impact of their creation on the industry
[3]. There are two main models of the middleware technologies
in EAI: Hub-Spoke and Message Bus. Hub and Spoke methods
are like client and server communication. Hub is acted as a server
and spokes are the clients like different applications. In the Mes-
sage Bus model, the applications utilize the bus model rather than
the centralized server model of the hub and spoke model. In addi-
tion to the different Models and Architectures, they are some oth-

er characteristics of EAI. Some applications are loosely coupled
and some are tightly coupled. One more characteristic is based
on whether the applications are Synchronous and Asynchronous.
Based on these distinguishing characteristics the integration pro-
cess will perform and exchange the messages and data between
applications.
 They are some levels of integration in which the integration pro-
cess will run [4].
• Data Level Integration
• Application Level Integration
• Method Level Integration
• User Interface Level Integration
• Process Level Integration
• Architecture Level Integration

Each level having own methodologies and techniques. Formal
proofs and formally verifiable integration processes in the EAI
have been a challenge. In the present era, almost all organizations
are dependent on new growing technologies and for that, they have
been developing many applications. Some applications are devel-
oped and designed within few months and some of a few weeks
also. These applications are dynamic in nature, distributed in and
out of enterprises, and are developed in different infrastructures

https://orcid.org/0000-0002-1122-1517

 Volume 4 | Issue 1 | 338J Robot Auto Res , 2023

and platforms.During the 21st century, the business environment
in every organization is tremendously dependent on new technolo-
gies and having a great impact on these industries, and it will erase
the boundaries of every organization functional-wise, exchanging
the data and process between them. The new functionality and
business environment approach will appear in the coming years.

The industrial wise integration methodologies are clearly ex-
plained in the and summarizes like need to developing new frame-
works and methodologies to enable enterprises to integrate their
existing applications into new technologies like the Cloud Com-
puting and Internet of Things (IoT) is an area of concern [5]. In
reported a large set of patterns that could be used to develop inte-
gration solutions, depending on the most adequate type of solution
for a particular integration problem [6]. As we discussed above,
applications are dynamic in nature and loosely coupled also. Shar-
ing the data and process environment between the loosely coupled
applications is very important and carefully integrated. They are
many technologies and methods for every level of integrations.
Web Services, Service Oriented Architecture (SOA), Enterprise
Service Bus (ESB), Application Programming Interface (API), and
Extraction Transformation Loading (ETL) so on, are the different
methods and technologies that were made to integrate the different
applications in levels of Enterprise Application Integration [1, 4].

Whatever technologies are made and methods are developed, the
verification and validation of each approach are necessary. Wheth-
er the applications are integrated correctly or not, whether the in-
tegrated applications are work properly and share their data or not.
So formal methods are taken care of the above problem. There is
a need for use of formal methods in software engineering process.
They are some commandments for applying the formal methods
[7]. It is a mathematical or logic based technique to systematically
develop, describe, and verify a software system. By formal meth-
ods, we can verify and validate the applications before the imple-
mentation stage of the software process. They are some myths to
use formal methods in software engineering, even it can help to
reduce lead times and lower development costs [8, 9].

Because of distributed and dynamic nature of the application, we
need the same characteristic of formal method and verifiable for-
mal technology. Petri net is the one, which is distributed in nature,
perfectly verifiable to the loosely coupled applications while in-
tegrating at an enterprise level. The details of Petri net and how
it will be useful for EAI has explained in the next session. Our
proposed approach is to develop a Petri net model for different
objects and processes of each application while integration occurs.
There are many levels of integration in which we have to develop
a prototyping model to verify each level of EAI. The layering ap-
proach is very useful and helpful to understanding our proposed
concept. It is showed us how to build a network. Already we have
mentioned some layering models of different levels of integration.
The multilevel approach has been good in software systems. Based
on the above theory, we have approached different types of formal-
isms for Enterprise Application Integration (EAI). Several models

were proposed in the literature, such as UML, Z Language, Formal
Grammar, Multi-Agent System, and Petri Net. As it will be shown
in the next section Petri net model has several advantages com-
pared to other models.
 The rest of the paper is organized as follows: In section 2 focuses
on the di_erent formal approached views to Enterprise Application
Integration (EAI). Conclusion and Future Work has given in sec-
tion 3 and section 4, followed by references.

