
Abstract
Next-generation sequencing technologies have increased sequencing throughput by 100-1000 folds and subsequently reduced 
the cost of sequencing a human genome to approximately US$1,000. However, the existence of sequencing artifacts can cause 
erroneous identification of variants and adversely impact the downstream analyses. Currently, the manual inspection of vari-
ants for additional refinement is still necessary for high-quality variant calls. The inspection is usually done on large binary 
alignment map (BAM) files which consume a huge amount of labor and time. It also suffers from a lack of standardization and 
reproducibility. Here we show that the use of mutational signatures coupled with deep learning can replace the current stan-
dards in the bioinformatics workflow. This software, called FINDEL, can efficiently remove sequencing artifacts from cancer 
samples. It queries the variant call format file which is much more compact than BAM files. The software automates the variant 
refinement process and produces high-quality variant calls. 
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Introduction  
Since the discovery of the DNA structure in 1953, significant 
progress in genetic understanding has been made over the past few 
decades [1]. The advent of DNA sequencing instruments made 
possible the Human Genome Project (HGP) which was a global 
research initiative in 1990 to sequence the entire human genome 
consisting of 3 billion nucleotide base pairs [2, 3]. The internation-
al and cross-disciplinary nature of HGP has popularized the idea 
of open-source software and data accessibility where scientists 
and researchers all over the world have equal access to the ever-in-
creasing repository of human genomes. The availability of indi-
vidual genome data through cloud infrastructure and technologies 
has revolutionized the field of precision medicine where scientists 
can mine valuable information and recommend personalized treat-
ment [4]. This can greatly improve the healthcare standards of the 
current and future generations.

The completion of the HGP has led to higher demand for sequenc-
ing technologies and datasets to solve more sophisticated biolog-
ical problems. However, those efforts were hampered by the rel-

atively low throughput and high costs of sequencing at that time 
[5]. This was changed in the mid-2000s with the invention of the 
high-throughput sequencing platform which resulted in a 50,000 
times decrease in the cost of sequencing the entire human genome 
[6]. The promising results led to the term “next-generation se-
quencing” (NGS) which refers to platforms capable of massively 
parallel sequencing technologies that enable ultra-high through-
put, scalability, and speed [7]. NGS technologies have increased 
sequencing throughput by 100-1000 folds and subsequently re-
duced the cost of sequencing a human genome to approximate-
ly US$1,000 [8]. These advances have made possible the use of 
sequencing technologies in clinical settings [6]. NGS technologies 
have found large-scale usage in de novo sequencing, mapping of 
diseases quantifying expression levels using RNA sequencing, and 
conducting population genetic studies [9-16].

NGS technologies generate millions to billions of short-read 
sequences with read lengths of around 75-300 base pairs (bp) . 
More advanced NGS technologies (PacBio, Nanopore, 10x Ge-
nomics) are capable of much longer read sequences of more than 
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10 kilobases [17]. NGS technologies, while cheap and fast, are 
not flawless. The sequencing procedure is just the initial step of 
a typical bioinformatics pipeline that spans multiple phases. The 
raw sequence reads produced by the sequencing machine is stored 
in a FASTQ or unaligned Binary Alignment Map (uBAM) format. 
These formats are text-based which store information on the se-
quence reads such as read identifiers and base quality scores. Next, 
the reads are aligned to a reference genome and the related meta-
data are stored in either a Sequence Alignment Mapping (SAM), 
Binary Alignment Mapping (BAM), or CRAM file formats [18]. 
These files contain alignment characteristics such as matches, 
mismatches, and gaps represented in the Concise Idiosyncratic 
Gapped Alignment Report (CIGAR) format [19]. The BAM or 
equivalent files are consumed downstream through variant calling 
algorithms to identify genetic mutations such as single nucleotide 
polymorphisms (SNPs) consisting of transversions and transitions, 
insertions and deletions (InDels), and tumor mutation burden [20, 
21]. The identified variants are stored in a tab-delimited text file 
format commonly known as the Variant Call Format (VCF).

