
Volume 4 | Issue 2 |77Adv Mach Lear Art Inte, 2023

Exploring the Integration of Machine Learning Models in Programming Languages
on GitHub: Impact on Compatibility to Address Them

Short Article

Faten Slama*, Imen Ismail# and Lassaad Latrach#

University of Manouba, ENSI, 2010, Campus Universitaire de
la Manouba, tunis, Canada
#These authors contributed equally to this work

*Corresponding Author
Faten Slama, University of Manouba, ENSI, 2010, Campus Universitaire de
la Manouba, tunis, Canada.

Submitted: 2023 Oct 25; Accepted: 2023 Nov 06; Published: 2023 Nov 15

Citation: Slama, F., Ismail, I., Latrach, L. (2023). Exploring the Integration of Machine Learning Models in Programming
Languages on GitHub: Impact on Compatibility to Address Them. Adv Mach Lear Art Inte, 4(2), 77-93.

Abstract
GitHub repositories are often used for collaborative development, allowing multiple developers to work on the same
codebase and contribute their changes. Each repository is typically associated with a specific project, and it can contain
everything from code files to documentation, bug reports, and feature requests. Depending on the context, it can contain
files, directories, other resources related to a project, and it is often associated with a particular programming language. By
default, GitHub automatically detects the primary programming language used in a repository based on the file extensions
and content within the repository. However, this detection is not true all the time; there are some potential issues to consider.
One of these problems is that the detected language may not accurately reflect the actual programming languages used in
the project, especially if the project utilizes multiple programming languages or has undergone language migrations. In
this study, we apply an alternative technology to resolve problems with classifying the programming language of a GitHub
repository by analysing file extensions and identifying all programming languages used in the project. We also determine the
appropriate primary programming language for the repository. This paper investigates how this technology can address the
issues surrounding GitHub’s automatic detection of a repository’s primary programming language and how it can provide
information on all the programming languages used in a project.

Keywords: GitHub Projects (GP), File Extension (FE), Programming Language (PL), Machine Learning (ML)

Advances in Machine Learning & Artificial Intelligence
ISSN: 2769-545X

1. Introduction
Accounting is a complex subject that involves managing the
finances of a business or organization. Information technologies
have greatly transformed the way businesses manage their
accounting by allowing for automation of many tasks. GitHub
projects related to accounting often utilize programming languages
to automate accounting tasks such as data entry, billing, and
expense management. These projects may also use visualization
tools to present data in a clear and concise manner. GitHub projects
related to accounting can help businesses improve their efficiency
and make more informed financial decisions.

In addition, compatibility issues on GitHub can occur when
code written in one programming language or framework is
incompatible with another language or framework. These issues
can arise when different versions of a programming language or
library are used, or when code written for one operating system

is run on a different operating system. To resolve compatibility
issues, developers may need to update their code to use compatible
versions of programming languages or libraries, or they may need
to make changes to the code to ensure that it works correctly on
different operating systems. Additionally, checking the issues page
of the repository in question, searching for similar issues in other
repositories, and consulting the documentation for the language or
library in question can also help to resolve compatibility issues.

There are numerous types of programming language difficulties
on GitHub. Others may be due to conflicts with other libraries
or frameworks, while some may be the result of grammatical
errors or programming issues. Users might also experience
performance problems or compatibility issues when a project’s
code is incompatible with specific platforms or operating systems
or problems with the version of their programming language.
Finding suitable solutions to these issues is crucial. Some options

Volume 4 | Issue 2 |78Adv Mach Lear Art Inte, 2023

include looking for answers on developer forums or enlisting the
assistance of more seasoned developers.

In this work, a file extension approach (EF) for defining GitHub
project domains in programming languages was presented. The file
extensions of every project folder will be sorted, and percentages
for each extension will be computed. The project in question will
then be removed with the PL flag set to null, and its dominant
language will be determined by the language with the highest
proportion (does not contain any part of the software). This study
also led us to search for a connection between the EF approach
and Compatibility Issues (CI), which arise when a project’s code
is incompatible with particular platforms or operating systems.
Using this technique, we recovered over 200 deposits from
GitHub. Before starting, the dataset content needs to be organized.

Important companies like Azure, Google, AWS, and Microsoft
use GitHub as the finest storage solution for open-source projects.
Every day, a large number of projects are registered on GitHub
with the ultimate goal of making them feasible for further usage
and easing project cloning. The complexity of the programming
languages employed on this open-source platform can be seen and
explored on GitHub. Several million programming languages,
including Python, Java, C++, etc., are included in the latter. In
essence, the original concept of GitHub is to classify existing
projects according to their programming languages (PL). For
DevOps engineers, this approach can make it simple to recycle
source code, clone projects, detect, and install apps. On the
software development site GitHub, users can use Git to store,
share, and collaborate on software projects. The source code of a
project can be changed, and users of the Git version control system
can track those changes.

GitHub supports a wide range of programming languages, including
C, C++, Python, Java, JavaScript, PHP, Ruby, C, Swift, Go, Shell,
TypeScript, and many more. Users can establish repositories to
store their code in addition to using collaborative tools to work
on team projects. Developers can use GitHub to host open-source
projects, as well as to look for worthwhile projects to join. A web-
based platform for hosting and working on software projects is
called GitHub. Users can collaborate on projects, log changes to
their code, and share their work with others. The ability to manage
versions, support for teamwork and communication, and a massive
user base are just a few of GitHub’s important features.

GitHub enables businesses to utilize them all in one location.
Researchers now have the chance to explore a wide range of
software engineering issues on a big dataset thanks to the accessible
tools and datasets existing on the GitHub ecosystem. Although
GitHub indicates the language of each project, after compiling
the results, we see that it is standard practice to employ many
programming languages in closely related open-source projects
(OSP). I began to wonder how GitHub determines the language to
use for each project as a result of this.

Depending on the kind of project and the interests of the engineers
working on it, many programming languages may be employed
on GitHub. On GitHub, languages including JavaScript, Python,
Java, and C++ are frequently used. To identify projects created in a
particular programming language, users can search for repositories
on GitHub by language. GitHub offers users tools to manage their
projects and work with others in addition to hosting code. This
covers tools for team collaboration, project management, and issue
tracking.

GitHub ranking is generated by Linguist, a library used on the
site to detect languages used in public and private repositories,
excluding forks. However, it should be noted that the ranking
is relative in that if a language does not exist on GitHub, it will
never be part of the ranking, regardless of its popularity outside the
collaboration site. At a high level, GitHub is a website and cloud
service that helps developers store and manage their code, as well
as track and monitor changes to it. To understand exactly what
GitHub is, you need to know two related principles:
• Version Control
• Git
Version control helps developers track and manage changes to the
code in a software project. As a software project grows, version
control becomes essential. Take WordPress...

At this point, WordPress is a fairly large project. If a core developer
wanted to work on a specific part of the WordPress codebase, it
would not be safe or efficient to have them modify the “official”
source code directly. Instead, version control allows developers
to work safely through branches and merges. With branching,
a developer duplicates a portion of the source code (called the
repository). The developer can then safely make changes to that
part of the code without affecting the rest of the project. Then,
once the developer has successfully made his or her portion of the
code work, he or she can merge that code with the main source
code to make it official. All these changes are then tracked and
can be undone if necessary. Git is a specific open-source version
control system created by Linus Torvalds in 2005. Specifically, Git
is a distributed version control system, which means that the entire
code base and history are available on each developer’s computer,
allowing for easy branching and merging.

GitHub’s collaborative design also includes social networking
features such as wikis, feeds, and followers. Companies and
individuals host their codes on the platform for open-source and
closed projects. In addition to being cloud storage for code, users
can also browse and download public repositories and make
contributions such as feature requests and code reviews. The service
also offers a self-managed version of its services and features for
businesses and organizations called GitHub Enterprise. You can
install it on company hardware or on a cloud service.

