ISSN: 2834-4928

Fermat's Theorem Arithmetic Demonstration

Victor Sorokine*
40170 Mesos, France

*Corresponding Author
Victor Sorokine, 40170 Mesos, France

Submitted: 2024, Jan 15; Accepted: 2024, Feb 02; Published: 2024, Feb 27

Citation: Sorokine, V. (2024). Fermat's Theorem Arithmetic Demonstration. J Electrical Electron Eng, 3(1), 01.

Abstract

One of the factors of the number $A+B-C$ is a fraction proper.

Theorem

In a prime base $n>2$ and reciprocals prime (coprime) numbers A, B, C, not multiples of n (basic case), the equality

- $A^{n}+B^{n}-C^{n}=0$ impossible.

Simplest Properties of Fermat's equality (1) In the Basic Case

- $A+B=\mathrm{c}^{\mathrm{n}}, C-B=a^{n}, C-A=b^{n}$. And $a^{n}+b^{n}=(a+b) r^{\prime}, c^{n}-b^{n}=(c-b) p^{\prime} ; c^{n}-a^{n}=(c-a) q^{\prime}$.
- $A=a p, B=b q, C=c r$; where the numbers $a, b, c, p, q, r\left[\right.$ like numbers in pairs $a+b$ and $r^{\prime} ; c-b$ and $p^{\prime} ; c-a$ and $\left.q^{\prime}\right]$ are reciprocals prime.
- $U=A+B-C=a p-a^{n}=b q-b^{n}=c^{n}-c r=\left(c^{n}-a^{n}-b^{n}\right) / 2=a b c u$ (where, how easy it is to see, numbers $v(=a b c)$ and u are reciprocals prime).
- $\quad a^{\prime}, b^{\prime}, c^{\prime}-$ greatest common measures (G.C.M.) in pairs $(a, c-b),(b, c-a),(c, a+b) . U^{\prime}$ is number $a^{\prime}+b^{\prime}-c^{\prime} \cdot p^{\prime}, q^{\prime}, r^{\prime}$ are numbers $\left(c^{\prime n}-b^{\prime n}\right) /\left(c^{\prime}-b^{\prime}\right),\left(c^{\prime n}-a^{\prime n}\right) /\left(c^{\prime}-a^{\prime}\right),\left(a^{\prime n}+b^{\prime n}\right) /\left(a^{\prime}+b^{\prime}\right) . c^{\prime}>1$.

Proof of the Theorem

If $U^{\prime}=0$, then $c^{\prime 2}-a^{\prime 2}-b^{\prime 2}=2 a^{\prime} b^{\prime}$ with the fraction proper $\left(2 a^{\prime} b^{\prime}\right) /\left(2 a^{\prime} b^{\prime} c^{\prime}\right)$ (see 4$)$!
And after the recovery of all the factors of the number U, the fraction $1 / c^{\prime}$ remains.
And if $U^{\prime} \neq 0$, then with the recovery of the number U the term c^{\prime} multiples by $c^{\prime n-1}$, and the term $a^{\prime}+b^{\prime}$ multiplies by r ' (see 5), which is reciprocals prime (coprime) numbers with the denominator $a^{\prime} b^{\prime} c^{\prime}$. Consequently, the fraction $\left(a^{\prime}+b^{\prime}-c^{\prime}\right) /\left(2 a^{\prime} b^{\prime} c^{\prime}\right)$ of the number U remains, and the Fermat's equality (1) in integers is impossible.
The theorem is proven.

Copyright: ©2024 Victor Sorokine. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