Due to the downstream implications of NGS data, the inaccurate 
reads can cause erroneous identification of variants, specifically 
false positives (FP) and false negatives (FN). NGS data are sus-
ceptible to errors due to a myriad of factors such as base-calling 
and alignment errors [22]. This is further exacerbated by the lack 
of standardization in bioinformatics pipelines which are crucial to 
obtaining the correct data interpretation and clinical insights [23]. 
Errors in variant calling can result in missed detection of mutations 
which can be disastrous. Mutations are the cause of several diseas-
es especially cancer [23].

A major shortfall of NGS technology is the frequent incorrect 
scoring of bases attributed to the existence of artifacts during the 
sample preparation and sequencing stage [24]. Heterogeneous 
mixtures can suffer from amplification bias during the polymerase 
chain reaction (PCR) process which produces skewed populations 
[25]. Other types of polymerase mistakes during the PCR stage 
such as base misincorporations and rearrangements because of 
template switching can also cause inaccurate variant calls. Clus-
ter amplification, sequencing cycles, and image analysis are also 
prone to mistakes contributing to roughly 0.1-1% of bases being 
erroneously called [26]. These artifacts present a challenge for 
calling rare genetic variants as deep sequencing is ineffective when 
the base call error rate is high. This effectively limits the applica-
tion of NGS in fields such as metagenomics, forensics and human 
genetics [27-30]. The accuracy demands of some clinical applica-
tions are even higher where the base calling error rate has to fall 
below 1 in 10,000. Examples of these clinical applications include 
detection of circulating tumor DNA monitoring of response to 
chemotherapy using personalized tumor biomarkers, and prenatal 
screening for fetal aneuploidy [31-34]. Due to these artifacts, the 
common NGS technologies suffer from a base-calling error rate of 
around 1 in 100 which severely falls short of the standard required 
by these clinical applications.

Automated pipelines to facilitate reads-to-variants workflow are 
widely available in this day and age, a prominent one being the 
Genome Analysis Toolkit (GATK) Best Practices Workflows 
which contain stepby-step recommendations for conducting vari-
ant discovery analysis using NGS data. These pipelines have built-
in filters to remove false variant calls from sequencing errors, read 
misalignments, and other types of errors. However, there is little 
support for the efficient removal of artifacts due to variant call-
er inaccuracies [35]. According to the Association for Molecular 
Pathology (AMP) guidelines for interpretation and annotation of 
somatic variation, it is crucial to perform additional refinement of 
somatic variants to remove variant caller inaccuracies as these can 
result in suboptimal patient management and therapeutic opportu-
nities [36, 37]. As of now, the standard practice for somatic variant 
refinement is to manually inspect the variants and this is usually 
performed by trained personnel such as bioinformaticians. Manual 
inspection is useful for incorporating domain knowledge common-
ly excluded by automated variant callers such as Mutect Somat-
icSniper Strelka and VarScan2 [38-41]. They can detect inaccurate 
variant calls due to amplification bias of small fragments, errors 
in sequencing reads, and poor alignment in certain areas [35]. Ef-
forts have been made to develop automated methods for variant 
refinement but progress is slow due to computational limitations. 
Manual inspection of variants for additional refinement is still nec-
essary for high-quality variant calls and subsequent downstream 
analyses [42].

Although manual inspection of variants has been utilized for sev-
eral years in clinical diagnostic and molecular pathology appli-
cations somatic variant refinement strategies are not documented 
extensively and reported minimally by studies involving postpro-
cessing of automated variant calls [43-49]. These results in a lack 
of standardized protocol for somatic variant refinement, increased 
variability of work performed by different labs, and difficulty in 
reproducing the work of others [49]. Additionally, manual inspec-
tions are usually conducted on BAM files using genomic viewers 
such as Integrative Genomics Viewer (IGV) Savant Trackster and 
BamView [50-54]. These BAM files are extremely large and re-
quire sophisticated storage solutions. This is because the format 
stores data on a per-read basis and the space requirement grows 
almost linearly with the number of reads [55]. A BAM file for a 
30x whole genome requires about 80-90 gigabytes of storage. A 
lab or research institution which handles around 1000 samples 
needs to secure approximately 80 terabytes of disk space [56]. The 
sheer size of these BAM files impedes the progress of the manual 
inspection process which will require more labor and time. A more 
efficient and scalable variant refinement solution with light pro-
cessing and storage requirements while eliminating variability in 
the downstream analyses needs to be developed.