As shown in Figure 1, GitHub integrates well with third-
party applications and custom tools to create your projects and
automate your workflow. It also has an integration of workflow

Volume 4 | Issue 2 |79Adv Mach Lear Art Inte, 2023

tools. GitHub applications, which have granular APIs and built-
in webhooks, give developers more control over what they build.
They are accessible from a dedicated market, where you can
search for everything your project needs in multiple categories.

Even more interesting, the codes of all these tools that make it
possible to quickly create an application are on GitHub, available
to all. However, developers find multiple difficulties in installing a
GitHub project application for multiple reasons (Show Figure 2).

Figure 1: GitHub Projects Compatibility Test Scope and Focus

1. Check the issues page of the repository: Look for similar issues that have been

reported and resolved by other users.

2. Search for similar issues in other repositories: This can help you understand how

other developers have resolved compatibility issues in the past.

3. Consult the documentation for the language or library in question: The

documentation may contain information about known compatibility issues and how to

resolve them.

4. Update your code to use compatible versions of programming languages or

libraries: This is often the easiest and most effective way to resolve compatibility

issues.

5. Make changes to the code to ensure that it works correctly on different operating

systems: This may involve using conditional statements or other techniques to ensure

that the code runs correctly on different platforms.

6. Use a virtual machine or containerization technology: This can help to isolate the

environment in which your code runs, making it less likely that compatibility issues

will arise.

7. Collaborate with other developers: Reach out to other developers who have

experience with the language or library in question and ask for their help in resolving

compatibility issues.

Figure 1: GitHub Projects Compatibility Test Scope and Focus

1. Check the issues page of the repository: Look for similar
issues that have been reported and resolved by other users.
2. Search for similar issues in other repositories: This can help
you understand how other developers have resolved compatibility
issues in the past.
3. Consult the documentation for the language or library in
question: The documentation may contain information about
known compatibility issues and how to resolve them.
4. Update your code to use compatible versions of programming
languages or libraries: This is often the easiest and most effective
way to resolve compatibility issues.
5. Make changes to the code to ensure that it works correctly on
different operating systems: This may involve using conditional
statements or other techniques to ensure that the code runs correctly
on different platforms.
6. Use a virtual machine or containerization technology: This
can help to isolate the environment in which your code runs,

making it less likely that compatibility issues will arise.
7. Collaborate with other developers: Reach out to other
developers who have experience with the language or library in
question and ask for their help in resolving compatibility issues.
8. Test your code thoroughly: Before you release your code,
make sure to test it on different operating systems, browsers, and
devices to ensure that it is compatible.

In this test, the software or application developed is examined to
see if it and the projects are compatible with one another and with
earlier iterations of the project. It is possible to manually test the
compatibility of projects on GitHub or to use automated tools, as
was already mentioned. This operation’s process consists of four
steps. Assure yourself that the testing environments and platforms
have already been identified before moving forward with the
process.

Volume 4 | Issue 2 |80Adv Mach Lear Art Inte, 2023

8. Test your code thoroughly: Before you release your code, make sure to test it on

different operating systems, browsers, and devices to ensure that it is compatible.

In this test, the software or application developed is examined to see if it and the projects are

compatible with one another and with earlier iterations of the project. It is possible to

manually test the compatibility of projects on GitHub or to use automated tools, as was

already mentioned. This operation‟s process consists of four steps. Assure yourself that the

testing environments and platforms have already been identified before moving forward with

the process.

Figure 2: Requirements Generalization Process

This image shows a set of files with different extensions (“.java”, “.py”, “.mp3”, etc). A

classification algorithm is used to group the files into different categories based on their

extension. For example, the “.java” files are grouped into the “Java” category, the “.py” files

are grouped into the “Python” category, and the “.mp3” files are grouped into the “audio”

category.

The project title does not always provide the program type index to be used.

The algorithm can be trained on a dataset of labelled files to learn to predict the category of a

file based on its extension. Once trained, it can be used to classify new files based on their

extension.

Figure 2: Requirements Generalization Process

This image shows a set of files with different extensions (“.java”,
“.py”, “.mp3”, etc). A classification algorithm is used to group
the files into different categories based on their extension. For
example, the “.java” files are grouped into the “Java” category, the
“.py” files are grouped into the “Python” category, and the “.mp3”
files are grouped into the “audio” category.

The project title does not always provide the program type index
to be used.

The algorithm can be trained on a dataset of labelled files to learn to
predict the category of a file based on its extension. Once trained, it
can be used to classify new files based on their extension.

This image is a simplified representation of classifying files by
their extension, and the details of the implementation may vary
depending on the data and the algorithm used. If you are interested
in implementing this approach, I would recommend consulting a
machine-learning expert or doing further research on the topic.

This new framework has been successfully applied to a real
database containing more than a hundred projects with various
extensions. The results obtained After that, we use the FE of each
PL, then extension-based segmentation to find the most used
language. Finally, we use techniques to analyse GitHub projects.
In this article, we will further detail this new method and we will
describe and explain the obtained results.

When you have a set of unlabelled data, it’s very likely that you’ll
be using some kind of unsupervised learning algorithm. So, we
choose K-means clustering because it is the most commonly
used clustering algorithm. It’s a centroid-based algorithm and the
simplest unsupervised learning algorithm. This algorithm tries to
minimize the variance of data points within a cluster. It’s also how
most people are introduced to unsupervised machine learning.
K-means is best used on smaller data sets because it iterates over

all of the data points. That means it’ll take more time to classify
data points if there are a large amount of them in the data set. Since
this is how we implement the method EF to k-means clusters and
facilitate the use of the application GitHub.

There are several ways to categorize GitHub projects by
programming language. One of the most popular methods is to use
GitHub’s search functionality to look for projects using keywords
associated with various programming languages. For instance,
you can search for Python-based projects by using keywords like
“Python,” “Django,” or “Flask.” Additionally, there are tools like
GitHub Trends that allow you to view the trends of the most well-
liked projects according to programming languages. There are also
third-party services like GitHub Language Statistics, which allows
you to view the language statistics for all of GitHub’s open-source
projects. There are visualization tools available that will allow
you to see the trends of programming languages used on GitHub.
Additionally, data analysis tools exist that can be used to extract
information about GitHub projects based on the programming
language they use. GitHub projects can be efficiently imitated
through the site’s fork process or through a Git clone-push sequence
and improve the quality of GitHub project samples that are utilized
to conduct empirical software engineering studies [1]. This work
surveys the recent attempts, both from the machine learning and
operations research communities, at leveraging machine learning
to solve combinatorial optimization problems [1].

Given the hard nature of these problems, state-of-the-art
algorithms rely on handcrafted heuristics for making decisions
that are otherwise too expensive to compute or mathematically not
well-defined. In recent years, the development of machine learning
has led to augmentations of automated tools that classify or extract
information in GitHub [2]. The research works on classification in
GitHub have been still in the passage of development, primarily
engrossed in the submitting, reviewing, and evaluation process.
To recommend experts for the development of AI and machine

Volume 4 | Issue 2 |81Adv Mach Lear Art Inte, 2023

learning to classify the content of GitHub. Although different
classification in GitHub, for example in M Golzadeh propose an
automated classification model to detect bots, Bots are frequently
utilized in GitHub projects to automate iterative activities that
are part of the relegated software development process [3]. As a
case study J. Manuel Perez-Verdejo proposes a TF-IDF algorithm
to identify quality-attributes-related knowledge on such user
feedback [4]. There are numerous different issues that could arise
when managing a programming project on GitHub.

Some such examples include:
• Conflicts during branch fusion occur when many people make
changes to the same file at the same time, and the changes become
incompatible after the branches are combined.
• Compatibility issues occur when a project’s code is incompatible
with specific platforms or operating systems.
• Performance issues occur when a project’s code takes too long to
run or consumes too many system resources.
• Security issues arise when a project’s source code contains flaws
that malicious individuals could use against it. Problems with
compatibility can occur when a project’s code has been developed
and tested on a certain platform or operating system but does not
work correctly on other platforms or operating systems. These
issues could be brought about by variations in the system libraries,
software versions, or hardware settings.

