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Abstract
We conducted a comprehensive analysis to assess the purification effect of Euryale ferox, a native aquatic plant, on eutrophic 
rivers in rural areas along the Huaihe River. This involved simulating variations in the total nitrogen (TN), ammonia nitrogen 
(NH4+-N), total phosphorus (TP), chemical oxygen demand (CODCr), pH, soluble salt content (SSC), and dissolved oxygen 
(DO) within the eutrophic river pool. Euryale ferox was cultivated in a eutrophic river pool within rural areas along the 
Huaihe River. Subsequently, an extensive analysis was conducted to assess the purification effects of Euryale ferox on river 
ecosystems. The results indicated that Euryale ferox, an indigenous aquatic plant in the Huaihe River, exerted a beneficial 
purifying influence on eutrophic rivers. This plant demonstrated a robust capacity to absorb NH4+-N and TP, ranging from 
95.53% to 98.45% and 99.50% to 99.65%, respectively, in the water body during its growth, thereby achieving excellent 
purification performance. However, the purification of Euryale ferox for TN and CODCr in eutrophic rivers remains unclear. 
Notably, the pH in the aquatic environment demonstrated a noteworthy increase from 11.05% to 11.61%, while the EC value 
increased from 21.12% to 22%. Additionally, the DO levels exhibited a substantial increase, ranging from 3.82 to 21.77 
times. It is essential to acknowledge that rural rivers are subject to various influences, including river velocity, submerged 
vegetation, aquatic fauna, and human activities. Further observation of practical applications is vital to comprehensively 
understand the implications of these findings.
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1. Introduction
The Proposal of the Central Committee of the Communist Party of 
China regarding the 14th Five-Year Plan for National Economic 
and Social Development and the Visionary Goals for the 23rd 
Five-Year Plan emphasizes "Promote rural latrines, domestic 
garbage disposal, and sewage treatment in accordance with local 
conditions and carry out a comprehensive renovation of rivers and 
lakes to improve the environment of rural human settlements [1]." 
Moreover, the Report of the 20th Party Congress states "Strongly 
promote the prevention and control of environmental pollution. 
Adhere to precise pollution control and scientific pollution control to 
integrate water resources, the water environment, water ecological 
management, etc. Promote urban and rural habitat improvement 
[[2]. The aquatic environment in rural areas has attracted 
increasing attention. According to the Ministry of Housing and 
Urban-Rural Development 2022 statistics [3], in China, the annual 

rural domestic water consumption has reached 6.5 × 107 m3, with 
36.94% of townships equipped for domestic sewage treatment. 
Local governments allocate substantial financial resources 
annually to execute rural sewage treatment projects. However, 
after construction, the long-term operation and maintenance of 
these facilities have proven exceedingly challenging [4], and the 
establishment of a robust management assurance system has not 
yet been achieved [5]. Moreover, different economic development 
environments across regions have led to extended periods of 
inactivity for sewage treatment plants in certain provinces. Rural 
sewage is directly discharged into pits, ditches, and rivers [6], with 
long-term accumulation of domestic waste and reduced water body 
flow. Consequently, during summer, these conditions frequently 
lead to the formation of black smelly water bodies, subject to 
local residents' criticism. Although sewage treatment plants 
remain partially operational, a comprehensive strategy has been 
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implemented to address the factors contributing to the formation 
of black odour water bodies, such as the scientific application 
of source control, sewage interception, desilting, dredging, 
ecological restoration, and water purification [6]. The selection of 
ecological restoration measures is based on the specific functions 
of the water body, including rainwater collection and storage, soil 
retention, purification, irrigation, and landscape [6]. Water quality 
enhancement is a pivotal and primary objective in the management 
of rural water bodies [7], and serves as an essential condition for 
subsequent ecological restoration efforts within river ecosystems 
[7]. In rural regions, most rivers are shallow water bodies 
dominated by eutrophication, primarily driven by high nitrogen 
and phosphorus levels [8]. The management of eutrophication in 
shallow water bodies has attracted considerable attention from 
various parties [9, 10, 11, 12]. Aquatic plants, renowned for their 
robust pollutant tolerance in eutrophic environments [13], play a 
vital role in nutrient and pollutant reduction through absorption, 
adsorption, and degradation [14]. Consequently, they contribute to 
the creation of a healthier ecological environment and improve the 
self-purification capacity of water bodies [15, 16]. The utilization 
of aquatic plants for water purification has become one of the most 
important methods for the ecological management of eutrophic 
rural rivers [17, 18, 19, 20].