A promising area of research beneficial to variant refinement 
lies in the study of mutational signatures. Mutational signatures 
have been linked to mutational processes which drive somatic 
mutations in cancer genomes [57]. The Pan-Cancer Analysis of 
Whole Genomes (PCAWG) Consortium of the International Can-
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cer Genome Consortium (ICGC) and The Cancer Genome Atlas 
(TCGA) analyzed 84,729,690 somatic mutations identified from 
4,645 whole-genome and 19,184 exome sequences that cover a 
wide range of cancer types and generated many mutational sig-
natures [58, 59]. The mutational signatures consist of 49 single-
base-substitution (SBS), 11 doublet-base-substitution (DBS), 4 
clustered-base-substitution, and 17 small insertion-and-deletion 
(Indel) signatures. Further classification of each mutation type was 
performed whereby SBSs consisted of 96 classes , DBSs consisted 
of 78 classes , and Indels consisted of 83 classes . These mutational 
signatures can be found in the Catalogue of Somatic Mutations in 
Cancer (COSMIC ) database [60]. 

The PCAWG study also discovered that DNA sequencing artifacts, 
analysis artifacts, technical artifacts, variability in NGS technolo-
gies, and usage of different variant calling methods can generate 
characteristic mutational signatures as well [59]. These discoveries 
open up the possibility of using mutational signatures to filter arti-
fact-mediated variant calls from true variants. Our team proposes 
FINDEL (Find & Delete), a variant refinement software written in 
Python programming language that removes sequencing artifacts 
from human cancer samples using mutational signatures and deep 
learning. Along with each sample, FINDEL generates a Hypertext 
Markup Language (HTML) report and 2 separate VCF files con-
taining refined and artifactual mutations respectively. FINDEL is 
light on computational requirements and is capable of running on a 
simple local machine. The performance and speed of FINDEL are 
validated using open-source datasets.

Methods
Overview of FINDEL
The main function of FINDEL is to automate the process of re-
moving sequencing artifacts using mutational signatures from the 
COSMIC database coupled with a deep learning approach. The 
software is intended for use in the variant refinement stage and 
is not meant to replace the variant calling algorithms. FINDEL 
can remove variability in the bioinformatics pipeline within the 
post variant calling phase. Currently, FINDEL focuses on artifacts 
involving single-base substitutions (SBSs) or also known as sin-
gle-nucleotide polymorphisms (SNPs). SNPs form the majority of 
the genetic variations found in the human genome. In a typical 
human genome, more than 99.9% of variants are characterized as 
SNPs and short indels with SNPs being 6-7x higher in frequency 
than short indels [61]. SNPs are also responsible for the onset of 
multiple cancer types including breast cancer chronic lymphocyt-
ic leukemia neuroblastoma gastric carcinogenesis prostate cancer 
and others [62-79].

Identification of Single-Base Substitutions Mutational Signa-
tures Linked to Sequencing Artifacts
The initial step in building the artifact removal algorithm is to 
identify the SBS mutational signatures that are linked to the se-
quencing artifacts. These can be found in the COSMIC database. 
A total of 18 SBS mutational signatures have been classified as 
possible sequencing artifacts: SBS27, SBS43, and SBS45-SBS60 

. The remaining signatures either have valid proposed aetiologies 
or unknown causes. As of now, SBS signatures can be segregated 
into 96 different contexts. There are 6 possible base substitutions: 
C>A, C>G, C>T, T>A, T>C, and T>G. Each base substitution can 
be further analyzed in its 5’ and 3’ nucleotide context forming a 
total of 96 trinucleotide contexts [80].

Input Requirements for Algorithm
FINDEL takes in a VCF file containing a single sample. PyVCF 
module in Python is used to parse the VCF file for further process-
ing steps. The other input required by the algorithm is the reference 
sequence. The reference sequence is used to extract the mutation 
type and reference context.