There are several methods for fixing compatibility issues: testing
the code across a wide range of platforms and operating systems
to find compatibility issues Making the code compatible with the
targeted platforms or operating systems by using compatibility
libraries or tools Utilizing platform detection techniques to modify
the code according to the platform or operating system that it runs
on. Utilize container and virtualization technologies to isolate the
code and its dependencies from platform differences. It’s crucial
to remember that compatibility issues can sometimes be resolved
by working with the open-source community, submitting pull
requests with fixes, and talking to contributors.

In the context of GitHub, compatibility refers to the ability of a
project to work seamlessly with other projects, platforms, and
technologies. A compatible project is one that can be integrated
with other projects, run on different platforms, and be used in
conjunction with other tools and technologies without any issues.

For example, a project may be compatible with different operating
systems, such as Windows, macOS, and Linux, or with different
web browsers, such as Chrome, Firefox, and Safari. A project
may also be compatible with different programming languages,
databases, and other technologies.

Having a compatible project is important for several reasons. It
enables users to integrate the project into their existing workflow,
use it with other tools and technologies they already have, and
collaborate with others who may be using different platforms and
technologies.

To ensure compatibility, projects may need to follow certain
standards, use certain APIs, and adhere to certain protocols.
Additionally, they may need to be tested and validated on different
platforms and configurations to ensure that they work as expected.

In the context of open-source projects hosted on GitHub,
compatibility is an important consideration for both contributors
and users of the project. By working together to ensure
compatibility, contributors and users can help to ensure that the
project remains useful and relevant and that it continues to grow
and evolve over time.

1.1. Related Work
1.1.1. Compatibilite
Compatibility Problems Numerous issues have been linked to
Android fragmentation [5,6]. While Pathak et al. have shown
that the frequent Android OS upgrades have been the cause of a
significant portion of user complaints regarding energy issues,
Liu et al. have discovered that Android performance bugs could
only be spotted while testing some specific devices and Android
platforms [7]. Nayebi et al. discovered in a usability study from
2012 that the various display resolutions of devices present
design and implementation challenges for Android apps, creating
significant compatibility concerns [8]. Our study, which focuses
on API-related compatibility issues, is complementary to several
related initiatives. FicFinder is the work that comes closest to ours
in terms of fixing API-induced compatibility problems. Recently,
Wei et al. suggested this tool for Android developers [9].

However, their work differs from ours in a number of ways:
1. Due to human construction, the database (i.e., API-context
pairs) used by FicFinder to highlight compatibility issues is tiny
and is likely to produce a significant number of false negatives
(i.e., missing real compatibility issues). Our approach to CiD is
based on an API lifetime model that is constructed automatically
and methodically by mining changes between various versions of
the Android framework.
2. API compatibility issues, including both forward and backward
compatibility, are the main focus of our effort. FicFinder model’s
other device-specific concerns by mining issue reports.

1.1.2. GitHub Repositorie
We classify related work into tables. We introduce the most
related works to ours. Following the illustrative scheme of the
generalization process of our work, Figure 3 shows that in GitHub.
For manual tests, it is a person, an experienced tester, who will
navigate the GitHub project [10]. We use the file extensions of
each programming language. Unlike the automated test, the
manual test allows you to test or find the GitHub project language
of the file extension that contains the application code, in which
case, we can say that the project is the developer of this language.
EF is considered to categorize the projects in GitHub, and used
by software developers and programmers as a source code or
script file type. A source code file is a human-readable text file
that contains a collection of statements or declarations in any of

Volume 4 | Issue 2 |82Adv Mach Lear Art Inte, 2023

many computer programming languages (e.g. BASIC, PASCAL,
DELPHI, C, C++, C charp, COBOL, etc.).

Figure 3: In 2022, the number of first-time contributors to open-source projects is on the rise.

 In a single project, you can find multiple folders where files are just for

description. Thus, the developer takes the time to select the code files to use in

each project.

 For companies and our case study. There are thousands of clone projects in

GitHub so it is necessary to develop an intelligent method to classify projects by

this programming language.

 Clustering all projects has a similar programming language.

On the other hand, GitHub notes that in its open-source community, projects built from code

and toolchains shared by others are growing. Thus, the performance of developers at work

would be likely to increase by 87% when code reuse is easy and does not introduce friction.

In Table 1 all of the researchers used linguists to understand the types of programming

language. Linguist takes the list of languages it knows from languages. yml and uses a

number of methods to try to determine the language used by each file, and the overall

repository breakdown. Linguist starts by going through all the files in a repository and

excludes all files that it determines to be binary data, vendor code, generated code,

documentation, or are defined as data (e.g. SQL) or prose (e.g. Markdown) languages, whilst

considering any overrides. If an explicit language override has been used, that language is

used for the matching files. The language of each remaining file is then determined using the

following strategies, in order, with each step either identifying the precise language or

Figure 3: In 2022, the number of first-time contributors to open-source projects is on the rise.

• In a single project, you can find multiple folders where files
are just for description. Thus, the developer takes the time to
select the code files to use in each project.

• For companies and our case study. There are thousands of
clone projects in GitHub so it is necessary to develop an
intelligent method to classify projects by this programming
language.

• Clustering all projects has a similar programming language.

On the other hand, GitHub notes that in its open-source community,
projects built from code and toolchains shared by others are
growing. Thus, the performance of developers at work would be
likely to increase by 87% when code reuse is easy and does not
introduce friction.

In Table 1 all of the researchers used linguists to understand

the types of programming language. Linguist takes the list of
languages it knows from languages. yml and uses a number of
methods to try to determine the language used by each file, and the
overall repository breakdown. Linguist starts by going through all
the files in a repository and excludes all files that it determines to
be binary data, vendor code, generated code, documentation, or are
defined as data (e.g. SQL) or prose (e.g. Markdown) languages,
whilst considering any overrides. If an explicit language override
has been used, that language is used for the matching files. The
language of each remaining file is then determined using the
following strategies, in order, with each step either identifying the
precise language or reducing the number of likely languages passed
down to the next strategy: Vim or Emacs mode line, commonly
used filename, shell shebang, file extension, XML header, man
page section, heuristics, naive Bayesian classification.

Years Authors Method Subject
2014 [11] F Tomassetti, M Tor Polyglot-ism (Linguist) How many languages are used in each software project,

Relations between different languages in similar to GitHub
Project

2015 [12] P Mayer, A Bauer process of random Number and type of languages found and the relative sizes of
the languages.

2014 [13] B Ray, D Posnett Polyglot-ism (Linguist) Presented a large-scale study of language type related to
software quality. Characterized the GitHub projects by their
complexity and the variance along multiple dimensions of
language, language type, usage domain, amount of code, sizes
of commits, and the various characteristics of the many issue
types.

Volume 4 | Issue 2 |83Adv Mach Lear Art Inte, 2023

2019 [14] PH merlin, A Stefik Polyglot prog (Linguist) Described a pilot experiment on the impact of code-switching
on software development productivity, Findings in linguistic
research suggest that there is a time cost to switching between
natural languages.

2021 [15] Wen li, Na Meng SPC and EVC (Linguist) Estimating the functionality domain of each project through
topic modeling, followed by studying the statistical correlation
between these domains and language selection.

2022 [16] H.yang, W.Li Analyzing multilingual O the prospects of language-agnostic dynamic analysis of
multilingual code.

Table 1: A Comparative Research Study Used to Classify Projects on GitHub with the Programming Language

The result of this analysis of the Linguist method is used to produce
the language stats bar which displays the language percentages for
the files in the repository. The percentages are calculated based
on the bytes of code for each language as reported by the List
Languages API.

“Linguistics is the scientific study of language. It involves the
analysis of language form, language meaning, and language
in context. Linguists traditionally analyse human language by
observing an interplay between sound and meaning.”

Linguist is a Ruby library so you will need a recent version of
Ruby installed. There are known problems with the macOS/Xcode-
supplied version of Ruby that cause problems installing some of
the dependencies. Accordingly, we highly recommend you install
a version of Ruby using Homebrew, rbenv, rvm, ruby-build, asdf,
or other packaging systems, before attempting to install Linguist
and the dependencies.