According to available statistics, there is a diverse array of aquatic 
plants, comprising 61 families, 168 genera, and 741 species in 
China [21]. Notably, these aquatic plants are effective tools for 
water purification, whether used individually or in combination 
with species such as plantains, reeds, calamus, bitter grass, and 
goldfish algae [22, 23, 24,]. Among them, pink-green foxtail, 
plantain, and reed plants demonstrate notable proficiency in 
nitrogen removal [25], whereas fenugreek, duckweed, and 
zelchocarpus excel in phosphorus removal [26]. Aquatic plants 
with substantial root systems, high oxygen-secreting capacity, 
and microorganism-friendly surfaces offer distinct advantages 
for COD removal from water sources [25, 26]. It is imperative to 
recognize that the purifying efficacy of aquatic plants in polluted 
waters is also affected by several environmental factors, including 
light [27, 28], temperature conditions [29] water depth [30], and 
flow [31].

In the selection of aquatic plants, it is often observed that non-
native species, such as water hyacinth [32] and algae [33], are 
favoured, despite their inherent challenges in control [34] and their 
potential to disrupt the original ecosystem dynamics [34]. China 
possesses a bountiful reserve of indigenous aquatic plants, noted 
for their abundant resources [21], with high ecological safety and 
water purification capacity. For example, the yellow-flowered 
water dragon, a native plant, exhibits an impressive removal rate 
of approximately 60% for total nitrogen in polluted water [35], 
which is 2.6 and 2.9 times that of water hyacinth and water peanut, 
respectively. Similarly, its removal rate for total phosphorus was 
approximately 25%, exceeding that of water hyacinth and water 
peanut by 0.7 and 1.9 times, respectively. In the Anhui Province, 
specifically within the Huaihe area, local water systems are 

abundant and extensively cultivated with Euryale ferox, lotus roots, 
wild rice, and other aquatic plants. On the afternoon of August 
18, 2020, during a visit to the Mengwa flood control reservoir in 
Funan County, Xi Jinping, Secretary-General of Anhui Province, 
interacted cordially with local residents while harvesting Euryale 
ferox, emphasizing the importance of leveraging local conditions 
to expedite replanting efforts, minimize disaster losses, and achieve 
a successful autumn harvest. Previous studies have consistently 
demonstrated the significant water purification capabilities of 
Euryale ferox in various settings, including rural sewage in Hunan 
[24] and water bodies experiencing varying levels of eutrophication 
in Northeast China and other regions [36]. Additionally, Euryale 
ferox serve as valuable indicators of environmental pollution [21].

The native aquatic plant Euryale ferox in the Huaihe region has 
traditionally garnered attention for its medicinal properties [37, 
38]. However, its use in the management of rural eutrophic rivers 
in the Anhui Province of the Huaihe region remains relatively 
unexplored. This study focused on hybrid Euryale ferox cultivated 
in the Huaihe area, and investigated their efficacy in purifying 
shallow eutrophic water bodies. The aim was to propose technical 
solutions and provide empirical data to support the management 
of eutrophic water pollution in shallow rural water bodies along 
the Huaihe area while also offering insights for local ecological 
enhancement and landscape preservation.

