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Fabrication of Carbonnanotube/Polymer Nanocomposite Sheets and Its Mechanical 
Performance

Research Article

Abstract
Carbon nanocomposites have received a great deal of attention in recent years in view of their special properties such 
as low density, superior thermal and mechanical properties. However, poor dispersion and poor interfacial bonding 
limit the full utilization of carbon nanotubes as reinforcing agent in polymer nanocomposites. This paper presents an 
approach developed for production of polymer matrix nanocomposites with uniformly distributed multi-walled carbon 
nanotube (MWCNT). This approach involves preparation of a stable MWCNT in Nafion® polymer matrix followed by 
fabrication of MWCNT-Nafion® nanocomposite via a novel electrochemical co-deposition process (ECD). The ECD 
process introduced here follows the similar basic principles of traditional electrophoretic deposition. Morphology 
and microstructure of fabricated MWCNT-Nafion® nanocomposite sheets were evaluated through scanning electron 
microscopy(SEM). The mechanical performance of the nanocomposite was assessed by tension tests per ASTM D3039. 
Deposition of the MWCNT-Nafion® nanocomposite on an aluminum sheet produced significant gains in the tensile 
properties of the sheet. This finding confirms that uniform dispersion of MWCNT in a polymer matrix can produce 
nanocomposites with desired mechanical properties.
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Introduction
Since their discovery, carbon nanotubes (CNT) have attracted a 
great deal of interest in composite fabrication because of their 
exceptional mechanical, electrical, thermal and optical properties 
[1,2]. For example experimentalmeasurements on individual multi-
walled carbon nanotubes (MWCNT) suggest valuesfor Young’s 
modulus around 1000 GPa [3].This corresponds to one of the stiffest 
and strongest materials known. Because of their high aspect ratio, 
high modulus, and strength, nanotubes are promising candidates as 
reinforcement fillers for polymer nanocomposites. These materials 
show a great promise for many potential applications: for example, 
aerospace, nanoelectronics and sportinggoods etc. It has also been 
shown experimentally that the introduction of CNT into polymer 
matrix improves electrical conductivity as well as mechanical 
properties of the matrix [4, 5, 6]. However incorporating CNT into 
a polymer matrix and effectively utilize these unique properties is 
an ongoing challenge.

The effective utilization of CNT in composite applications depends 
strongly on the ability to disperse CNT homogeneously throughout 
the matrix without destroying the integrity of CNT. Furthermore, 
good interfacial bonding is required to achieve the load transfer 

across the CNT-matrix interface, a necessary condition for improving 
the mechanical properties of polymer composites [7]. Although 
several studies have focused on producing polymer CNT composites, 
many practical challenges remain before their potential can be 
fully realized [4,5,8-11]. Dispersing the nanotubes individually and 
uniformly into the matrix seems to be fundamental in producing 
composites with reproducible and optimal properties.

A major barrier for developing CNT-based devices is the problems 
with dispersion of CNT in solvents [12]. The challenges associated 
with dispersion of CNT have been addressed through their covalent 
modification or noncovalent functionalization [13-18]. The low 
dispersability stems from the tendency of as-prepared CNT tends 
to assemble into bundles or ropes that contain hundreds of well-
aligned CNT arranged in a close-packed triangular lattice, due 
to van der Waals attraction. The over-micrometer-long ropes 
further entangle into networks. A recent calculation suggests that 
the typical intertube attraction is on the order of 36 kT for every 
nanometer of overlap between adjacent tubes, leading to cohesive 
energy of few thousands of kT per micrometer-long tubes [19]. 
Current approaches for dispersing and exfoliating bundled CNT 
into individual nanotubes include covalent modifications, п-п 
interactions, surfactant adsorption, and more [20-28]. Most of these 
methods are designed to reduce the short-range attraction between 
adjacent nanotubes through introduction of a repulsive interaction 
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of similar strength. Consequently, these treatments often lead to 
modification of the structural, electronic and mechanical properties 
of CNT. The challenge is to disperse CNT’s without altering their 
unique properties. 