In addition, Yu Zhang proposes the HIGITCLASS framework to
classify of GitHub Repositories [17]. Similarly, Song Yu proposes
a supervised classification model attached to the supervised topics
model and Naive Bayes classifier to make the Pull Requests (PRs)
appear in GitHub to be classified automatically [18]. Enayet, A.,
in shows a classification system for GitHub issue comments using
both sentence-level and word-level embedding models to leverage
information from the SwDA dataset [19].

FEs User an extension language is a programming language
interpreter offered by an application program so that users can
write macros or even full-fledged programs to extend the original

application [20,21]. Extension languages have a C interface (it
is usually C, but it could be any other compiled language), and
can be given access to the C data structures. Likewise, there are
C routines to access the extension language data structures [22].
File extensions are very important for the proper identification of
programs that can open and display the correct information with
regard to a file [23].

1.2. Strategies GitHub Projects Dataset
In the following sections, we describe the data set in which we
perform our analysis, as well as the lexical sentiment analysis
approach we use.

1.2.1. Data Collection and Features
We gathered 100 repositories that were as close as possible to
being fully written in Java due to the uncertainty of how Designite
Java would perform. Another requirement we decided upon was
that each repository contains at least 3000 lines of code for it to
be considered. As mentioned in further sections, this was due
to alleviating potential inconsistencies and ensuring that one
particular smell would not be disproportionate to other smells. This
particular minimum value was selected due to testing the tool with
smaller repositories and discovering this value to be suitable and
adequate for our sample size. Most repositories examined were
libraries and frameworks repositories would also be thoroughly
checked to ensure that no other languages would be scanned in by
our chosen tool.

We collect one data Set of GitHub projects enveloped in different
project domain languages their statistics are specified in Table 2.

Dataset Input-projects output-projects Classes
Data 1 200 176 ∓language ID
Data 2 500 400 ∓language ID
Data 3 1000 853 ∓language ID

Table 2: The Dataset Used in This Study is Organized as Shown

Volume 4 | Issue 2 |84Adv Mach Lear Art Inte, 2023

In this study, we produce a data Set using the topics projects GitHub
and the others projects. Our dataset has 1000 projects extracted
from GitHub. These 1000 projects are collected by selecting
the top 1,000 projects sorted by classifying the file extension of
each project. For our own use after the classification FE, we give

projects a programming language specified (see Figure 3). Bao
et al. dataset has 917 repositories, while our data Set has 1000
projects [15]. We found 30 projects with not no extension for the
11 top languages chosen shown in Figure 4.

Figure 4: Top and Evolution of the Association Between the Main Selections of

Programming Languages in GitHub until 2021

The proposed method aims to collect and interpret the data from GitHub projects related to

files or documents originating from different geographical programming language like java,

Python, JavaScript, etc.

The original values of the continuous features have very different scales. While modelling the

data, some features tend to dominate others because of their higher range. Hence, to reduce

the variance between the features and scale all of them to a certain range, standardization is

used. Standardization expects the data to have a Gaussian distribution and as observed, the

features of the data are close to the Gaussian distribution. Standard scaling centres the data

points by subtracting them from the mean and scales by dividing them by the standard

deviation. Thus, standardization is also referred to as „centre scaling‟. Equations 1, 2, and 3

are the equations for Mean, Standard deviation, and Standard Scaled values respectively.

We construct data containing 1000 projects with +2000 files. Figure 4 shows the organization

of the futures when we categorized them as either file extension. For each observation, we

extract +50 features related to the file project extension from GitHub. Figure 4 shows the

association evolution for the programming language across the years. These +50 features are

comprised of all of the extension features and the 10 top contributor features. We used

GitHub to extract the top active language feature.

1.2.2. Language Detection Categorizing Extension Languages

Figure 4: Top and Evolution of the Association Between the Main Selections of Programming Languages in GitHub until 2021

The proposed method aims to collect and interpret the data from
GitHub projects related to files or documents originating from
different geographical programming language like java, Python,
JavaScript, etc.

The original values of the continuous features have very different
scales. While modelling the data, some features tend to dominate
others because of their higher range. Hence, to reduce the variance
between the features and scale all of them to a certain range,
standardization is used. Standardization expects the data to have
a Gaussian distribution and as observed, the features of the data
are close to the Gaussian distribution. Standard scaling centres
the data points by subtracting them from the mean and scales by
dividing them by the standard deviation. Thus, standardization
is also referred to as ‘centre scaling’. Equations 1, 2, and 3 are
the equations for Mean, Standard deviation, and Standard Scaled
values respectively.

We construct data containing 1000 projects with +2000 files.
Figure 4 shows the organization of the futures when we categorized
them as either file extension. For each observation, we extract +50
features related to the file project extension from GitHub. Figure
4 shows the association evolution for the programming language
across the years. These +50 features are comprised of all of the
extension features and the 10 top contributor features. We used
GitHub to extract the top active language feature.

1.2.2. Language Detection Categorizing Extension Languages
Programming languages with file extensions in GitHub projects
can be broadly categorized based on the type of language they are.
Here is a brief overview of some of the most common programming
languages you might encounter in a GitHub project:
• Python: Python is a high-level, interpreted language that is

widely used for web development, scientific computing, data
analysis, and more. It is known for its readability, ease of use,
and vast library of modules. The file extension for Python is
.py.

• JavaScript: JavaScript is a high-level, dynamic, and
interpreted programming language that is primarily used
for web development. It is used for creating interactive web
applications, animations, and another client-side scripting.
The file extension for JavaScript is .js.

• Ruby: Ruby is a dynamic, object-oriented, and interpreted
programming language that is often used for web development,
scripting, and system automation. It is known for its elegance
and readability. The file extension for Ruby is .rb.

• Java: Java is a high-level, object-oriented, and class-based
programming language that is widely used for developing
enterprise applications, mobile applications, and other large-
scale projects. The file extension for Java is .java.C: C is a
low-level, procedural programming language that is widely
used for system programming, embedded systems, and other
applications that require a high degree of control over the
hardware. The file extension for C is .c.

• C++: C++ is an extension of the C programming language
that adds object-oriented programming features. It is widely
used for developing high-performance applications, such as
games, scientific simulations, and other resource-intensive
programs. The file extensions for C++ are .cpp and .cc.

• C charp: C charp is a modern, object-oriented, and type-safe
programming language that is widely used for developing
Windows desktop applications, games, and other applications.
The file extension for C charp is .cs.

• Swift: Swift is a powerful, object-oriented, and type-safe
programming language developed by Apple for developing
iOS, macOS, and other Apple platforms. The file extension

Volume 4 | Issue 2 |85Adv Mach Lear Art Inte, 2023

for Swift is .swift.
• Go: Go is a statically typed, concurrent, and garbage-collected

program- ming language developed by Google. It is widely
used for developing scalable and high-performance systems
and applications. The file extension for Go is .go.

• TypeScript: TypeScript is a statically typed superset of
JavaScript that adds optional type annotations and other
features to the language. It is widely used for developing
large-scale and complex web applications. The file extension
for TypeScript is .ts.

These are just a few examples of the programming languages
you might encounter in a GitHub project. There are many other
programming languages with different file extensions that may be
used in a project, depending on the requirements and constraints
of the project.

In GitHub, programming language extensions are used to identify
the programming language used in a project and to highlight the
specific syntax and constructs used in the code. This information

is used by GitHub to highlight the code, display it in a consistent
manner, and make it easier to read and understand.

The following (show Figure 5) is a list of common programming
language extensions that can be found in GitHub projects:
• .py for Python
• .js for JavaScript
• .java for Java
• .rb for Ruby
• .c or .cpp for C or C++
• .go for Go
• .rs for Rust
• .hs for Haskell
• .scala for Scala
• .php for PHP
It’s important to note that this is not an exhaustive list, and that
there may be other extensions for other programming languages
used in GitHub projects. Additionally, some projects may use
multiple programming languages, and in such cases, multiple
extensions may be used.

Figure 5: Progression of Programming Language Extension: Expansion of JSON File

Extension in the Programming World (A Graphical Overview, A Visual Analysis).