2. Materials and methods
2.1 Test plants and water bodies
The experiment was conducted within the garden training field 
of Fuyang Vocational and Technical College. This training field 
includes two landscape ponds, with an upstream pond of irregular 
dimensions and a depth of 1.3 m, covering an area of approximately 
100 m2. The pool is landscaped with rye grass along its perimeter, 
featuring a pavilion on the north side and stones on the east side. 
The surroundings are adorned with spring, forsythia, willows, 
peach trees, and other vegetation. A water stopper is positioned 
on the south side, allowing water to overflow into the downstream 
landscape pool when the water level exceeds the stopper by 1.2 m. 
An inlet for tap water is positioned on the north side of the upstream 
landscape pond, ensuring consistent water depth in both ponds 
throughout the year. The upstream landscape pond has experienced 
prolonged eutrophication. During the experimental period, it was 
drained to facilitate the testing. River water from the landscape 
river in the courtyard of the Fuyang Vocational and Technical 
College was introduced into the landscape pond during the 

 planting phase. The primary aim of this experiment 
was to assess the water purification capabilities of Euryale ferox. 
Notably, the experiment was not designed for river flow rates, 
not adding water to the landscape pond or applying fertilizers to 
replicate the conditions in rural rivers along the Huaihe region. In 
June 2022, Euryale ferox seedlings were procured from Fuyang 
City, Funan County, and Fuyang County Euryale ferox Planting 
Professional Cooperatives. Each plant exhibited uniform height 
and biomass, and a gradual pseudo-planting technique was used 
to decelerate the seedlings after planting. The selected planting pot 
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was a dragon pot measuring 600 mm in diameter and 380 mm in 
height. These pots were filled with a substrate derived from river 
sludge originating in a village in Wanghua Town, Funan County, 
characterized by sandy ginger-black soil with a soil capacity of 
approximately 1.42g/cm3.

2.2 Experimental procedure
In late May 2022, Euryale ferox were planted by filling dragon 
tanks with sludge, extending to a depth of 50 cm, and subsequently 
placing them in a sewage pond. A total of 18 pots were strategically 
positioned based on the Euryale ferox density and irregular shape of 
the landscape pond. On June 15, 2022, slow-growing Euryale ferox 
were transplanted, and the pond was filled with water sourced from 
the landscape river of the school. The initial concentrations of the 
test water were as follows: total nitrogen (TN) ranged from 0.544 
to 0.566 mg•L-1, ammonia nitrogen (NH4

+-N) ranged from 0.112 
to 0.24 mg•L-1, total phosphorus (TP) ranged from 0.232 to 0.242 
mg•L-1, chemical oxygen demand (CODCr) ranged from 9.605 to 
15.99 mg•L-1, pH ranged from 7.51 to 7.58, soluble salt content 
(EC) ranged from 516 to 518 us∙cm-1, and dissolved oxygen (DO) 
ranged from 0.819 to 1.214 mg•L-1. These concentrations were 
close to those found in rural rivers within the Huaihe region. The 
experimental period spanned from June 15, 2022, to September 
15, 2022, totalling a 90-day testing cycle. In mid-July, the padded 
section of the dragon tank was removed, and water quality samples 
from the landscape pond were collected and analysed at 15-day 
intervals. At the end of the experiment, the landscape pond was 
maintained at a water depth of 50 cm, and the decomposing plants 
were removed. Water samples were extracted from a depth of 3 
cm from the water surface, and 500 mL samples were collected 
from three distinct locations in the landscape pond, designated as 
Sites I, II, and III. The experimental process was divided into a 
pre-growth period (June 15 to June 30), mid-growth period (June 
30 to July 30), late growth period (July 15 to August 15), harvest 
period (August 15 to August 30), and decay period (August 30 to 
September 15).

2.3 Detection methods
TN concentrations were detected using alkaline potassium persulfate 
digestion UV spectrophotometry (HJ636-2012). TP concentrations 
were assessed using ammonium molybdate spectrophotometry 
(HJ671-2013). COD levels were quantified using the dichromate 
method (HJ828-2017), and NH3-N concentrations were determined 
via nano-reagent spectrophotometry (HJ535-2009). Additionally, 
pH values were measured using a photometric method (HJ535-
2009) and an acidimeter.
The removal rate (ρ, %) of each index was calculated as follows:
ρ=(ρ0-ρi)/ρ0×100%.
where ρ0 represents the initial measured mass concentration of the 
site, mg•L-1; and ρi represents the last measured mass concentration 
of the site, mg•L-1.