Output Files
FINDEL outputs 2 separate VCF files containing the refined and 
artifactual mutations respectively. The refined VCF file can be 
used for downstream analyses.

Supervised Deep Learning
After the information from the mutational signatures are obtained, 
we propose a supervised deep neural network-based method to di-
rectly predict the mutation types from the VCF file. We devised 
the specific modules to deal with a variety of features in addition 
to the mutational signatures and utilized a complex network to fuse 
the diverse information for the mutation site identification. The 
deep learning architecture has a comprehensive embedding rep-
resentation to enhance the algorithm performance. Upon training 
completion, FINDEL can conduct inference efficiently without the 
need for a customized variant refinement optimization process for 
every new cancer sample.

Data Preprocessing
Firstly, we constructed the features of mutation types. All point 
mutations are classified into one of the 96 SBS nucleotide con-
texts, represented by an index ranging from 0 to 95. Secondly, 
we parsed the site features. Specifically, we used the “INFO” and 
“SAMPLE” columns from the provided input VCF file. One-hot 
encoding and standard scaling were used to preprocess the discrete 
and continuous features respectively. Thirdly, we built context fea-
tures. We selected 10 bases at the left and right of each mutation 
site (a total of 21 bases). Each base is represented by a number 
(T:0, C:1, A:2, G:3, others:4), and the context feature was repre-
sented as a 21-dimensional vector. Finally, we adopted the Hap.
py tool to process the original annotation file as the ground-truth 
labels in this study.

Neural Network Architecture
Fig. 1 shows the proposed neural network architecture. We used 
a learnable embedding layer to map the 96-dimensional mutation 
type into a high-dimensional space. Each mutation type is con-
verted into a point in the high-dimensional space, the coordinates 
of which constitute an embedding vector for the type. The parsed 
site features were combined and fed into a linear layer. The refer-
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ence context is passed into another embedding layer, converting 
the 21 bases in the mutation neighborhood into a two-dimensional 
context matrix. We used a two-layer 1D-convolution to model the 
multiple sequences and extract the backward and forward relation-
ships in the context matrix. The context matrix was transformed 
into a vector.

After extracting the mutation types, site features, and context 
features, we concatenated the embedding vectors and fed them 
into a five-layer fully connected network. Each layer consisted of 
dropout linear transformation, ELU (Exponential Linear Unit) ac-
tivation function, and highway module. The dropout was used at 
the beginning of each layer to randomly set the unit weights to 
0, helping the model avoid overfitting specific features. Equations 
(1), Equations (2), and Equations (3) show the formulas for the 
linear transformation, activation function, and highway module 
respectively:

       Lineari(X) = WiX + bi   (1)

     (2)

       Hi+1 = Hi + ELU(Linear(Hi))  (3)

where W and b are learnable parameters. The ELU hyperparameter 
α controls the value at which the activation function saturates for 
negative inputs. The highway module connects the input of each 
layer to the end, solving the gradient vanishing problem caused by 
overly deep networks.
Equation (4) defines the cost function.

         L = LBCE + γLL2                (4)

LBCE refers to the binary cross-entropy loss while γLL2 is the L2 
regularization which adds a penalty term to reduce overfitting. We 
adopted the mini-batch gradient descent algorithm for training and 
each batch consisted of 5000 variants. The Adam optimizer was 
used to update the network weights. All hyperparameters were 
tuned using grid search and evaluated on the validation set. The 
GIAB consortium reference samples (HG001-HG007) were used 
for training and testing. Two different training methods were used. 
The first method built 1 model using 1 VCF file. Within each file, 
the SNPs were split such that 60% of them were part of the train 
set, 20% of them were part of the validation set, and 20% of them 
were part of the test set. The second method used all the SNPs 
from 1 VCF file and tested them on all the remaining files. For 
example, a model was trained on all the SNPs from the HG001 
VCF file and evaluated on the SNPs from the HG002-HG007 files. 
Table I shows the final values chosen for the hyperparameters.

Evaluation Data Sources and Processing
The performance and speed of FINDEL are evaluated using 
high-quality open-source datasets. For the proof of concept train-
ing and validation, we will be using 4 different datasets containing 
a total of 33 VCF files.