GitHub provides various tools to detect the programming language used in a project. You can

view the primary language of a project by looking at the “Languages” section on the right-

hand side of a project‟s GitHub page. GitHub also provides a heat map that shows the

distribution of code written in different languages within the project‟s repository.

To measure the similarity between two programming languages, you can compare their

syntax, features, libraries, and paradigms. There are several libraries and tools available to

Figure 5: Progression of Programming Language Extension: Expansion of JSON File Extension in the Programming World (A Graphical
Overview, A Visual Analysis).

Volume 4 | Issue 2 |86Adv Mach Lear Art Inte, 2023

GitHub provides various tools to detect the programming language
used in a project. You can view the primary language of a project
by looking at the “Languages” section on the right-hand side of
a project’s GitHub page. GitHub also provides a heat map that
shows the distribution of code written in different languages within
the project’s repository.

To measure the similarity between two programming languages,
you can compare their syntax, features, libraries, and paradigms.
There are several libraries and tools available to automatically
measure the similarity between programming languages, but the
results may vary depending on the methodology used.

In our study, the method EF gives all the nature of the programming
language used in each project with the number of file languages.

1.3. Issues with GitHub's Programming Language
1.3.1. What is the impact of programming language choice on
development speed and project success in GitHub?
RQ1 The choice of programming language can impact development
speed, as some languages have different levels of expressiveness,
libraries, and tools, which can make certain tasks faster or more
convenient to accomplish in certain languages compared to others.

However, the impact on project success on GitHub is not solely
determined by the programming language, as other factors such as
team size, development processes, user needs, and specifications,
budget, and project scope also play important roles. Ultimately, the
most suitable language for a project is one that meets the project
requirements and allows the development team to work efficiently
and effectively.

1.3.2. How does the use of GitHub affect software development
and bug tracking in projects?
RQ2 GitHub can significantly affect software development and
bug tracking by providing:
• Version Control: GitHub provides a platform for version control
using Git, which allows developers to track changes, collaborate
on code, and manage merge conflicts efficiently.
• Collaboration: GitHub makes it easy for developers to work
together on projects by providing a platform for code review,
commenting, and bug tracking.
• Bug Tracking: GitHub offers built-in issue tracking, which
allows developers to create, manage, and track bugs, enhancement
requests, and other project tasks in one place.
• Open-Source Community: GitHub provides a large open-
source community, allowing developers to easily contribute to and
use existing code and tools.
By providing these features, GitHub can improve efficiency,
transparency, and collaboration in software development and bug
tracking, leading to better and faster development processes.

1.3.3. How does the community and collaboration around
programming languages on GitHub impact their adoption and
popularity?
RQ3 The community and collaboration around programming
languages on GitHub can significantly impact their adoption and
popularity by:
• Providing Resources: GitHub provides access to a vast
collection of resources, including code samples, libraries, and
tools, which can make it easier for developers to learn and use new
programming languages.
• Encouraging Collaboration: GitHub makes it easy for
developers to collaborate on projects and contribute to open-source
libraries, which can foster the growth of a strong and supportive
community around a programming language.
• Highlighting Popular Languages: GitHub’s popularity and
widespread use make it a prime platform for measuring the
popularity and adoption of different programming languages, as
the number of repositories, contributors, and stars can be used as a
proxy for a language’s popularity and user base.
• Showcasing Real-World Use Cases: GitHub provides a platform
for developers to share their projects and solutions, allowing others
to see the practical applications of a programming language and
inspiring further adoption.
By providing these benefits, GitHub can play a significant role in
shaping the popularity and adoption of programming languages
and encouraging their growth.

1.3.4. How does GitHub handle compatibility issues between
different programming languages and their libraries and
frameworks?
RQ4 GitHub handles compatibility issues between different
programming languages, libraries, and frameworks by:
• Providing Version Control: GitHub provides version control
through Git, which allows developers to maintain multiple
versions of their code and libraries and easily switch between them
to resolve compatibility issues.
• Documenting Dependencies: GitHub allows developers to
specify dependencies for their projects, including the version of
the programming language, libraries, and frameworks required.
This helps ensure compatibility and reduces the risk of errors and
bugs.
•Encouraging Collaboration: GitHub provides a platform
for collaboration, allowing developers to discuss and resolve
compatibility issues with others and leverage the collective
knowledge and expertise of the community.
• Supporting Package Management: GitHub integrates with
popular package managers like npm, pip, and gems, which allow
developers to easily manage and install dependencies, including
libraries and frameworks, reducing compatibility issues.
By providing these features and integrations, GitHub helps
developers manage compatibility issues between different
programming languages, libraries, and frameworks, reducing
the risk of errors and bugs and making it easier to develop and
maintain software.

Volume 4 | Issue 2 |87Adv Mach Lear Art Inte, 2023

1.3.5. How does GitHub’s version control system support and
handle compatibility issues in multi-language projects?
RQ5 GitHub’s version control system, Git, supports and handles
compatibility issues in multi-language projects by:
• Branching and Merging: Git allows developers to work on
separate branches and easily merge code changes, ensuring
compatibility between different programming languages, libraries,
and frameworks.
• Tracking Changes: Git provides a comprehensive history of all
changes made to a project, allowing developers to see exactly what
changes were made when they were made, and who made them.
This makes it easier to identify and resolve compatibility issues.
• Rollback Options: Git provides the ability to revert to previous
versions of code, allowing developers to easily undo changes that
cause compatibility issues.
• Conflict Resolution: When multiple developers work on the
same codebase, Git provides mechanisms for resolving conflicts
that arise, including merging, rebasing, and resolving merge
conflicts.
By providing these features, GitHub’s version control system, Git,
helps developers handle compatibility issues in multi-language
projects and maintain a stable and reliable codebase.

1.3.6. How does the integration of machine learning models in
programming languages on GitHub affect compatibility and
scalability issues, and how are they addressed?
RQ6 The most common compatibility problems faced by
developers using multiple programming languages in GitHub
projects include:
• Library Compatibility: Different programming languages often
have different libraries and tools, and these libraries may not be
compatible with each other, causing compatibility issues.
• Syntax Differences: Different programming languages have
different syntax and structures, making it difficult to integrate code
written in different languages.
• Data Exchange Format: Different programming languages may
use different data exchange formats, such as XML, JSON, or binary
data, leading to compatibility issues. Performance: Machine-
learning models can be computationally intensive, and integrating
them into programming languages may affect the performance and
scalability of the code.
• Model Compatibility: Different machine learning models
may use different algorithms, data formats, and libraries, which
can cause compatibility issues when integrating them into
programming languages.

These compatibility problems are typically addressed by:
• Converting Data: Developers may use conversion tools or
libraries to translate data between different formats and ensure
compatibility.
• Using Middleware: Middleware can be used to provide a
common interface between different programming languages and
libraries, allowing them to interact and exchange data seamlessly.
• Choosing Compatible Libraries: Developers can choose
libraries that are compatible with multiple programming languages,

reducing compatibility issues.
• Writing Glue Code: Glue code can be written to integrate
code written in different programming languages and ensure
compatibility.
• Choosing Optimized Libraries: Developers can choose
machine-learning libraries that are optimized for performance and
compatibility with programming languages, reducing compatibility
and scalability issues.
• Testing and Profiling: Developers can test and profile their code
to identify performance bottlenecks and optimize the integration
of machine learning models into programming languages.
• Using Standardized Interfaces: Developers can use standardized
interfaces, such as APIs, to integrate machine-learning models into
programming languages, reducing compatibility issues.
• Encouraging Collaboration: Developers can collaborate on
projects and contribute to open-source libraries, encouraging
the development of optimized and compatible machine-learning
models for integration into programming languages.
By using these methods, developers can mitigate compatibility and
scalability issues when integrating machine-learning models into
programming languages on GitHub and ensure the stability and
reliability of their code.

1.4. Software Compatibility
Software compatibility can refer to the capacity of two systems to
work together without making any changes to support each other.
Software Compatibility is the interoperability between any two
software applications.