Different Formal Views
Unified Modeling Language (UML)
UML (Unified Modeling Language), with more notations embod-
ied, is suggested as a general and standard notation for the analy-
sis, design, and development of object-oriented software systems
[10]. The semantics of UML is intended for the latter field [11]. It
is a very popular formal modeling language (somewhat semi-for-
mal). Most of the time it demands Object Orientation. As a layer-
ing approach to a software process, the object-oriented concept is
very understandable and useful to create an application. We argue
that concepts should be correctly represented, at appropriate levels
and that clear semantic links between them should be provided for
useful integration. Then the resulting in a more powerful, useful,
and flexible system from all points of view.

The modeling power of UML is very high and can be demonstrat-
ed by applying it to some systems. The new approaches to address
the analysis and design of application systems must be a study
and obtain interesting properties of the systems. It is necessary the
application of formal methods to the enterprise level to integrate
different applications. Each step in the process of software is also
very important. Deployment and integration after this very diffi-
cult. Maintenance of software is very easy but the maintenance of
EAI is very difficult. The execution time of the software mainte-
nance process may get increased due to the integration of differ-
ent types of applications, thus, increasing the cost and decreasing
the performance of the process [12]. In mentioned the standard
definition of maintenance like “the totality of activities required to
provide cost-effective support to a software system. Activities are
performed during the pre-delivery stage as well as the post-deliv-
ery stage” [13]. UML diagrams are powerful tools for system de-
sign but they are unable to address nonfunctional parameters. This
means UML diagrams cannot be used for performance evaluation.
By using UML, we can describe the user requirements, static and
dynamic properties, and behavior of a system in a convenient way.
Easy to transform the UML to the source code of the program. It is
difficult to analyze the UML model since it is an informal language
[14].

Z Specification Language
As application integration wise, fault tolerance is the desirable
feature for every integration tool. So that, EAI solutions can keep
running despite the occurrence of failure. Errors monitoring is the
main activity in fault tolerance since it enables the detection of
errors. Rule-based language is one of the solutions to provide an
error detection mechanism to detect the errors in the system based

 Volume 4 | Issue 1 | 339J Robot Auto Res , 2023

on the monitoring system [15]. Z is one of the _nest rule-based
and formal specification languages, in that some few tools are sup-
ported to monitor and detect semantic errors. That is the reason we
take the option to choose the Z formal specification language in our
proposed EAI system. Z is a formal specification language based
on set theory and first-order logic [16, 17]. It is a formal notation
for specifying the functionalities of sequential systems, it does not
support the concurrent and distributed system. It includes a set of
entities, called schema which are representing of an abstract class
of system and its operations. Every entity and its related operations
expressed through a rich set of mathematical notations.

Z specification language offers a rich type of definition facility and
it supports formal reasoning of the system. However, it does not
support concurrent and distributed systems and does not have ex-
plicit operational semantics [18]. It has been used as a specification
language to formally describe and analyze the requirements and
the design architectures of a wide range of hardware and software
system. Despite some advantages, specification languages having
some weaknesses also. They are like limited scope of properties,
limited tool support, isolation, poor guidance, and cost, and so on.
By Z specification languages we can specify the state space and
sets of operations very clearly but we cannot express the combi-
nation of the operations. In enterprises, we also need to be able to
talk about the behavioral aspects of the system.

It is a very successful formal specification language. Z specifi-
cation language represents the different objects, events, and pro-
cesses, the relation between them to integrate the applications. We
found that it is suitable mostly for specific domains not all. It is
good enough about some verticals, nuclear systems, and some spe-
cific domains. Z specifications do not have explicit operational se-
mantics and it does not support an effective definition of distribut-
ed and concurrent systems. EAI need not be tied up to any domain.

Formal Grammar
The rule-based concept is also considered in this scenario. The
rules are written by some grammars and automatically which is
decided the choice of the particular level of integration. The formal
way of the rule-based concept is the approach in which anyone can
write their own rules which will suit their problem. Commonly
Context-Free Grammar (CFG) and Context-Sensitive Grammar
(CSG) are the grammars that will use for writing the rules. These
grammars are run mainly based on the context. Complete ordering
of events is very difficult to match the hierarchy or levels. This
is the reason we went to process view of a model. Finite State
Machine (Finite State Automaton) is a notable formalism in the
automata theory to represent all the states and the transitions be-
tween its states [19]. This formal method generally less powerful
in complex and concurrent systems.