2.4 Data analysis
Microsoft Excel was used to calculate and plot the data, and 
SPSS22.0 statistical analysis software was applied to analyse the 
data.

3 Results and analysis
3.1 Purification effect of Euryale ferox on TN and NH4+-N in 
water bodies 
The influence of Euryale ferox on the purification of TN in eutrophic 
water bodies (Fig. 1) exhibited a pattern of increase-decrease-
increase during the Euryale ferox growth period. Specifically, 
during the pre-growth phase of Euryale ferox, the TN content 
of the water body initially increased. Subsequently, during the 
rapid growth phase of Euryale ferox, the TN content substantially 
decreased, indicating the efficacy of Euryale ferox in TN removal 
from eutrophic water bodies. As Euryale ferox growth decelerated 
in the later stage, the TN content in the water body demonstrated 
an increasing trend. From the harvesting period to plant failure, the 
TN content experienced a slight decrease followed by an increase, 
eventually reaching its peak value. Throughout the entire Euryale 
ferox growth period, variations in TN content within the water 
body remained minimal, fluctuating within the range of 0–0.42%.
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Fig. 1 Dynamics of total nitrogen at each sampling point 
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+-N removal effect of the Euryale ferox is evident in Fig. 2, 

demonstrating their remarkable capacity to purify NH4
+-N from eutrophic water 

bodies. During the pre-growth phase of Euryale ferox, there was a rapid decrease in 
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+-N content within the water body. Throughout the middle, late, and harvest 

growth periods, the NH4
+-N content remained consistently low, maintaining a go-flat 

state. Subsequent to the decay of the Euryale ferox plant body, the NH4
+-N content 

increased again. When considering the period from Euryale ferox planting to 

harvesting, Euryale ferox exhibited an impressive NH4
+-N purification efficiency, 

ranging from 95.53% to 98.45%, indicative of their robust purification capability. 
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Figure 1: Dynamics of total nitrogen at each sampling point

The NH4
+-N removal effect of the Euryale ferox is evident in Fig. 

2, demonstrating their remarkable capacity to purify NH4
+-N from 

eutrophic water bodies. During the pre-growth phase of Euryale 
ferox, there was a rapid decrease in NH4

+-N content within the water 
body. Throughout the middle, late, and harvest growth periods, the 
NH4

+-N content remained consistently low, maintaining a go-flat 

state. Subsequent to the decay of the Euryale ferox plant body, 
the NH4

+-N content increased again. When considering the period 
from Euryale ferox planting to harvesting, Euryale ferox exhibited 
an impressive NH4

+-N purification efficiency, ranging from 95.53% 
to 98.45%, indicative of their robust purification capability.
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Fig. 2 Dynamics of ammonia nitrogen at each sampling point 

 

3.2 Purification effect of Euryale ferox on TP and CODCr in water bodies 

The purification effect of Euryale ferox on TP in eutrophic water bodies (Fig. 3) 

indicates a highly pronounced removal effect. During the pre-growth period of 

Euryale ferox, there was a steep decline in TP content within the water body. 

Subsequently, from the middle of the growth period until decay, the TP content in the 
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on TP purification in eutrophic waters was remarkable, ranging from 99.50% to 

99.65%, underscoring its potent purifying capacity. 
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Figure 2: Dynamics of ammonia nitrogen at each sampling point