A variety of software can be used to assess project compatibility,
including Microsoft Project is a well-known project planning tool
that lets you manage each project’s tasks, resources, and schedule
as well as assess how well they work together in terms of both time
and resources.

Trello: an online project management tool that can be used to
assess the compatibility of projects by providing an overview of
tasks and objectives, as well as real-time collaboration between
Members of the team.

Asana is another online project management tool that enables
users to plan, monitor, and organize tasks to achieve shared goals
while assessing the compatibility of projects.

Basecamp is a web-based project management tool that may
be used to assess compatibility across projects by centralizing
interactions, tasks, and documentation for effective goal tracking.
In terms of project management software, it is crucial to pick the
solution that best suits your requirements in terms of functionality,
friendliness, and cost.

2. Methodology
GitHub is a popular platform for hosting and sharing software
projects, including those that involve programming. You can find
many projects on GitHub that use a specific programming language

Volume 4 | Issue 2 |88Adv Mach Lear Art Inte, 2023

by searching for that language on the GitHub website. Here are a
few examples of how you can search for projects on GitHub by
programming language:
• Go to GitHub.com and use the search bar to search for a specific
programming language, such as “JavaScript”. You can also use
the “Language” filter to narrow your search results to only show
repositories written in a specific programming language.
• At the GitHub trending page for a specific programming
language, which shows the most popular repositories written in
that language.
• Look at the GitHub Explore page, which features curated
collections of popular and trending repositories by language.
• Look at the GitHub leader board for a specific language, which
shows the most active contributors for that language.
Here, we describe the languages and GitHub projects that we
collected, and the analysis methods we used to answer our research
question. To classify files with a specific extension, you could use
a machine learning algorithm that is trained on a dataset of labeled
files with various extensions. This algorithm would take in the file
and its extension as input and would output a predicted class or
category for the file.

For example, if you were classifying image files, the algorithm
might take in a file with the extension “.jpg” and output the
predicted class “image”. If you were classifying audio files, the
algorithm might take in a file with the extension “.mp3” and output
the predicted class “audio”.

There are many different machine-learning algorithms that can
be used for classification, and the specific algorithm that would
work best for your use case would depend on the details of your
problem. Some popular algorithms for classification include
support vector machines (SVMs), k-nearest neighbours (k-NN),
and decision trees.
It’s also important to note that classification is a complex topic and
can be challenging to implement. If you were interested in using

machine learning for classification, I would recommend consulting
a machine-learning expert or doing further research on the topic.

To cluster similar projects on GitHub, you could first collect
data on the projects you are interested in. This could include
information about the languages used in the projects, the number of
contributors, the number of stars and forks, and any other relevant
data. In this research, we studied the domain of the GitHub Project
with different areas (see Figure 1). The implementation of ML
methods is shown in Figure 5. Involves training one method used
to classify GitHub projects with a programming language, for
this, we need a machine learning algorithm and a new method to
classify the content extension files in each GitHub project. In this
way, when using hierarchical clustering it is necessary to specify
both the distance metric and the linkage criteria [24].

During the first phase of the study, we used a new method of quick
filing and eliminated traditional tasks (read each shared project in
GitHub) and read the contents of the project files file by file in
order to know the language of the GitHub project. This method is
based on the file extension, which means that this method can read
a database containing thousands of projects. Then, indicates the
percentage of uses of all programming extensions in each project.
In addition, to marking the high percentage as the main language
of the project.

We will give step by step:
• Prepare a database containing more than 200 projects downloaded
from GitHub and prepare a JSON file containing all extensions of
all programming languages.
• Start the EF-algo method.
• The percentage of results for each SQ type exists for each project.
See Figure 6, this is a result of two projects then the master tests
it for the whole base. The first project is a mix of programming
languages, while the second is a Python project. Moreover, the
result is a CSV file for the implementer in a clustering algorithm.

Volume 4 | Issue 2 |89Adv Mach Lear Art Inte, 2023

2.1. EF Method

Figure 6: Methodology employed to identify the EF algorithm and the ML algorithm to

classify project GitHub using the maximum of the extension file used. We added a graphical

mark () to identify the challenges related to noisiness, which crosscut the categories of the

GitHub project.

2.2. Compatibility Project in GitHub Related to Programming Language

The “Compatibility” section of a project in GitHub is typically found in the project‟s

documentation, or in the README file, and is used to provide information about the

compatibility of the project with different operating systems, programming languages, and

other technologies. This section can be very important for users who are interested in using

the project and want to make sure that it will work with their existing infrastructure.

In this section, developers typically list the specific versions of operating systems,

programming languages, and other technologies that their project is compatible with. They

might also include information about any known issues or limitations and any additional

steps that users need to take to get the project up and running.

It‟s worth noting that the compatibility information listed in the “Compatibility” section of a

project is not always 100% accurate or up-to-date, so it‟s a good idea to double-check with

the project‟s documentation and other sources before using the project in a production

environment.

Figure 6: Methodology employed to identify the EF algorithm and the ML algorithm to classify project GitHub using the maximum of
the extension file used. We added a graphical mark () to identify the challenges related to noisiness, which crosscut the categories of the
GitHub project.

2.2. Compatibility Project in GitHub Related to Programming
Language
The “Compatibility” section of a project in GitHub is typically
found in the project’s documentation, or in the README file,
and is used to provide information about the compatibility of the
project with different operating systems, programming languages,
and other technologies. This section can be very important for
users who are interested in using the project and want to make sure
that it will work with their existing infrastructure.

In this section, developers typically list the specific versions
of operating systems, programming languages, and other
technologies that their project is compatible with. They might also
include information about any known issues or limitations and any
additional steps that users need to take to get the project up and
running.

It’s worth noting that the compatibility information listed in the
“Compatibility” section of a project is not always 100% accurate
or up-to-date, so it’s a good idea to double-check with the project’s
documentation and other sources before using the project in a
production environment.
The “Compatibility” section of a project in GitHub can be used
to provide information about the compatibility of the project with
different methodologies. This section can be especially important
for users who are interested in using the project for a specific
methodology and want to make sure that it will work with their
existing practices and processes.

In this section, developers typically list the specific methodologies
that their project is compatible with, such as Agile, Waterfall,
DevOps, etc. They might also include information about any known
limitations or issues, and any additional steps that users need to
take to ensure compatibility with their preferred methodology.

It’s worth noting that compatibility with methodologies can
depend on a number of factors, including the size and complexity
of the project, the tools and technologies used, and the skills and
experience of the development team. As a result, the information
listed in the “Compatibility” section of a project is not always
comprehensive or up-to-date, so it is a good idea to consult the
project’s documentation and other sources and to conduct your
own testing, before using the project in a production environment.

3. Results
3.1. Result of FE Algorithm
In this case, there is a similar description for the setup of our
methodology, in the first part, we should find the FE Algorithm
which allows us to read and display all the files in the GitHub project.
Then, it allows to classification of the files by their extensions and
in the final state gives the number of files in percentages and gives
the name of the most used extension. Figure 7 shows the results of
simulation 3 comparing random forests successively to the result
in Figure 6. We make the result in Table 1.

First, you can replace the detected language for your repository
files using Linguist substitutions. In a few words: Each repository

Volume 4 | Issue 2 |90Adv Mach Lear Art Inte, 2023

is labelled with the first language of the language statistics.
Language statistics count the total file size for each detected
programming or mark-up language. Sold files, documentation,

and generated files are not counted. The language of each file is
detected by the Linguist open-source project.

Figure 7: Overview of File Extension Classification De Deux Projects GitHub Different

Figure 7: Overview of File Extension Classification De Deux Projects GitHub Different

Figure 7: Overview of File Extension Classification De Deux Projects GitHub Different

Figure 8: Correspondence between the EF Algorithm and the ML Algorithm to Classify Project GitHub using the Maximum of the
Extension File Used: Distribution of projects by Programming Domain

Volume 4 | Issue 2 |91Adv Mach Lear Art Inte, 2023

Shows Figure 1 the first test result. Part 1 gives all possible results
even as files that do not have programming but in the second stage,
these files were deleted for easy grouping of projects that have
the same programming language. For example, we notice project
use numbers 7, 11, 2, and 17 are all null. While one removed the
output of our new base. EF classification of our method and we
will display the results of my main database which contains more
than 100 projects. Then proceed to the second step and group with
function.