HCC1954 Cell Line
This breast cancer cell line whole genome sequencing (WGS) data 
from a 61 years old Asian female was initiated on October 30 1995 
and took around 4 months to establish [81]. We downloaded the 
VCF file and the benchmarking results from the International Can-
cer Genome Consortium Data Portal [82]. The reads were aligned 
to the hs37d5 reference genome. The benchmarking results con-
taining the true positive and false positive variants were stored in 
2 mutation annotation format (MAF) files which are tab-delimited 
text files with aggregated mutation information on a project level. 
No processing was required since the VCF file was provided di-
rectly. A total of 1 VCF file was obtained.

Formalin-Fixed Paraffin-Embedded (FFPE) and Fresh Frozen 
Whole Exome Sequencing (WES) Samples
This study was part of an attempt by Samsung Medical Center 
to compare the WES data between FFPE and fresh frozen sam-
ples. The datasets were obtained from the Sequence Read Archive 
(SRA) with the accession number PRJNA301548 [83]. The sam-
ples were sequenced using the Illumina HiSeq 2000 sequencing 
system . We used the DNA sequencing data from the following 3 
runs: SRR2911437, SRR2911438, and SRR2911453. The paired-
end reads were aligned to the HG19 reference genome using the 
Burrows-Wheeler Alignment tool [84] with the Maximal Exact 
Match option, more commonly know as the BWA-MEM algo-
rithm. After the reads were aligned, Mutect2 was chosen for the 
variant calling process. The tumor-only mode with default settings 
was used. A total of 3 VCF files was obtained.

Whole Exome Sequencing of Biological and Technical Repli-
cates in Breast Cancer Samples
This study was conducted by the Memorial Sloan Kettering Can-
cer Center on 3 Feb 2016. The datasets were obtained from the 
SRA with the accession number SRP070662. The samples were 
sequenced using the Ion PGM sequencing system We used the 
DNA sequencing data from the following 22 runs: SRR3182418, 
SRR3182419, SRR3182421, SRR3182423, SRR3182424, 
SRR3182427, SRR3182429, SRR3182430,
SRR3182431, SRR3182432, SRR3182436, SRR3182437, 
SRR3182440, SRR3182442, SRR3182444, SRR3182446, 
SRR3182447, SRR3182474, SRR3182475, SRR3182476, 
SRR3182477, and SRR3182478. The processing steps are the 
same as the FFPE and fresh frozen WES datasets. A total of 22 
VCF files was obtained.

Genome in a Bottle (GIAB) Consortium Reference Samples
The GIAB consortium is jointly hosted by the National Institute 
of Standards and Technology (NIST) and the Joint Initiative for 
Metrology in Biology (JIMB) to develop the technical infrastruc-
ture and improve clinical insights from whole human genome 
sequencing. GIAB has a total of 7 human genomes: 1 pilot ge-
nome of Utah/European ancestry (NA12878/HG001) from the 
HapMap project , and 2 son/father/mother trios of Ashkenazi Jew-
ish (HG002/HG003/HG004) and Han Chinese (HG005/HG006/
HG007) ancestry from the Personal Genome Project. Each human 
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genome is also accompanied by benchmark variant calls and re-
gions to validate variant calling pipelines. 

These are considered the gold standard benchmarks within the bio-
informatics community. The processing steps are mostly the same 
as the FFPE and fresh frozen WES datasets with some differences. 
The b37 reference genome was used in place of the HG19 reference 
genome. Both originate from the GRCh37 reference genome with 
some minor differences. However, from a bioinformatics pipeline 
technical perspective, these variations of reference genomes are 
not directly interchangeable due to contig name changes. The dis-
crepancies are further elaborated in .The change was due to the 
addition of the germline resource and the panel of normals (PoN) 
during the Mutect2 variant calling process. Both VCF files used 
the b37 reference genome. Therefore, the alignment phase re-
quired the use of the same reference genome as well. A total of 7 
VCF files was obtained. The HCC1954 cell line, FFPE and fresh 
frozen WES, and WES of biological and technical replicates in 
breast cancer datasets lack the labeling of true mutations. DL_v11 
used an unsupervised training method with a negative objective 
function as the loss function. In the GIAB annotated dataset, we 
used chromosomes 1 to 19 as the training set, chromosomes 21 
and 22 as the validation set, and chromosome 20 as the test set. We 
used cross-entropy as the loss function,