This paper addresses how to overcome the dispersing challenges 
of CNT and to achieve uniformly distributed CNT in the polymer 
matrix via novel electrochemical co-deposition process, and the 
subsequent characterization studies of polymer CNT nanocomposite 
sheet. The electrochemical co-deposition process (ECD) introduced 
here follows the same basic principles as electrophoretic deposition 
(EPD). Electrochemical deposition techniques have grown beyond 
conventional electrolytic plating; EPD techniques have found 
growing applications to broad categories of polymers and ceramics, 
and are under consideration for applications at nano-scale for 
processing broad categories of nanocomposites. There are several 
nanocomposite fabrication processes are available some of these 
are; chemical vapor deposition (CVD), dry-state spinning, and 
vacuum filtering [29-31]. Out of the different processes available 
for nanocomposite fabrication we chose EPD process because of the 
many attractive features [32]. Electrophoresis offers the promise to 
deposit relatively thick coatings (of several millimeter thicknesses) 
[33]. This technique is highly versatile, and allows processing of 
broad categories of nano-scaled ingredients and polymers into 
nanocomposites under controlled conditions, and provides substantial 
control over spatial distributions and interfacial interactions at 
nanoscale. EPD is an attractive technique for fabrication of carbon 
nanotube polymer composites [34-37].

A suspension for electrophoretic deposition is a complex system 
in which each component has a substantial effect on deposition 
efficiency. Important factors to consider when selecting a binder–
dispersant–solvent system for EPD are: chemical compatibility of 
components, solubility of binder and additives, particle charge, 
viscosity, and electric resistivity of the suspension. It is very 
important to obtain well-dispersed and stable suspensions. In general, 
suspensions can be dispersed by electrostatic, steric, or electrosteric 
stabilization mechanisms. Organic macromolecules could be 
utilized to induce steric stabilization, where the macromolecules are 
attached to nanoparticle surfaces, or they could facilitate depletion 
stabilization where the macromolecules are free in suspension [38]. 
The steric stabilization is effective in both aqueous and non-aqueous 
media. Polyelectrolytes are widely used as additives that can impart 
electrostatic and steric stabilization to achieve uniform dispersion 
of MWCNT [21, 27, 39-41]. 

In this study we choose multi-walled carbon nanotubes (MWCNT) 
instead of single-walled carbon nanotubes (SWCNT) because they 
are less expensive thus can be easily scale up. We choose the bamboo-
like structure rather than hollow structure because the “knots” on 
the bamboo-like MWCNT allows tighter matrix connectivity with 
the polymer, reducing pull-out of the MWCNT from the polymer 
matrix. In particular, “wrapping” of MWCNT in polymeric chains 
can be useful for improving their dispersability without scarifying 
their unique physical attributes. Gentle sonication causes exfoliation 
of ropes into individual nanotubes. The exfoliated tubes may be 
stabilized in the liquid medium, with aggregation prevented by 
introduction of relatively weak repulsion at a large distance between 
MWCNT, such as osmotic (steric) repulsion among the tails of the 
tethered polymers in proper solvents, or electrostatic repulsion by 
the charged ends of tethered polymers.

Figure1: Schematic Representation of Dispersion of MWCNT

Figure 2: Schematic Representation of Electrochemical Co-
Deposition of MWCNT.

Materials and Experimental Programs
Multi-walled carbon nanotubes with “bamboo” structure (MWCNT, 
chemical vapor deposition (CVD) method, purity >95%, outer 
diameter 30±10 nm, length 1-5 µm) were purchased from NanoLab 
(Boston, MA) (Figure 3). For dispersion preparation 5% Nafion® 
solution in low aliphatic alcohol and tetrahydrofuran (THF, 99+% 
ACS reagents) were purchased from Aldrich. Aluminum sheets were 
used as both anode and cathode were purchased from McMaster Carr. 
Cathode sheet was 0.006” and anode sheet was 0.002” in thickness.