3.2. Solution Compatibility Issues in GitHub
The programming language’s compatibility relates to how well a
project’s code source and the programming language being used
are compatible. This means that the code must be consistent with
the programming language’s used syntax, libraries, and tools.

For instance, if a project is developed using the programming
language Python, it is crucial to ensure that the code is compatible
with the various versions of Python and that the necessary libraries
are installed on the users’ computers. Additionally, if a project is
developed using a certain framework, it is crucial to ensure that the
code is compatible with the most recent versions of the framework.

To ensure that the project runs consistently and error-free across
various operating systems and platforms, it is crucial to consider
the compatibility related to the programming language. Using the
test and validation tools offered by GitHub, contributors can also
confirm and validate the project’s compatibility.

A GitHub project’s compatibility issues can be solved using a
variety of methods. Here are a few examples:
• Testing the code on a variety of platforms and operating
systems will help you find any compatibility issues. This can be
accomplished by running tests using test automation tools across
many platforms and configurations.
• Use libraries or compatibility tools to make the code compliant
with the targeted exploitation platforms or operating systems. For
instance, by managing the differences between operating system
versions by using compatibility libraries.
• Making use of platform detection techniques to modify the code
depending on the platform or operating system

We have proposed two types of classification techniques here.
We applied these three techniques on sets of identical GitHub
projects and different sets of projects. On this basis, shows the
Correspondence between the EF classification and the K-Means
Clustering algorithm of the project GitHub.
• Utilize platform detection techniques to modify the code
according to the platform or operating system that it runs on. This
could be accomplished by using conditional instructions to check
the platform or operating system the program is running on.
• Utilize container and virtualization technologies to isolate the
code and its dependencies from platform differences. This can be
accomplished by using tools like Virtual Box or Docker to build
reproducible development environments. It’s vital to remember

that these treatments can be combined for increased effectiveness.
To ensure that other developers can understand and apply the
solutions used to solve compatibility issues, documentation of
these solutions is also crucial.

4. Discussions and Conclusion
GitHub is a software development platform that houses open-
source and free software projects. GitHub projects are compatible
with a wide range of programming languages, making it a great
place to find projects to use and contribute to.

The programming language used by the project must be understood
in order to implement a GitHub project. It could involve popular
programming languages like Python, Java, C++, JavaScript, Ruby,
PHP, or other less well-known programming languages.

After determining the programming language used by the GitHub
project, you can download and run the project’s source code on
your personal computer. Install the development tools necessary
for the programming language, such as the compiler, interpreter,
or necessary libraries, in order to accomplish this.
It is often advised to read the README or instructions file for
the GitHub project since it contains crucial information on how
to configure and run the project. You can also check the problems
and merge requests (pull requests) to see if any known issues or
updates are currently being made.

In terms of compatibility, GitHub is compatible with the majority
of programming languages used in the software development
industry. This includes both well-known programming languages
like Python, Java, C++, JavaScript, Ruby, and PHP as well as less
well-known ones like Rust, Swift, Kotlin, etc.

It’s crucial to remember that GitHub is not just for open-source
and free software projects. Additionally, private projects may
be hosted on GitHub using subscription fees. In this case, the
compatibility will depend on the programming language used for
the private project.

The use and success of GitHub projects depend critically on the
programming language’s compatibility with them. In general,
GitHub projects are compatible with a wide range of programming
languages, making it a great place to find projects to use and
contribute to.

It’s crucial to keep in mind that each GitHub project has certain
requirements for programming languages and development tools.
Therefore, before using or contributing to the project, it is crucial
to fully understand the programming language used by it as well as
the tools required to execute it.

Developers should be aware of the programming languages that
GitHub is responsible for managing and selecting projects that
match their interests and level of expertise. The popularity of the
programming language must also be taken into consideration by

Volume 4 | Issue 2 |92Adv Mach Lear Art Inte, 2023

developers as it may affect the accessibility of online resources
and documentation.

In general, GitHub is compatible with the majority of programming
languages used in the software development industry. This includes
both well-known programming languages like Python, Java, C++,
JavaScript, Ruby, and PHP as well as less well-known ones like
Rust, Swift, Kotlin, etc. Additionally, GitHub is compatible with a
wide range of development tools, including database management
systems, web development frameworks, version control tools, etc.

For developers and software users alike, the GitHub project’s
compatibility with the programming language is ultimately a
crucial factor. For software developers and users alike, the GitHub
projects provide a wide range of possibilities and potentially
invaluable information and resources.

References
1. Spinellis, D., Kotti, Z., & Mockus, A. (2020, June). A dataset

for github repository deduplication. In Proceedings of the
17th international conference on mining software repositories,
523-527.

2. Bengio, Y., Lodi, A., & Prouvost, A. (2021). Machine learning
for combinatorial optimization: a methodological tour
d’horizon. European Journal of Operational Research, 290(2),
405-421.

3. Golzadeh, M., Decan, A., Legay, D., & Mens, T. (2021). A
ground-truth dataset and classification model for detecting
bots in GitHub issue and PR comments. Journal of Systems
and Software, 175, 110911.

4. Pérez-Verdejo, J. M., Sánchez-García, Á. J., Ocharán-
Hernández, J. O., Mezura-Montes, E., & Cortés-Verdín,
K. (2021). Requirements and github issues: An automated
approach for quality requirements classification. Programming
and Computer Software, 47, 704-721.

5. Han, D., Zhang, C., Fan, X., Hindle, A., Wong, K., & Stroulia,
E. (2012, October). Understanding android fragmentation with
topic analysis of vendor-specific bugs. In 2012 19th Working
Conference on Reverse Engineering (pp. 83-92). IEEE.

6. Li, L., Bissyandé, T. F., Papadakis, M., Rasthofer, S., Bartel,
A., Octeau, D., ... & Traon, L. (2017). Static analysis of
android apps: A systematic literature review. Information and
Software Technology, 88, 67-95.

7. Liu, Y., Xu, C., & Cheung, S. C. (2014, May). Characterizing
and detecting performance bugs for smartphone applications.
In Proceedings of the 36th international conference on
software engineering (pp. 1013-1024).

8. Nayebi, F., Desharnais, J. M., & Abran, A. (2012, April). The
state of the art of mobile application usability evaluation.
In 2012 25th IEEE Canadian Conference on Electrical and
Computer Engineering (CCECE) (pp. 1-4). IEEE.

9. Wei, L., Liu, Y., & Cheung, S. C. (2016, August). Taming
android fragmentation: Characterizing and detecting
compatibility issues for android apps. In Proceedings of the
31st IEEE/ACM International Conference on Automated

Software Engineering (pp. 226-237).
10. Hata, H., Novielli, N., Baltes, S., Kula, R. G., & Treude, C.

(2022). GitHub Discussions: An exploratory study of early
adoption. Empirical Software Engineering, 27, 1-32.

11. Tomassetti, F., & Torchiano, M. (2014, May). An empirical
assessment of polyglot-ism in github. In Proceedings of the
18th International Conference on Evaluation and Assessment
in Software Engineering (pp. 1-4).

12. Mayer, P., & Bauer, A. (2015, April). An empirical analysis
of the utilization of multiple programming languages in open
source projects. In Proceedings of the 19th International
Conference on Evaluation and Assessment in Software
Engineering (pp. 1-10).

13. Ray, B., Posnett, D., Filkov, V., & Devanbu, P. (2014,
November). A large scale study of programming languages
and code quality in github. In Proceedings of the 22nd
ACM SIGSOFT international symposium on foundations of
software engineering (pp. 155-165).

14. Uesbeck, P. M. (2019). A randomized controlled trial on the
impact of polyglot programming in a database context. Open
access series in informatics, 67.