3.2 Purification effect of Euryale ferox on TP and CODCr in 
water bodies
The purification effect of Euryale ferox on TP in eutrophic water 
bodies (Fig. 3) indicates a highly pronounced removal effect. 
During the pre-growth period of Euryale ferox, there was a steep 
decline in TP content within the water body. Subsequently, from 

the middle of the growth period until decay, the TP content in the 
water body remained consistently low, maintaining a flat state. 
The effect of the plant on TP purification in eutrophic waters was 
remarkable, ranging from 99.50% to 99.65%, underscoring its 
potent purifying capacity.
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During the analysis of the purifying effect of Euryale ferox on CODCr 
in eutrophic water bodies (Fig. 4) showed that the CODCr content 
initially increased during the pre-growth period. Subsequently, 
as the Euryale ferox grew, the CODCr content increased slightly, 
followed by a rapid decline. During the harvesting phase of Euryale 

ferox, the CODCr content increased. After the decay of the Euryale 
ferox plants, the CODCr content decreased again. Throughout the 
entire test period, involving Euryale ferox, the CODCr content in 
the pools exhibited relatively minimal fluctuations.
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Fig. 3 Dynamics of total phosphorus at each sampling point 
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Figure 3: Dynamics of total phosphorus at each sampling point
Examination of the purifying effect of Euryale ferox on CODCr 
in eutrophic water (Fig. 4) revealed that the CODCr content 
initially increased during the pre-Euryale ferox growth period. 
Subsequently, it exhibited a rapid decline with the growth of the 
Euryale ferox, followed by a slight increase and another rapid 

decrease. During the harvesting period of Euryale ferox, the 
CODCr content increased again but decreased again after the decay 
of Euryale ferox plants. The overall variation in the CODCr content 
in the pools remained relatively insignificant throughout the test 
period involving Euryale ferox.
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Fig. 4 Dynamics of COD at each sampling point 
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Figure 4: Dynamics of COD at each sampling point
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3.3 Effect of Euryale ferox on pH, EC, and DO in water bodies
Analysing the impact of Euryale ferox on pH levels in eutrophic 
water bodies (Fig. 5), after Euryale ferox planting, the pH in 
eutrophic water initially began to rise during the pre-growth phase. 
Subsequently, during the middle growth period of the Euryale 
ferox, the pH exhibited a slight decline, followed by another 

increase. During the late growth period, the pH decreased again. It 
peaked at the time of the Euryale ferox harvest. After the decay of 
Euryale ferox plants, the pH of the pool decreased again. Across 
the entire growth process of Euryale ferox, there was a general 
trend of pH elevation, with an increase ranging from 11.05% to 
11.61% when calculated from Euryale ferox planting to harvest.
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Fig. 5 Dynamics of pH at each sampling point 
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Figure 5: Dynamics of pH at each sampling point

Analysis of the impact of Euryale ferox on EC values in eutrophic 
water bodies (Fig. 6) revealed that Euryale ferox initiated an 
increase in EC values during the pre-planting period. However, 
the EC values in pools experienced a slight decrease during the 
mid-growth period. Subsequently, during the late growth period, 

the EC values increased again, followed by a decrease during 
the harvesting period. During the decay period, the EC values 
increased to higher levels. Based on the entire period from Euryale 
ferox planting to harvest, there was an overall increasing trend in 
EC values, with increases ranging from 21.12% to 22%.
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Fig. 6 Dynamic change of EC value at each sampling point 
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Figure 6: Dynamic change of EC value at each sampling point
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During the analysis of the impact of Euryale ferox on DO levels 
in eutrophic waters (Fig. 7), DO exhibited a consistent upward 
trend throughout the growth of the Euryale ferox, reaching its 
peak during the late growth phase. However, upon harvesting 

and transitioning to the decay period, the DO levels began to 
decrease linearly. Calculations based on the period from Euryale 
ferox planting to harvesting indicated a substantial increase in DO, 
ranging from 3.82 to 21.77 times.
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Fig. 7 Dynamics of dissolved oxygen at each sampling point 
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Figure 7: Dynamics of dissolved oxygen at each sampling point