Results
FINDEL will be evaluated based on its performance and speed on 
the evaluation data. For performance evaluation, benchmark VCF 
files are required as they contain the ground truth variant calls. 
The datasets without benchmark VCF files will be used for speed 
evaluation. The following 5 metrics will be used for performance 
evaluation:
   
       precision = TP/(TP + FP)    (5)
      recall = TP/(TP + FN)     (6)
      F1 = (2∗ precision ∗ recall)/(precision + recall)  (7)
      accuracy = (TP + TN)/(TP + FN + TN + FP)  (8)
      specificity = TN/(TN + FP)    (9)

where TP refers to true positives, TN refers to true negatives, FP 
refers to false positives, and FN refers to false negatives. Elapsed 
time, in either minutes or seconds, will be used for comparing the 
speed of the models. From now on, “r_artifact_removal” and “py_
artifact_removal” will be used to refer to the R and Python model 
respectively before applying deep learning while “DL_v11” will 
be used to refer to the Python model after applying deep learn-
ing. These terms are mainly used in the comparison of the model 
results pre and post-deep learning. The software, which outputs 
additional analyses and VCF files beyond the final trained model, 
is still named FINDEL.

The initial version of the DL_v11 model was trained on the 
HCC1954 cell line dataset. Although both performance and speed 
results are shown in Table II, the main focus is on the difference 
in speed between the models written in Python vs R programming 

language. The elapsed time of py_artifact_removal is less than 3 
minutes while the elapsed time of r_artifact_removal is 305 min-
utes. This is a significant speedup of more than 100 times while 
maintaining similar performance. The objective function value of 
py_artifact_removal is 80.34 while the objective function value 
of r_artifact_removal is 80.67. The higher the value, the better the 
performance. The difference is negligible in this case. Meanwhile, 
DL_v11 achieves a significantly higher objective function value 
of 89.21 with a training and inference time of 20 and less than 
3 minutes respectively. However, the performance improvement 
based on this dataset alone is not robust enough. As seen from the 
table, there is very little labeled data available. Only 214 variants 
are labeled with 213 of them being classified as positive SNPs and 
only 1 negative SNP. 

From a supervised deep-learning perspective, this is an imbal-
anced classification problem and the performance metrics might 
be biased. Even though DL_v11 correctly predicted 211 out of 
213 positive SNPs, it failed to predict the only negative SNP. It 
can maximize the objective function value simply by predicting 
all SNPs to be positive as they are the majority of the labels. This 
poses a problem when we want to minimize false positives. On the 
other hand, py_artifact_removal can detect the only negative SNP 
but misses much more positive SNPs, achieving an overall lower 
objective function value. Therefore, the other labeled datasets are 
used to provide a more robust estimate of the model performances. 
The key takeaway here is the superior speed achieved by the mod-
els written in Python as compared to R. The subsequent evaluation 
comparison will be made between the 2 python models: py_arti-
fact_removal and DL_v11.

The subsequent versions of the DL_v11 models were trained on 
the GIAB consortium reference samples (HG001-HG007). The 
following results were based on the first method of training using 
the same VCF file for both training and testing. The performance 
comparison between py_artifact_removal and DL_v11 based on 
the 5 metrics is given in Appendix A. DL_v11 performed better 
on all the metrics (F1, accuracy, precision, specificity) except re-
call. The performance comparison within py_artifact_removal is 
given in Appendix B. Generally, higher scores were achieved on 
the human genomes from the Ashkenazi Jewish (HG002/HG003/
HG004) ancestry than the Utah/European (HG001) and Han Chi-
nese (HG005/HG006/HG007) ancestries for F1, accuracy, and pre-
cision. For recall, similar scores were achieved on the human ge-
nomes from all the ancestries. Results were mixed for specificity. 
The performance comparison within DL_v11 is given in Appendix 
C. Generally, higher scores were achieved on the human genomes 
from the Ashkenazi Jewish ancestry than the Utah/European and 
Han ancestries for F1, accuracy, and precision, and recall. Results 
were mixed for specificity.