15. Li, W., Meng, N., Li, L., & Cai, H. (2021, May). Understanding
language selection in multi-language software projects on
github. In 2021 IEEE/ACM 43rd International Conference
on Software Engineering: Companion Proceedings (ICSE-
Companion) (pp. 256-257). IEEE.

16. Yang, H., Li, W., & Cai, H. (2022, November). Language-
agnostic dynamic analysis of multilingual code: promises,
pitfalls, and prospects. In Proceedings of the 30th ACM Joint
European Software Engineering Conference and Symposium
on the Foundations of Software Engineering (pp. 1621-1626).

17. Zhang, Y., Xu, F. F., Li, S., Meng, Y., Wang, X., Li, Q., &
Han, J. (2019, November). Higitclass: Keyword-driven
hierarchical classification of github repositories. In 2019
IEEE International Conference on Data Mining (ICDM) (pp.
876-885). IEEE.

18. Yu, S., Xu, L., Zhang, Y., Wu, J., Liao, Z., & Li, Y. (2018,
May). NBSL: A supervised classification model of pull
request in GitHub. In 2018 IEEE International Conference on
Communications (ICC) (pp. 1-6). IEEE.

19. Enayet, A., & Sukthankar, G. (2020). A transfer learning
approach for dialogue act classification of GitHub issue
comments. arXiv preprint arXiv:2011.04867.

20. Bijlani, A., & Ramachandran, U. (2019). Extension framework
for file systems in user space. In 2019 USENIX Annual
Technical Conference (USENIX ATC 19) (pp. 121-134).

21. Spinczyk, O., Gal, A., & Schröder-Preikschat, W. (2002,
February). AspectC++ an aspect-oriented extension to the
C++ programming language. In Proceedings of the Fortieth
International Conference on Tools Pacific: Objects for
internet, mobile and embedded applications (pp. 53-60).

22. Lampen, P., Lambert, J., Lancashire, R. J., McDonald, R. S.,
McIntyre, P. S., Rutledge, D. N., ... & Davies, A. N. (1999). An
extension to the JCAMP-DX standard file format, JCAMP-
DX V. 5.01. Pure and Applied Chemistry, 71(8), 1549-1556.

https://doi.org/10.1145/3379597.3387496
https://doi.org/10.1145/3379597.3387496
https://doi.org/10.1145/3379597.3387496
https://doi.org/10.1145/3379597.3387496
https://doi.org/10.1016/j.ejor.2020.07.063
https://doi.org/10.1016/j.ejor.2020.07.063
https://doi.org/10.1016/j.ejor.2020.07.063
https://doi.org/10.1016/j.ejor.2020.07.063
https://doi.org/10.1016/j.jss.2021.110911
https://doi.org/10.1016/j.jss.2021.110911
https://doi.org/10.1016/j.jss.2021.110911
https://doi.org/10.1016/j.jss.2021.110911
https://doi.org/10.1134/S0361768821080193
https://doi.org/10.1134/S0361768821080193
https://doi.org/10.1134/S0361768821080193
https://doi.org/10.1134/S0361768821080193
https://doi.org/10.1134/S0361768821080193
https://doi.org/10.1134/S0361768821080193
https://doi.org/10.1134/S0361768821080193
https://doi.org/10.1134/S0361768821080193
https://doi.org/10.1134/S0361768821080193
https://doi.org/10.1016/j.infsof.2017.04.001
https://doi.org/10.1016/j.infsof.2017.04.001
https://doi.org/10.1016/j.infsof.2017.04.001
https://doi.org/10.1016/j.infsof.2017.04.001
https://doi.org/10.1145/2568225.2568229
https://doi.org/10.1145/2568225.2568229
https://doi.org/10.1145/2568225.2568229
https://doi.org/10.1145/2568225.2568229
https://doi.org/10.1109/CCECE.2012.6334930
https://doi.org/10.1109/CCECE.2012.6334930
https://doi.org/10.1109/CCECE.2012.6334930
https://doi.org/10.1109/CCECE.2012.6334930
https://doi.org/10.1145/2970276.2970312
https://doi.org/10.1145/2970276.2970312
https://doi.org/10.1145/2970276.2970312
https://doi.org/10.1145/2970276.2970312
https://doi.org/10.1145/2970276.2970312
https://doi.org/10.1007/s10664-021-10058-6
https://doi.org/10.1007/s10664-021-10058-6
https://doi.org/10.1007/s10664-021-10058-6
https://doi.org/10.1145/2601248.2601269
https://doi.org/10.1145/2601248.2601269
https://doi.org/10.1145/2601248.2601269
https://doi.org/10.1145/2601248.2601269
https://doi.org/10.1145/2745802.2745805
https://doi.org/10.1145/2745802.2745805
https://doi.org/10.1145/2745802.2745805
https://doi.org/10.1145/2745802.2745805
https://doi.org/10.1145/2745802.2745805
https://doi.org/10.1145/2635868.2635922
https://doi.org/10.1145/2635868.2635922
https://doi.org/10.1145/2635868.2635922
https://doi.org/10.1145/2635868.2635922
https://doi.org/10.1145/2635868.2635922
https://par.nsf.gov/biblio/10127887
https://par.nsf.gov/biblio/10127887
https://par.nsf.gov/biblio/10127887
https://doi.org/10.1109/ICSE-Companion52605.2021.00119
https://doi.org/10.1109/ICSE-Companion52605.2021.00119
https://doi.org/10.1109/ICSE-Companion52605.2021.00119
https://doi.org/10.1109/ICSE-Companion52605.2021.00119
https://doi.org/10.1109/ICSE-Companion52605.2021.00119
https://doi.org/10.1145/3540250.3560880
https://doi.org/10.1145/3540250.3560880
https://doi.org/10.1145/3540250.3560880
https://doi.org/10.1145/3540250.3560880
https://doi.org/10.1145/3540250.3560880
https://doi.org/10.1109/ICDM.2019.00098
https://doi.org/10.1109/ICDM.2019.00098
https://doi.org/10.1109/ICDM.2019.00098
https://doi.org/10.1109/ICDM.2019.00098
https://doi.org/10.1109/ICDM.2019.00098
https://doi.org/10.1109/ICC.2018.8422103
https://doi.org/10.1109/ICC.2018.8422103
https://doi.org/10.1109/ICC.2018.8422103
https://doi.org/10.1109/ICC.2018.8422103
https://doi.org/10.48550/arXiv.2011.04867
https://doi.org/10.48550/arXiv.2011.04867
https://doi.org/10.48550/arXiv.2011.04867
https://www.usenix.org/system/files/atc19-bijlani.pdf
https://www.usenix.org/system/files/atc19-bijlani.pdf
https://www.usenix.org/system/files/atc19-bijlani.pdf
https://dl.acm.org/doi/pdf/10.5555/564092.564100
https://dl.acm.org/doi/pdf/10.5555/564092.564100
https://dl.acm.org/doi/pdf/10.5555/564092.564100
https://dl.acm.org/doi/pdf/10.5555/564092.564100
https://dl.acm.org/doi/pdf/10.5555/564092.564100
https://doi.org/10.1351/pac199971081549
https://doi.org/10.1351/pac199971081549
https://doi.org/10.1351/pac199971081549
https://doi.org/10.1351/pac199971081549

Volume 4 | Issue 2 |93Adv Mach Lear Art Inte, 2023

Copyright: ©2023 Faten Slama, et al. This is an open-access article
distributed under the terms of the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any
medium, provided the original author and source are credited.

https://opastpublishers.com

23. Ware, R. (2006). File extension renaming and signaturing.
Digital Forensics (September 19, 2006).

24. Lambaria, N., & Cerny, T. (2022). A data analysis study of

code smells within java repositories. Annals of Computer
Science and Information Systems, 32, 313-318.

https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=f6b22ff7fe6902600fc55759a7d1351c41092446
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=f6b22ff7fe6902600fc55759a7d1351c41092446
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=f6b22ff7fe6902600fc55759a7d1351c41092446
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=f6b22ff7fe6902600fc55759a7d1351c41092446
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=f6b22ff7fe6902600fc55759a7d1351c41092446