Pi-Calculus is a process algebra and mathematical formalism for
describing and analyzing properties of concurrent computation
and the process interaction by sending communication links to
each other. EAI happens ad hoc in nature [20, 21]. There is no

firm plan of applications emerging. So the emerging scenario is
difficult in Pi- Calculus. If you can make a flexible process that is
a very high level. The optimizing process is what is necessary for
the approach. The optimizing process definition in EAI is not fit-
ting well in Pi-Calculus. Where there is the strong process, where
there is the strong adherence. It is capable of a process definition.
But we cannot say it is optimized. It is good in process definition
and protocol design. It is good in the level crossed model also.
But, EAI is not dependent on a single level of integration, needed
a higher level of maturity for a strong process definition. It is not
good for ad hoc.

Multi-Agent System (MAS)
Generally, the Multi Agents approach is designed for open sys-
tems. Autonomy, Heterogeneity, and Dynamics are the main
characteristics of open systems. Agents system is characterized
by modularity, abstraction, dynamism, and interoperability. This
is the main reason that the agents approach was considered for
application integration in the dynamic and open system environ-
ment [22]. The agent is a system that is situated in some environ-
ments, and it acts autonomously to satisfy the design objectives.
Autonomous and Environment are the two important parameters
in agent technology. The agents are autonomous that they can act
according to their will. They understand what to do based on the
environment. The agent’s action will influence the environment.
In most cases, the agent’s actions only have partial control over
its environment. These actions which are taken based on the envi-
ronment are not influenced by a human, or any other agents [23].
Agents are used agent communication languages such as KQML
and FIPAs ACL to exchange messages [24, 25]. The main aim of
agent communication languages is to provide precise semantics
and syntax for interaction between agents.

It is a highly reputed approach at an enterprise level. Each agent has
to connect with the environment to do the communication between
agents. It is environment-based communication. Most complexity
in this approach is agent interaction with the environment. The
environment or ecosystem is the best applicable for information
retrieval, search engines because of the cyclic approach. There are
many approaches to integrate the applications by the multi-agent
scenario such that, use each agent as a wrapper of applications,
construct a multi-agent architecture in which each agent is inter-
acting with other agents and provide an integration solution, and
consider each agent as an intelligent manager of an open environ-
ment [26, 27]. EAI having many applications which are developed
in a different environment. The complexity of the agent depends
on the number of agent interactions with the environment. So, it
is difficult to maintain and communicate between many environ-
ments at a time in a multi-agent system.

Petri Net
Petri Nets is one of the formal specification and graphical oriented
modelling languages for the design, specification, and verification
of distributed systems [28]. By using Petri net, we can analyze
the dynamic properties and structure of systems through strict

 Volume 4 | Issue 1 | 340J Robot Auto Res , 2023

mathematics analysis and visualized computer simulation as well
as model distributed and parallel processes [29]. In find that Petri
nets are an attractive alternative of above mentioned models due to
their extensive capability to perform analytics and simulation [30].
In represents the simulation of integration solution using concep-
tual models and concluded like the scope of EAIs investigation is
still vast, it is hoped that in the future, new tools and methods will
be developed to support this area of study [31]. Unified Modeling
Language (UML) is also a powerful modeling language having
many notations and design diagrams. Petri net has a graphical
representation and well-defined semantics, which allow compact,
manageable representation, and more powerful analysis than the
UML. Some of the other features of UML and PNs are mentioned
here [14],
• Petri Nets possess formal strictness Than the UML.
• Petri Nets model is suitable for simulation while the UML

model can be implemented easily.
• Petri Nets can analyse systems strictly whereas UML can de-

scribe systems effectively.
• Petri nets can be divided based on modeling power, mecha-

nisms for data abstraction, and refinement [29]. They are dif-
ferent types of Petri nets such as,

• High-Level Petri Net [32]
• Coloured Petri Net [33-35]
• Relation Transition Net [36]
• Algebraic Petri Nets [37]
• Timed Petri Nets [38]
• Stochastic Petri Nets [39, 40]

The Petri net definition and syntax being to be changed based on
the requirement and type of nets which we could use. The formal
definition of Petri net is,
A Petri net having 5-tuple,
PN = (P, T, F, W, M0)
P = {p1, p2, .., pm} is a finite set of places denoted by circles
T = {t1, t2, ..., tn} is a finite set of transitions denoted by rectangles
F ⊆ (P x T) ∪ (T x P) is a set of arcs denoted by lines
W : f → (1, 2, 3, ...) is a weight function,
M0 : P → (0, 1, 2, 3, ...) is the initial marking like tokens denoted
by bolded dots.
P ∪ T ≠ ⊘ and P ∩ T = ⊘

The dynamic behavior of the system can change depends on the
changes of the places (P) and transitions (T) in the Petri net.
 In this field, some basic questions will arise,
• Can we reach one particular state from another?
• Will a storage place overflow?
• Will the system die in a particular state?
Stepwise elaboration of above questions on Petri net:

Step 1: Design the model of the system based on the require-
ment
Design the net model by using Places, Transitions, and Arcs which
acts as a communicator between places and transitions.