Figure 3: Scanning electron images of carbon nanotube at low and 
high magnifications.

Preparation of MWCNT Dispersion in THF
MWCNT (0.3 mg/mL or 0.5 mg/mL) was dispersed in Nafion® 
by sonication to give either 10 wt.% (10 mL) or 20 wt.% (20 mL) 
Nafion® solutions. Then diluted to 100 mL with THF and sonicated 
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further until a uniform solution was obtained. Allowed the dispersion 
to sit for at least 30 minutes to make sure that the dispersion is not 
separating and a stable dispersion was obtained. These solutions 
were found to be very stable over several months without any 
settling of nanotubes.

Electrochemical Co-Deposition of MWCNT on Aluminum Sheet
Aluminum plate (cathode) and thin aluminum sheet, anode were 
clamped in a polypropylene mold (Figure 4). Clamping will prevent 
possible shortening during electrophoretic deposition as well as it 
will limit the deposition to one side. Then the two electrodes are 
connected to a DC voltage constant voltage power supply and 10 V 
was applied continuously (in some cases voltage was applied for 10 
minute time intervals and after each 10 minute sheet was allowed 
dry in air at room temperature). This voltage application procedure 
was continued until desired thickness/ weight gain was achieved. 

Figure 4: Polypropylene Mold Used for Electrophoretic Deposition

During ECD, the electrodes were placed flat (horizontally), with 
the anode (where deposition takes place) placed on the top (facing 
the cathode, which is placed on the bottom of the container). This 
position will prevent the settling of particles disturbing the ECD 
process because the potential gradient is opposite to the gravitational 
force; hence, a more uniform deposit can be obtained.

Figure 5: Different Forces Exists During Electrochemical Co-
Deposition of MWCNT.

Figure 6: The Electrochemical Co-Deposition Set-Up

Post-Deposition Treatment
After deposition of nanocomposite, samples were heated to 
100°C under vacuum. Upon cooling down thin MWCNT/
polymer nanocomposite was easily peeled off from the substrate 
aluminum shim, resulting a flexible free standing MWCNT-polymer 
nanocomposite film (Figure 7).

Figure 7: Free standing MWCNT-Nafion® Nancomposite Sheet

Tension Tests
Tension test specimen was prepared according to ASTM D3039, with 
specimen dimensions shown in the Figure 8. Tabs (same thickness 
as aluminum sheets) were glued on to both ends of the rectangular 
specimen and left overnight for curing. Tension tests were performed 
for nanocomposite coated sheets as well as uncoated aluminum 
sheet for comparison.

Figure 8: Schematic Presentation of the Tension Test Specimen

The tension test set-up is depicted in Figure 9. Sheets with and 
without nanocomposite deposits were clamped between the metal 
grips of the hydraulic test machine. Just before the test, thickness 
of the specimen was measured. During the test, load and deflection 
data were recorded by a computer-based data acquisition system.

Figure 9: Tension Test Set-Up for Sheet with MWCNT-
Nafion®Nanocomposite Deposit: (a) Just Before the Test; and (b) 
After the Test

Results and Discussions
Dispersion of carbon nanotubes and their interactions with 
polymer chains determine the reinforcement efficiency in polymer 
nanocomposites. The relatively small surface charge of carbon 
nanotubes lowers their interfacial interactions in layer-by-layer 
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self-assembly where electrostatic attractions are important factors. 
Increasing the charge density of carbon nanotubes can thus enhance 
their reinforcement efficiency in polymer nanocomposites processed 
via layer-by-layer self-assembly. One option to enhance the charge 
density of carbon nanotubes is to wrap them with chains of a polymer 
that comprises charged end groups. Nafion® is a polymer that binds 
well with nanotube walls and also increases the negative charge 
density of nanotubes; it is thus a strong candidate for use as both 
a processing aid and the polymer matrix in the nanocomposite. 
Polymer-wrapped carbon nanotubes are also expected to exhibit 
enhanced dispersabtility due to electrostatic effects.

