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Abstract
The development of cloud computing has significantly altered how services are built, deployed, and made accessible to 
users outside of the organization. In actuality, the pay-as-you-go model of dispersed IT supported by the cloud comput-
ing paradigm calls for the outsourcing of software services and applications. In this situation, the capacity to ensure 
effective cloud performance management and to facilitate automated scalability become fundamental prerequisites. 
Users of the cloud are becoming more and more interested in a transparent and coherent image of the cloud, where per-
formance is guaranteed in a variety of situations and under a variety of loads. In this essay, we examine the advantages 
of an integrated scalability approach at various cloud stack layers, concentrating on the database and compute infra-
structure layers. In order to achieve this, we offer various performance measurements and a set of rules based on them to 
assess the cloud stack's condition and scale it as needed to maintain stable performance. Then, using a proof-of-concept 
architecture, we empirically investigate three scaling scenarios for cloud performance: database only, computing infra-
structure solely, and the scenario where computing infrastructure and database compete for resources.
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I. Introduction
The preferred method for providing IT services is moving toward 
the cloud [1]. The cloud paradigm offers its users (i.e., end users 
and service providers) a number of benefits, including the ability 
to outsource a portion of their operations to the cloud (for which 
strong IT skills are required), a decrease in the cost of owning, 
operating, and maintaining computational infrastructures, an in-
crease in flexibility, and access to a scalable infrastructure. The 
spread of cloud technologies and solutions, on the other hand, 
leads to the deployment of numerous heterogeneous multi-layer 
cloud stacks [2]. New methods for performance monitoring and 
automatic scaling that are independent of cloud configuration 
and operate at many layers are becoming more and more in de-
mand in this context.

In order to analyze the performance of several technologies of-
fering functionality for a given cloud layer, existing performance 
evaluation and automatic scalability methodologies typically fo-
cus on a single cloud layer at a time [3,4]. As an illustration, 
various NoSQL databases are contrasted to assess their function-
ality and support for scalability in various scenarios [3,5,6]. The 
same holds true when comparing various cloud infrastructures 
(IaaS) [4]. In this way, even when multiple layers of the cloud 
stack compete for the same physical resources, inter-layer syn-
ergy and interference effects are not taken into account. Addi-
tionally, many current solutions presuppose an endless supply 
of resources that scale up on demand without any constraints 

(e.g., [4,7]). But as mentioned in, this is not always the case, 
particularly in situations where there are limited IT resources (as 
in a private cloud) or financial resources (as in a hybrid/public 
cloud) [8]. This situation prevents us from treating each layer 
of the cloud stack as an independent building block; instead, it 
forces us to prioritize which layer to grow first when resources 
are scarce and many levels (such the database and computing 
infrastructure layers) need to scale.

In this article, we address the aforementioned issue and propose 
an integrated approach to cloud scalability that centers on a sce-
nario in which the database and computational infrastructure 
layers are in competition for resources. Our contention is that 
blind scaling is inapplicable to the cloud settings of today, ne-
cessitating the definition of scalability solutions that take into 
account the possibility that the demands of the entire cloud stack 
cannot be met by the resources at hand. First, our method defines 
a set of indicators that can be assessed and quantified using com-
mercial and open-source software, as well as a set of guidelines 
for automatic scaling and performance monitoring that apply to 
both the database and computing infrastructure levels. Then, it is 
applied to three scalability scenarios: database only, computing 
infrastructure solely, and a mix of the two where database and 
computing infrastructure fight for resources. A private cloud ar-
chitecture is used to experimentally examine the three scenarios. 
The rest of this essay is structured as follows. Section II provides 
examples of our reference architecture and motivating scenario. 
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The metrics and guidelines for automatic scalability are present-
ed in Section III. Section IV details the results of our experiment. 
The relevant study is summarized in Section V, and our conclu-
sions are presented in Section VI.

2. Motivating Scenario and Reference Architecture
Our inspiring scenario and reference structure are presented in 
this section.

A) Motivating Scenario
Leading European telecommunications provider Telecom Ita-
lia offers its customers a range of mobile and cloud services. 
The Telecom Italia cloud computing offering known as Nuvola 
Italiana, or the "Italian Cloud," consists of a variety of services 
that assist businesses in the distribution of their applications and 
the implementation of their business processes. One of the most 
demanding needs in this situation is the ability to offer an auton-
omous scalability solution that targets the cloud stack at various 
stages. Since applications typically need resources for service 
execution and delivery as well as resources for database opera-
tions (such as the conventional NoSQL map- reduce operations), 
many of the provisioned services, in particular, require scalabili-
ty at least of the computing infrastructure and database [9].

Here, we focus on data-intensive applications (such as data-in-
tensive websites developed in Ruby and deployed on the cloud1), 
which demand on two distinct pools of virtual machines because 
business logic and data layers are separated (VMs). First, we 
specifically concentrate on conventional cases where the busi-
ness logic (i.e., computational infrastructure) and the data (i.e., 
database) layers are scaled independently depending on the 
loads of requests. Then, we concentrate on a scenario where the 
two levels compete with one another for resources. The research 
presented in this paper tries to address the following scalability 
requirements.

• Elasticity Scaling
The pay-as-you-go paradigm must be taken into consideration 
when discussing cloud scalability, and elastic approaches that 
scale up, out, and down based on the real load must also be sup-
ported.

• Reactivity vs Proactivity
Scalability must accommodate both proactive and reactive strat-
egies. By using appropriate metrics (such as CPU and memo-
ry use), a reactive method to scalability assesses the status and 
configuration of the cloud and scales as necessary in accordance 
with rules concerning those metrics. In order to decrease the 
likelihood of situations when the stack is overloaded or under-
loaded and a reactive approach is required, a proactive method 
monitors the status and configuration of the cloud and preemp-
tively scales.