Step 2: Analysis of the properties
Reachability: It is a fundamental basis for studying the dynamic
properties of any system. It works based on the firing of tokens as
an enabled transition, it will change the total net according to the
transition rule.
Boundedness: A Petri net is said to be simply bounded if the num-
ber of tokens has fired from a place which is not exceeding the
finite number. If it k-bounded, means it does not exceed the k token
values.
Liveness: The liveness property is like a deadlock property of the
system.
 Besides, Petri nets provide various analysis techniques such as,
• Reachability Tree,
• Incidence Matrix,
• Invariant Analysis Method.

Through these analysis techniques, the properties of the Petri nets
models such as Reachability, Liveness, and Boundedness can be
examined. By using Petri nets we can analyze the structure and
dynamic properties of systems through strict mathematics analysis
and visualized computer simulation as well as model distributed
and parallel processes. As we said earlier Enterprise Applica-
tion Integration (EAI) integrates methods, objects, and tools for
the classification, coordination, connection of applications with-
in organizations. The main goal of EAI is to integrate a business
processing of applications of different generations and architec-
ture. These applications consistently change through upgrades or
adding of new applications with modified technologies and other
influences. One of the prerequisites for reaching this goal is the
documentation of business processes of the individual applications
and their interfaces should be unified. Table 1 represents the com-
parisons of our approached formal views with different charac-
teristics of EAI. UML having more complex because of having
more diagrams, level of the hierarchy is more and most important
is In-formal characteristic, even though having more reliability,
and effective communication property with heavy industrial usage.

The body of schema in Z specification language may refer to items
that are not declared directly in the schema. Generally, Z specifica-
tions look clumsy when it is used to specify large systems. It only
specifies the functionalities of the system, not to communicate and
handling the entire system. Having more complexity, difficulty to
maintenance, somewhat in-formal so on are some limitations to
the approach of this specification language.

 Volume 4 | Issue 1 | 341J Robot Auto Res , 2023

Table 1: Comparison of Different Formal Views.

Different Models/
Properties

UML Z Specification
Language

Formal Grammar/
Automata

Multi-Agent System Petri Net

Reliability More More More Less More
Dynamicity More Less Less More More
Distribution Possible Possible Less Possible High Possible
Complexity High High More High Less
Maintainability Difficult Difficult Not an Easy Difficult Easy
Concurrency possible Not supported Less More More
Hierarchy possible Possible Possible Possible Less
Process Collaboration Possible Possible Possible Possible Possible
Strong Formalism In-formal Not fully Possible Less High Formalism
Communication Effective Effective Less Effective More Effective
Industrial Practice More Less Less Less More
Tool Support Possible Limited Limited Possible Possible
Reusability Possible Possible Possible Less Possible Possible

The automata and grammar theory also having less dynamicity
and somewhat informal, limited tool support.

Same as the above models, the multi-agent system also had some
limitations to continue as an approached model of EAI. Process
collaboration of the entire hierarchy system is somewhat difficult,
its maintenance and complexity are high, not much tool support,
less formalism, and difficult to communicate different environ-
ments to different agent applications in large systems.
By the all models, finally we have approached Petri Net is a most
sophisticated and useful formal model for EAI. Petri net has a
graphical representation and well-defined semantics, which allow
compact and manageable representation and more powerful anal-
ysis. The tool set has been developed to automate Petri net anal-
ysis, which examines behavioral properties of Petri net such as
deadlocks, conflicts, blocking, and performance parameters rang-
ing from throughput rate, utilization to expected buffer size so on.
Moreover, concurrency can be modeled, allowing action to take
place simultaneously, and it allows interactive simulation also. So,
user can easily identify throughout the model to locate a bottleneck
and to troubleshoot the problem.