4. Discussion
4.1 Analysis of TN and NH4+-N removal in water bodies by 
Euryale ferox 
In eutrophic water bodies, nitrogen removal primarily involves 
processes such as plant uptake, ammonia nitrogen volatilisation, 
and denitrification facilitated by inter-root microorganisms [39]. 
During the initial growth period of Euryale ferox, the TN in the 
water tended to increase, which may be attributed to the nitrogen 
nutrient exchange occurring between the substrate and water, 
leading to the release of nitrogen from the substrate into the water 
[40]. Notably, as Euryale ferox grow more rapidly during the 
summer in eutrophic waters, their capacity to absorb and utilise 
total nitrogen intensified, resulting in a substantial reduction in TN 
content [40]. This phase demonstrated an efficient removal of TN 
from the water, ranging from 85.34% to 95.78%, consistent with 
the findings of Yan [29]. In the later stages of Euryale ferox growth, 
the uptake of TN by the Euryale ferox decreased. As external 
factors such as precipitation and surface runoff contribute nitrogen 
to the open water body [26], the TN content exhibited an upward 
trend, which was substantiated by the concurrent increase in EC 
values within the water body. During the later period, the decay 
and decomposition of Euryale ferox plants led to an increase in 
nitrogen and phosphorus nutrient concentrations. The significant 
increase in TN content in the water body corresponded with 
changes in ammonia and nitrogen levels, which was consistent 
with a previous study [29]. During the application of Euryale ferox 
for eutrophic water purification, TN and TP can be transferred to 
plants through uptake processes and subsequently removed from 
water upon plant harvest.

Throughout the growth of Euryale ferox, the primary nitrogen 
source in eutrophic waters is ammonia nitrogen [41]. When multiple 
forms of nitrogen are absorbed concurrently, Euryale ferox exhibit 
a preference for NH4

+-N [42]. The change in NH4
+-N content 

demonstrates that Euryale ferox rely on ammonia nitrogen from 
growth to harvest. The decline in the NH4

+-N content indicates that 
Euryale ferox require ammonia nitrogen throughout their growth. 
Notably, ammonia nitrogen decreased because volatilisation 
became more pronounced only when the pH of the water body 
exceeded 8.0, and the ammonia-to-ammonium ion ratio reached 
1:1 [43]. During the pre-growth period, the pH of the water body 
experienced rapid elevation, surpassing 8.0 during the pre-growth 
period and reaching 8.27 during the peak growth period. This 
increase in pH can contribute to ammonia nitrogen volatilisation. 
During this period, external environmental factors introduced the 
effluents. However, the majority of the external nitrogen existed as 
NO3—N [26], with the NH4

+-N content remaining relatively stable. 
In an aerobic environment, NH4

+-N reacts with dissolved oxygen to 
produce nitrite [44]. With the DO data, the water body experienced 
a DO peak during the Euryale ferox growth period. This peak 
facilitated the reaction with NH4

+-N, thereby maintaining a low 
ammonia nitrogen content in the water body. Subsequently, as the 
Euryale ferox decayed, nutrients from the plant body re-entered the 
water body, leading to an increase in nutrient salt concentrations 
[45] and a subsequent increase in ammonia nitrogen content. This 
was further corroborated by the increase in EC of the water body 
during the decay period. 
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4.2 Analysis of TP and COD removal in water bodies by 
Euryale ferox.
A significant portion of phosphorus in the water body exists in 
the form of insoluble phosphates [46]. The removal of TP requires 
the conversion of insoluble phosphate into organic components. 
Oxygen availability in the root zone facilitates the action of 
phosphorus-colonizing bacteria responsible for phosphorus 
degradation in the effluent [47]. Dissolved oxygen data have 
consistently increased since the establishment of Euryale ferox, 
leading to continuous oxygen release by plants. Consequently, 
TP reduction occurred under the influence of poly phosphorus 
bacteria, which is consistent with the experimental results. During 
the pre-growth period of Euryale ferox, the conditions were 
conducive, with nutrient-rich water and a suitable climate. During 
this period, the collaboration of nitrogen nutrients accelerated TP 
removal by the Euryale ferox. The primary phosphorus uptake by 
Euryale ferox was concentrated in the pre-growth period, which 
is consistent with the findings of the study by [48]. Overall, the 
Euryale ferox exhibited a notably high TP removal rate from the 
water body throughout the experiment, which was in line with 
previously reported results.