The next set of results used the second training method where the 
train and test set consisted of different human genomes. The F1, 
accuracy, and precision performance comparisons within DL_v11 
for different train sets are given in Appendix D, E, and F respec-
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tively. Generally, higher scores were achieved on the human ge-
nomes from the Ashkenazi Jewish ancestry than the Utah/Europe-
an and Han Chinese ancestries regardless of the train set used. The 
recall performance comparison is given in Appendix G. Generally, 
higher scores were achieved on the human genomes from the Ash-
kenazi Jewish and Utah/European ancestries than the Han Chinese 
ancestry regardless of the train set used. The human genome from 
the Utah/European ancestry (HG001) had the best recall for all 
the train sets. The specificity performance comparison is given in 
Appendix H. Generally, higher scores were achieved on the human 
genomes from the Ashkenazi Jewish ancestry than the Han Chi-
nese ancestry regardless of the train set used. 

The human genome from the Utah/European ancestry (HG001) 
had the worst specificity for all the train sets. The average per-
formance comparison using different train sets is given in Ap-
pendix I. Generally, higher average scores on all 5 metrics were 
achieved when the human genomes from the Han Chinese ances-
try were used as the train samples. The time comparison between 
the 3 models is given in Appendix J. All datasets used here are 
from the FFPE and fresh frozen WES samples. On both datasets, 
SRR2911438 and SRR2911453, a significantly shorter time was 
used by the 2 models written in Python (py_artifact_removal and 
DL_v11) as compared to the model written in R (r_artifact_remov-
al). The correlation between elapsed time and the number of SNPs 
for py_artifact_removal is given in Appendix K. All datasets used 
here are from the FFPE and fresh frozen WES samples and the 
breast cancer WES samples. A strong positive linear correlation 
can be observed. As the number of SNPs increases, the elapsed 
time taken by py_artifact_removal increases as well.

Discussion
FINDEL, a variant refinement software infused with deep learn-
ing, has demonstrated its ability to efficiently remove sequencing 
artifacts from cancer samples using mutational signatures and 
other features. We have evaluated its performance and speed on 
high-quality open-source datasets. The performance is largely 
boosted by the supervised deep learning approach in addition to 
the use of mutational signatures. False positives are greatly re-
duced through the variant refinement process. The algorithm speed 
is mostly due to the optimal choice of programming language and 
code refactoring. The overall software runtime is low as our ap-
proach queries VCF files instead of BAM files where the former 
has a much lower memory footprint. Moreover, the software can 
be easily run on a local machine. FINDEL eliminates the need for 
users to manually inspect BAM files using some form of genomics 
viewer program. This saves both labor and time, increasing the 
turnover of cancer sample interpretation. Doctors require less time 
for the clinical diagnosis of patients and can increase the range of 
therapeutic opportunities for them. More importantly, the automa-
tion and standardization of the variant refinement process increase 
reproducibility by different entities. 

The usage of mutational signatures to partition the unrefined muta-
tion set into refined and artifactual mutation subsets was possible 

as various artifacts had characteristic mutational signatures that 
were different from the true variants. These mutational signatures 
are constantly updated and can be found in the COSMIC data-
base. This essentially removes the need for bioinformaticians to 
manually inspect large BAM files and search for patterns that are 
representative of artifacts using domain knowledge. The manual 
inspection process is a major bottleneck impeding the progress of 
the downstream analyses after the variant calling process. Elimi-
nating this laborious task greatly reduces the entire bioinformatics 
workflow time. As the research on mutational signatures become 
more comprehensive in the future, we expect the algorithm to fur-
ther improve in performance as well. FINDEL only requires a us-
er-provided VCF file and an SBS mutational signature data file. 