The author has observed that it has some primary advantages of
Petri Net:
• The graphical model uses very few but powerful primitives mak-
ing it easy to understand.
• Models can be represented as tuples, which the computer can
interpret and analyze.
 It can unambiguously describe a system, showing explicitly both
states and actions, whereas other formal methods focus on either
states or actions but not both. This allows users to change between
the two perspectives as desired.

Conclusion
In this paper, we presented an introduction of Enterprise Applica-
tion Integration (EAI) and Techniques, methodologies, and some
integration levels of EAI. This paper is a review of some widely
used formal methods for EAI. A quick summary of formal meth-
ods like Unified Modeling Language (UML), Z specification Lan-
guage, Context-Free Grammar (CFG), Pi- Calculus, Multi- Agent
System (MAS), and implementation for EAI accordingly has been
explained. A summarized comparison report of selected formal
method views has been given. Finally, we have chosen a Petri net
model for our problem at hand. A brief explanation of the Petri
net model and how it will use for our problem has been given. In
future work, the authors implement a Petri net model for analyzing
the properties like Reachability, Boundedness, and Liveness us-
ing techniques like Reachability Tree, Incidence Matrix, Invariant
Analysis for the Enterprise Application Integration.

References
1. Linthicum, D. S. (2000). Enterprise application integration.

Addison-Wesley Professional.
2. Brown, W. J., Ruh, W. A., & Maginnis, F. X. (2002). Enter-

prise application integration: a Wiley tech brief. John Wiley
& Sons.

3. Emmerich, W., Aoyama, M., & Sventek, J. (2008). The im-
pact of research on the development of middleware technolo-
gy. ACM Transactions on Software Engineering and Method-
ology (TOSEM), 17(4), 1-48.

4. Kotha, S., & Gopal, T. V. (2021). Formal methods for enter-
prise application integration. Complex Control System, 3(1),
9-24.

5. Gorkhali, A., & Xu, L. D. (2016). Enterprise application inte-
gration in industrial integration: a literature review. Journal of
Industrial Integration and Management, 1(04), 1650014.

6. Hohpe, G., & Woolf, B. (2004). Enterprise integration pat-

https://dl.acm.org/doi/abs/10.1145/13487689.13487692
https://dl.acm.org/doi/abs/10.1145/13487689.13487692
https://dl.acm.org/doi/abs/10.1145/13487689.13487692
https://dl.acm.org/doi/abs/10.1145/13487689.13487692
http://ir.bas.bg/ccs/2021/2_kotha.pdf
http://ir.bas.bg/ccs/2021/2_kotha.pdf
http://ir.bas.bg/ccs/2021/2_kotha.pdf
https://doi.org/10.1142/S2424862216500147
https://doi.org/10.1142/S2424862216500147
https://doi.org/10.1142/S2424862216500147

 Volume 4 | Issue 1 | 342J Robot Auto Res , 2023

terns: Designing, building, and deploying messaging solu-
tions. Addison-Wesley Professional.

7. Bowen, J. P., & Hinchey, M. G. (2005). Ten command-
ments ten years on: An assessment of formal methods usage.
SEEFM, 18-19.

8. Hall, A. (1990). Seven myths of formal methods. IEEE soft-
ware, 7(5), 11-19.

9. Bowen, J. P., & Hinchey, M. G. (1995). Seven more myths of
formal methods. IEEE software, 12(4), 34-41.

10. Fowler, M. (2004). UML distilled: a brief guide to the standard
object modeling language. Addison-Wesley Professional.

11. Garrido, J. L., & Gea, M. (2002). A coloured petri net formal-
isation for a UML-based notation applied to cooperative sys-
tem modelling. In Interactive Systems: Design, Specification,
and Verification: 9th International Workshop, DSV-IS 2002
Rostock, Germany, June 12–14, 2002 Revised Papers 9 (pp.
16-28). Springer Berlin Heidelberg.

12. Nabeel, M., Anwar, Z., & Ahsan, A. (2018). Global Journal of
Computer Sciences: Theory and Research. Global Journal of
Computer Sciences: Theory and Research, 8(1), 01-13.

13. Software Engineering Standards Committee et al. Ieee stan-
dard for software maintenance. IEEE Std, 1998.

14. Hongmei, G., Biqing, H., & Shouju, R. (2000). A UML and
Petri Nets Integrated Modeling Method for Business Process-
es in Virtual Enterprises. In American Association for Artifi-
cial Intelligence.

15. Klein, M. J., Sawicki, S., Roos-Frantz, F., & Frantz, R. Z.
(2014, April). On the Formalisation of an Application Integra-
tion Language Using Z Notation. In ICEIS (1) (pp. 314-319).