CODCr removal by aquatic plants is closely related to microbial 
degradation and the DO [46, 49]. This indicates that anaerobic 
degradation occurs when there are varying DO concentrations in 
water bodies. Anaerobic degradation occurs when the DO levels 
are below 0.20 mg/L. Anoxic degradation occurs when DO range 
from 0.20 to 1.0 mg/L, whereas aerobic degradation dominates 
when DO exceeds 1.0 mg/L [50]. In the initial stages of the 
experiment, Euryale ferox growth was low, resulting in reduced 
microbial activity and relatively low DO concentrations in the 
water body. Consequently, CODCr levels in the water body rapidly 
increased during the initial growth period. However, as the Euryale 
ferox biomass expanded and their root systems developed, the DO 
concentration significantly increased and sufficient oxygen was 
released, thereby providing an optimal environment for microbial 
activity and enhancing their effectiveness. During this period, 
the CODCr levels in the water demonstrated a downward trend 
throughout the growth period, albeit with occasional fluctuations 
attributed to external environmental factors.

4.3 Analysis of the effect of Euryale ferox on DO in the water 
body
DO depletion in water bodies primarily occurs through physical, 
chemical, and biological processes [51]. Under hydrostatic 
conditions, physical consumption is notably slow [51], with 
changes in the DO concentration primarily driven by chemical 
reactions and biological activities within the water body. In the 
initial stage of Euryale ferox growth, the increase in local air and 
water temperatures, substrate decomposition, and Euryale ferox 
growth collectively consumed oxygen from the water, leading 
to a decrease in DO concentration. Throughout the middle 
and late stages of Euryale ferox growth, Euryale ferox released 
oxygen through their respiratory tissues. Throughout this period, 
microorganisms in the water body exhibited enhanced activity, 

leading to oxygen consumption. Despite this microbial activity, 
the DO concentration curve continued to steadily rise, signifying 
robust Euryale ferox growth and increased oxygen release during 
this growth period. The net increase in aquatic plant biomass 
remains a critical factor influencing purification capacity [34]. 
Following the transition into the harvesting period, the Euryale 
ferox growth rates decelerated, resulting in a linear decline in 
water DO levels. The magnitude of this decrease in DO was 
directly correlated with the growth status of aquatic plants, which 
is consistent with previous research findings [52].

5. Conclusion
(1) Native aquatic plants, such as Euryale ferox, exhibit notable 
purification effect on eutrophic rivers, with a preference for 
selecting native species with substantial biomass increase and 
rapid growth for cultivation.
(2) Euryale ferox demonstrated remarkable purification 
effectiveness by absorbing 95.53% to 98.45% of NH4

+-N and 
99.50% to 99.65% of TP from the water body during their growth 
stages.
(3) Although the purification effect of Euryale ferox on TN and 
CODCr in eutrophic water bodies may not be evident, they induced 
significant changes in the water body, including a 11.05% to 
11.61% increase in pH, a 21.12% to 22% increase in EC values, 
and a substantial 3.82 to 21.77-time increase in DO levels.

The results of this study indicated that Euryale ferox, a native 
aquatic plant, can absorb nitrogen and phosphorus nutrients 
from eutrophic water bodies. Moreover, the presence of aquatic 
vegetation improves the nitrogen and phosphorus removal efficacy 
of water bodies, particularly in conjunction with the removal 
of exogenous pollutants [34]. These experimental results offer 
valuable insights into the potential restoration of eutrophic water 
bodies and the application of ecological engineering to rural 
river ecosystems. Prioritization of native aquatic plants with 
high biomass and rapid growth is recommended when selecting 
suitable candidates for ecological restoration [34]. It is imperative 
to acknowledge that the aquatic environment of rural rivers is 
intricate and influenced by certain factors, such as river flow, 
submerged aquatic vegetation, aquatic fauna, and human activities. 
Consequently, further observations and evaluations are required 
for practical implementation.
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