No manual preprocessing on the user part is required as long as 
the standard format is used. Subsequently, FINDEL outputs a VCF 
file representing the refined mutations. The infusion of supervised 
deep learning to FINDEL mainly aims to improve algorithmic per-
formance and further reduce the number of false positives. It also 
utilizes the information from the VCF files beyond just the muta-
tional signatures. Specifically, additional features are engineered 
from the “INFO” and “SAMPLE” columns of the VCF files. As 
seen from the results, the addition of supervised deep learning 
greatly improves the score of most of the metrics. The disadvan-
tage is that the initial training of the neural network might take 
quite some time. However, subsequent usage of the model, aka 
inference, takes little time. The deep learning model only needs 
to be retrained if there is evidence of model degradation. Also, the 
performance of the model is affected by the quality of the data. 
Generally, higher scores were achieved on the human genomes 
from the Ashkenazi Jewish ancestry than the Utah/European and 
Han Chinese ancestries due to the former having higher sequenc-
ing depth.

Conclusions and Future Work
We have developed a deep learning-based bioinformatics software, 
FINDEL, that can efficiently remove sequencing artifacts from 
cancer samples using mutational signatures and other features. 
It eliminates the laborious process of manually inspecting large 
BAM files by querying much smaller VCF files. The algorithm 
automates and standardizes the variant refinement process, reduc-
ing required labor and time while increasing reproducibility. The 
user only needs to provide the input files and the software does the 
rest of the work. Within minutes, the unrefined VCF file contain-
ing the artifactual variants are removed and the refined VCF file 
can be used for subsequent downstream analyses. The potential of 
FINDEL to redefine the bioinformatics workflow through its supe-
rior performance and speed allows better patient management and 
therapeutic opportunities. As of now, the software mainly focus-
es on single nucleotide polymorphisms (SNPs). In the future, the 
scope can be broadened to insertions and deletions, copy number 
variations, and even structural variations. Overall, we show that 
the use of mutational signatures coupled with deep learning can 
replace the manual inspection process, potentially setting a new 
standard for the variant refinement process.
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Figure 1: Neural network architecture.

Figure 2: Performance comparison between py_artifact_removal (before deep learning) and DL_v11 (after deep learning) based on 
5 metrics. All values are in percentages unless otherwise indicated. All datasets used here are from the GIAB consortium reference 
samples (HG001-HG007). The PY_ARTIFACT_REMOVAL method is based on mutation signatures, which tends to produce positive 
results. The supervised learning-based DL- V11 method is able to accurately identify artificial mutations. In all four metrics except re-
call, dl-v11 has a huge improvement.
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Figure 3: Performance comparison within py_artifact_removal (before deep learning) based on 5 metrics. All values are in percentages 
unless otherwise indicated. All datasets used here are from the GIAB consortium reference samples (HG001-HG007). Different races 
will affect the performance of the model. PY_ARTIFACT_REMOVAL has better performance in Utah/European (HG001) and Ashke-
nazi Jewish (HG002/HG003/HG004) than Han Chinese (HG005/HG006/HG007) ancestries.

Figure 4: Performance comparison within DL_v11 (after deep learning) based on 5 metrics. All values are in percentages unless oth-
erwise indicated. All datasets used here are from the GIAB consortium reference samples (HG001-HG007). An independent model is 
trained for each sample. DL_v11 achieves the best performance on HG001, with an f1-score of 99.94. Lower scores were achieved on 
the other human genomes with the Han Chinese(HG006) ancestry genome performing the poorest.
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Figure 5: Performance comparison within DL_v11 (after deep learning) for different trainsets. The model achieves better performance 
when the test and training data come from the same sample. When the training and test data come from different sources, the algorithm 
performance will be affected. For example, in A Barplot, the training data is chromosome 1 to 19 of HG001(Utah/European), and the 
test data is chromosome 20 of HG001 to HG007. On HG001 all five metrics achieve a performance of 99.9, but the model predicts more 
false-positive mutations on HG005/HG006/HG007 (Han Chinese) of14 different ethnicities, resulting in a lower Specificity
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Figure 6: Performance comparison within DL_v11 (after deep learning) for whole trainsets. Training using data from multiple samples 
was able to improve the robustness of the model and alleviate the effects of different sources of data on model performance. The DL_v11 
model trained using chromosome 1 to 19 from HG001 to HG007, the model was able to achieve an f1-score of 99% on all samples.
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