16. Ter Bekke, Johan H., and J. H. Ter Bekke. Semantic data mod-
eling. Hemel Hempstead: Prentice Hall, 1992.

17. Diller, A. (1994). Z: An introduction to formal methods. John
Wiley & Sons, Inc..

18. He, X. (2001). PZ nets—a formal method integrating Petri
nets with Z. Information and Software Technology, 43(1),
1-18.

19. Sakarovitch, J. (2009). Elements of automata theory. Cam-
bridge University Press.

20. Parrow, J. (2001). An Introducion to the Pi-calculus. Hand-
book of Process Algebra, Bergstra and Ponse and Smolka.

21. Padua, D. (Ed.). (2011). Encyclopedia of parallel computing.
Springer Science & Business Media.

22. Yoo, M. (2007). Enterprise Application Integration from the
Point of View of Agent Paradigm. In Enterprise Architecture
and Integration: Methods, Implementation and Technologies
(pp. 225-238). IGI Global.

23. Wooldridge, M., & Jennings, N. R. (1995). Intelligent agents:
Theory and practice. The knowledge engineering review,
10(2), 115-152.

24. Finin, T., Fritzson, R., McKay, D., & McEntire, R. (1994,
November). KQML as an agent communication language. In
Proceedings of the third international conference on Informa-
tion and knowledge management (pp. 456-463).

25. FIPA, A. (2004). Message structure specification. foundation
for intelligent physical agents, 2000. URL: http://www. fipa.
org/specs/fipa00061, Abruf am, 09-29.

26. Wang, G., Zheng, J., Wu, H., & Tang, Y. (2009, August).
Research of the Enterprise Application Integration Platform
Based on Multi-agent. In 2009 Fifth International Joint Con-
ference on INC, IMS and IDC (pp. 329-331). IEEE.

27. Benmerzoug, D. (2013). Agent approach in support of enter-
prise application integration. arXiv preprint arXiv:1311.6149.

28. Carl, A. (1962). Petri. kommunikation mit automaten. PhD,
University of Bonn, West Germany.

29. Murata, T. (1989). Petri nets: Properties, analysis and applica-
tions. Proceedings of the IEEE, 77(4), 541-580.

30. Kim, R., Gangolly, J., & Elsas, P. (2017). A framework for
analytics and simulation of accounting information systems:
A Petri net modeling primer. International Journal of Account-
ing Information Systems, 27, 30-54.

31. Belusso, C. L., Sawicki, S., Roos-Frantz, F., & Frantz, R. Z.
(2016). A study of Petri Nets, Markov chains and queueing
theory as mathematical modelling languages aiming at the
simulation of enterprise application integration solutions: a
first step. Procedia Computer Science, 100, 229-236.

32. He, X., & Murata, T. (2005). High-level Petri nets—exten-
sions, analysis, and applications. In The Electrical Engineer-
ing Handbook (pp. 459-475). Academic Press.

33. Jensen, K. (1987). Coloured petri nets. In Petri nets: central
models and their properties (pp. 248-299). Springer, Berlin,
Heidelberg.

34. Jensen, K. (1996). Coloured Petri nets: basic concepts, anal-
ysis methods and practical use (Vol. 1). Springer Science &
Business Media.

35. Wil Van Der Aalst, M. P., & Stahl, C. (2011). Modeling busi-
ness processes: a petri net-oriented approach. MIT press.

36. Reisig, W. (1985). Petri nets with individual tokens. Theoreti-
cal Computer Science, 41, 185-213.

37. Reisig, W. (1991). Petri nets and algebraic specifications.
High-level Petri Nets: Theory and Application, 137-170.

38. WANG, J., & JIANG, S. (2012). and Flexible Systems. Petri
Nets in Flexible and Agile Automation, 310, 207.

39. Haas, P. J. (2006). Stochastic petri nets: Modelling, stability,
simulation. Springer Science & Business Media.

40. Marsan, M. A., Balbo, G., Conte, G., Donatelli, S., & Fran-
ceschinis, G. (1998). Modelling with generalized stochastic
Petri nets. ACM SIGMETRICS performance evaluation re-
view, 26(2), 2.