In this study Nafion® was used as the dispersant and Figure 10 shows 
the chemical structure of Nafion®. Nafion® has high density of fluorine 
groups, can strongly interact with nanotube walls through formation 
of hydrophobic bonds (since nanotube walls are also hydrophobic) 
[42]. As CNTs are naturally not water soluble, modification through 
chemical functionalization using suitable dispersants and surfactants 
can enhance solubility and is essential for their controlled dispersion. 
For example, constituent polar molecules can render CNTs soluble, 
whereas nonpolar moieties make CNTs immiscible. Fluorine groups 
will be attached to the nanotube walls and sulfonate end group 
will be sticking out from the surface. These sulfonate groups make 
nanotube walls negatively charged. Introduction of charge will allow 
the formation of good dispersion of nanotubes in organic solvents 
due to electrostatic stabilization; bulky polymer chains of Nafion® 
also provide for steric stabilization of nanotubes.

Figure 10: Nafion®Structure.

Figure 11: Dispersion and Stabilization of MWCNT in Nafion®.

Overall negative charge on MWCNT allows deposition through 
ECD. When DC voltage is applied negatively charged particles will 
migrate to the positively charged anode and deposit at the anode thus 
giving a MWCNT-Nafion® nanocomposite coating on aluminum 
scaffolds. Figure 12 shows the visual appearance of the MWCNT-

Nafion® nanocomposite deposit before and after performance of 
the tension test.

Figure12: MWCNT- Nafion® Nanocomposite Deposit: (a) Before; 
and (b) After Tension Test.

Table 1 presents a summary of tension test results for aluminum 
sheet and nanocomposite deposit on aluminum sheet. The strength/
density ratio of nanocomposites was higher by a factor of ~30 
when compared with aluminum. Figure 13 shows the comparison 
of load-deflection curves for aluminum sheets with and without 
nanocomposite deposit. Nanocomposites are observed to offer 
balanced gains in strength and ductility.

Table 1: Summary of Tension Test Results for Aluminum Sheet 
and MWCNT- Nafion® Nanocomposite Deposits

Peak Load 
[N]

Strength 
[MPa]

Strength/
Density

Plain 
Aluminum 53 42.4 15.7

Sample 231-1 198 965 535
Sample 231-2 189 905 505
Sample 231-3 185 880 490
Sample 231-4 194 940 520

Figure13: Load-Deflection Curves for Aluminum Sheets: (a) 
Scaffold Aluminum Sheet; and (b) With MWCNT-Nafion® 
Nanocomposite Deposit

Microscopic structure of MWCNT-Nafion® nanocomposite coating 
was studied.Scanning electron microscopy (SEM) techniques were 
employed to assess the uniformity and thickness of nanocomposite 
Coatings. Figure 14 SEM images of aluminum sheet (a) without, 
and (b) with MWCNT-Nafion® nanocomposite deposit.

(a) (b) (c)(a) (b) (c)
 

(a)

(b)

(a)

(b)
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Figure 14: SEM Images of: (a) Scaffold Aluminum Sheet; and (b) 
MWCNT- Nafion® Nanocomposite Deposit.

Conclusions
Electrophoretic deposition represents a very powerful tool for 
the ordered deposition of MWCNT- Nafion®nanocomposite on 
aluminum sheets.Stable multi-walled carbon nanotube dispersion 
was prepared ina Nafion®matrix. Electrophoretic depositions of 
MWCNT/Nafion® dispersion on aluminum sheet exhibited enhanced 
mechanical property such as tensile strength. The ratio of strength/
density nanocomposites was higher by a factor of ~30 when 
compared to that of scaffold aluminum.
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