Copyright: ©2023 Siva Sankara Rao Kotha. This is an open-access article
distributed under the terms of the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any
medium, provided the original author and source are credited.

https://opastpublishers.com

https://d1wqtxts1xzle7.cloudfront.net/31617616/seefm05-libre.pdf?1392317176=&response-content-disposition=inline%3B+filename%3DTen_Commandments_Ten_Years_On_An_Assessm.pdf&Expires=1677823117&Signature=Iwjy-xt-MyYAw7l9g8CelM7NE-bckRNUHC5-0cp94Rz5wqB~5mkqHio6iTeT8amQYnJyupMMQZvkd1N-wDDtpA3NBaupgozVXdYb3-lP4QOfE04Vav01v9aSwBjwmffP6JuLh0xw7yHQelnUlNJtUoCcNje6AeKpXz9oNORTrnGy4Zt-k7F8TjPdvBYCcHgy7Yrt998pmo9vHA1OjsBMOezi4GCPOi11II2aMFFV7vhPZOWsBWGN0t8ebIKv1242wBVfxbXhxM-X1p2qay9aXNyros5ckOoQWzjf4sF7lvbdJ7nQQKrYrTTMW0m9A5tzoHGEdhMHM3zaSUU71P~dQA__&Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA
https://d1wqtxts1xzle7.cloudfront.net/31617616/seefm05-libre.pdf?1392317176=&response-content-disposition=inline%3B+filename%3DTen_Commandments_Ten_Years_On_An_Assessm.pdf&Expires=1677823117&Signature=Iwjy-xt-MyYAw7l9g8CelM7NE-bckRNUHC5-0cp94Rz5wqB~5mkqHio6iTeT8amQYnJyupMMQZvkd1N-wDDtpA3NBaupgozVXdYb3-lP4QOfE04Vav01v9aSwBjwmffP6JuLh0xw7yHQelnUlNJtUoCcNje6AeKpXz9oNORTrnGy4Zt-k7F8TjPdvBYCcHgy7Yrt998pmo9vHA1OjsBMOezi4GCPOi11II2aMFFV7vhPZOWsBWGN0t8ebIKv1242wBVfxbXhxM-X1p2qay9aXNyros5ckOoQWzjf4sF7lvbdJ7nQQKrYrTTMW0m9A5tzoHGEdhMHM3zaSUU71P~dQA__&Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA
https://d1wqtxts1xzle7.cloudfront.net/31617616/seefm05-libre.pdf?1392317176=&response-content-disposition=inline%3B+filename%3DTen_Commandments_Ten_Years_On_An_Assessm.pdf&Expires=1677823117&Signature=Iwjy-xt-MyYAw7l9g8CelM7NE-bckRNUHC5-0cp94Rz5wqB~5mkqHio6iTeT8amQYnJyupMMQZvkd1N-wDDtpA3NBaupgozVXdYb3-lP4QOfE04Vav01v9aSwBjwmffP6JuLh0xw7yHQelnUlNJtUoCcNje6AeKpXz9oNORTrnGy4Zt-k7F8TjPdvBYCcHgy7Yrt998pmo9vHA1OjsBMOezi4GCPOi11II2aMFFV7vhPZOWsBWGN0t8ebIKv1242wBVfxbXhxM-X1p2qay9aXNyros5ckOoQWzjf4sF7lvbdJ7nQQKrYrTTMW0m9A5tzoHGEdhMHM3zaSUU71P~dQA__&Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA
https://doi.org/10.1109/52.57887
https://doi.org/10.1109/52.57887
https://doi.org/10.1109/52.391826
https://doi.org/10.1109/52.391826
https://link.springer.com/chapter/10.1007/3-540-36235-5_2
https://link.springer.com/chapter/10.1007/3-540-36235-5_2
https://link.springer.com/chapter/10.1007/3-540-36235-5_2
https://link.springer.com/chapter/10.1007/3-540-36235-5_2
https://link.springer.com/chapter/10.1007/3-540-36235-5_2
https://link.springer.com/chapter/10.1007/3-540-36235-5_2
https://www.researchgate.net/profile/Zeeshan-Anwar-3/publication/320409522_Performance_Analysis_of_Software_Maintenance_Process_using_Stochastic_Petri_Nets/links/5ad49f5d458515c60f545279/Performance-Analysis-of-Software-Maintenance-Process-using-Stochastic-Petri-Nets.pdf
https://www.researchgate.net/profile/Zeeshan-Anwar-3/publication/320409522_Performance_Analysis_of_Software_Maintenance_Process_using_Stochastic_Petri_Nets/links/5ad49f5d458515c60f545279/Performance-Analysis-of-Software-Maintenance-Process-using-Stochastic-Petri-Nets.pdf
https://www.researchgate.net/profile/Zeeshan-Anwar-3/publication/320409522_Performance_Analysis_of_Software_Maintenance_Process_using_Stochastic_Petri_Nets/links/5ad49f5d458515c60f545279/Performance-Analysis-of-Software-Maintenance-Process-using-Stochastic-Petri-Nets.pdf
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=ee7a5ba5698b58b6365c48366a55eecbea2872ce
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=ee7a5ba5698b58b6365c48366a55eecbea2872ce
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=ee7a5ba5698b58b6365c48366a55eecbea2872ce
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=ee7a5ba5698b58b6365c48366a55eecbea2872ce
https://www.researchgate.net/profile/Rafael-Z-Frantz/publication/262790839_On_the_Formalisation_of_an_Application_Integration_Language_Using_Z_Notation/links/00463538dab0503eae000000/On-the-Formalisation-of-an-Application-Integration-Language-Using-Z-Notation.pdf
https://www.researchgate.net/profile/Rafael-Z-Frantz/publication/262790839_On_the_Formalisation_of_an_Application_Integration_Language_Using_Z_Notation/links/00463538dab0503eae000000/On-the-Formalisation-of-an-Application-Integration-Language-Using-Z-Notation.pdf
https://www.researchgate.net/profile/Rafael-Z-Frantz/publication/262790839_On_the_Formalisation_of_an_Application_Integration_Language_Using_Z_Notation/links/00463538dab0503eae000000/On-the-Formalisation-of-an-Application-Integration-Language-Using-Z-Notation.pdf
https://dl.acm.org/doi/abs/10.5555/527969
https://dl.acm.org/doi/abs/10.5555/527969
https://doi.org/10.1016/S0950-5849(00)00134-8
https://doi.org/10.1016/S0950-5849(00)00134-8
https://doi.org/10.1016/S0950-5849(00)00134-8
https://www.igi-global.com/chapter/enterprise-architecture-integration/18370
https://www.igi-global.com/chapter/enterprise-architecture-integration/18370
https://www.igi-global.com/chapter/enterprise-architecture-integration/18370
https://www.igi-global.com/chapter/enterprise-architecture-integration/18370
https://doi.org/10.1017/S0269888900008122
https://doi.org/10.1017/S0269888900008122
https://doi.org/10.1017/S0269888900008122
https://dl.acm.org/doi/abs/10.1145/191246.191322
https://dl.acm.org/doi/abs/10.1145/191246.191322
https://dl.acm.org/doi/abs/10.1145/191246.191322
https://dl.acm.org/doi/abs/10.1145/191246.191322
https://doi.org/10.1109/NCM.2009.112
https://doi.org/10.1109/NCM.2009.112
https://doi.org/10.1109/NCM.2009.112
https://doi.org/10.1109/NCM.2009.112
https://doi.org/10.48550/arXiv.1311.6149
https://doi.org/10.48550/arXiv.1311.6149
https://doi.org/10.1109/5.24143
https://doi.org/10.1109/5.24143
https://doi.org/10.1016/j.accinf.2017.09.002
https://doi.org/10.1016/j.accinf.2017.09.002
https://doi.org/10.1016/j.accinf.2017.09.002
https://doi.org/10.1016/j.accinf.2017.09.002
https://doi.org/10.1016/j.procs.2016.09.147
https://doi.org/10.1016/j.procs.2016.09.147
https://doi.org/10.1016/j.procs.2016.09.147
https://doi.org/10.1016/j.procs.2016.09.147
https://doi.org/10.1016/j.procs.2016.09.147
https://link.springer.com/chapter/10.1007/BFb0046842
https://link.springer.com/chapter/10.1007/BFb0046842
https://link.springer.com/chapter/10.1007/BFb0046842
https://doi.org/10.1016/0304-3975(85)90070-2
https://doi.org/10.1016/0304-3975(85)90070-2
https://link.springer.com/chapter/10.1007/978-3-642-84524-6_4
https://link.springer.com/chapter/10.1007/978-3-642-84524-6_4
https://dl.acm.org/doi/pdf/10.1145/288197.581193
https://dl.acm.org/doi/pdf/10.1145/288197.581193
https://dl.acm.org/doi/pdf/10.1145/288197.581193
https://dl.acm.org/doi/pdf/10.1145/288197.581193