• Multi-Layer
Clouds are inherently multi-layered and diverse. A cloud scal-
ability strategy must address the heterogeneity of the cloud and 
support various methods that enable scaling at various layers of 
the cloud architecture.

• Resource Limitations
A scalable infrastructure with boundless resources that are ac-
cessible on demand is frequently how the cloud is viewed. This 
isn't always the case, though [8], and as a result, a scalability 
strategy that optimally assigns/revokes resources when and 
when needed is required.

B) Typical Architecture
The layers in our reference architecture's cloud stack are as 
follows: the management of infrastructure resources (such as 
compute, network, and storage) through the deployment of com-
ponents providing IaaS functionalities; the management of ap-
plication lifecycle and scaling rules through the deployment of 
components providing PaaS functionalities; and the implemen-
tation and management of databases through the provision of da-
tabase infrastructure. Our approach is based on Telecom Italia's 
cloud offering, which covers the following group of products.

• OpenStack
IaaS open source software that enables management and mon-
itoring of infrastructure resources It establishes infrastructure 
templates for VM provisioning, controls network and storage 
operations, and provides a number of APIs that expose moni-
tored data to the architecture's higher layers.

• Cloudify
A PaaS system that is open source and allows management of 
the application lifetime. In order to offer scalability at the in-
frastructure layer, it implements a collection of recipes that are 
mapped on OpenStack templates. It offers a list of supported ap-
plication architectures, supports metrics definition, and scaling 
rules (i.e., Apache, Tomcat, and MongoDB in our scenario).

• MongoDB
A document-oriented, NoSQL database with no schema. It is 
made up of three basic parts: a router service that receives and 
distributes requests to shards; shard servers that store data; con-
figuration servers that store database configurations.

• KVM
It is the hypervisor that OpenStack uses to operate within the 
computing node.

We observe that OpenStack has been set up in a multi-node con-
figuration, with three virtual machines serving as the controller, 
network, and computing nodes, respectively. We should also 
mention that VMWare ESXi 5.5 is the hypervisor used to deploy 
the entire system.

II- Performance Metrics and Scalability Rules
A strategy for automated scaling must first define a set of met-
rics tracking the condition of various cloud stack levels (Section 
III-A). Following that, a set of rules that can support automatic 
scaling at various layers can be implemented using these metrics 
(Section III-B). Database layers and computer infrastructure are 
the main topics of this section.
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A. Performance Indicators
Performance metrics are numerical indicators of a certain cloud 
stack's health and can be tracked to inform various scalability 
strategies according to the scenario under consideration. We 
make a distinction between reactive and aggressive scaling. 
First, metrics for reactive scalability provide a quick snapshot 
of the current
state of a particular computing infrastructure and/or database, 
enabling prompt responses to situations where an event may 
have an impact on the performance and availability of a certain 
configuration. We take into account the subsequent indicators 
for reactive scalability:
• CPU Load (CL): It gauges the actual CPU usage of a group of 
virtual machines that are assigned to a system. For instance, high 
levels of CL can indicate that a system is having trouble address-
ing a certain set of requests.
Memory Occupancy (MO) is a measurement of how much 
memory a pool of virtual machines given to a system actually 
uses. For instance, high values of MO can indicate that a system 
is having trouble handling situations when applications need to 
manage large amounts of data.
• Network Utilization (NU): This metric assesses how well net-
work bandwidth is being used. High NU values, for instance, 
may indicate situations where the distribution of data in a data-
base is not ideal, necessitating numerous data exchanges (such 
as for map-reduce processes), or they may indicate the need to 
reallocate resources from outside the system to handle a spike 
in demand.
• Host Availability (HA): This measure determines how many 
VMs are available and reachable via the network.
• Response Time (RT): the period of time between the dispatch 
of a request and the client's receipt of the appropriate response.
• Execution Time (ET): This metric gauges how long it takes for 
a service to respond to a request after receiving it.
• Request Ratio (RR): This metric compares the proportion of 
requests that are directed at various cloud stack layers.
• 
Metrics for proactive scalability must also be established. These 
metrics analyze the performance trend and system evolution 
over a predetermined time window with a size of t seconds in 
order to predict and deduce potential demands for extra resourc-
es. Preemptive scaling minimizes potential service performance 
degradations and enables long-term maintenance of a constant 
performance level. If recurring patterns of computing infrastruc-
ture/database usage are present, these metrics are more useful. 
For proactive scalability, we take the following metrics into ac-
count:
• Request Rate (ReqR): This metric counts how many requests 
have come in within the specified time period. It can be used 
to recognize a specific pattern and subsequently estimate future 
resource scalability needs.
• Request Faults (RF): This metric evaluates the proportion of 
requests that were not fulfilled within a given time frame, allow-
ing for the detection of systemic issues.
• Request Type (ReqT): It calculates the frequency of each type 
of request over a specified time period. As an illustration, we 
can keep track of the rate of MongoDB queries per type (such as 
read, insert, and update) and respond appropriately. The measure 

Value can also be affected by the complexity of incoming re-
quests, which can be assessed using the service description [10] 
or professional recommendations.
• CPU Load Pattern (CLT): It tracks the trend of CPU usage 
throughout the selected time period. It can be used to monitor the 
system's evolution and respond appropriately.
Similar to CLT, but for memory occupancy, is the Memory Oc-
cupancy Trend (MOT).
• Network Utilization Trend (NUT): similar to CLT but for net-
work usage

The state of the database layer and the computing infrastructure 
can both be assessed using the aforementioned metrics. Addi-
tionally, they can be combined to provide more in-depth infor-
mation, such as the current CPU Load with a rising or falling 
trend.

B) Scalability Rules
To track the performance of cloud-based systems and choose the 
best strategy for automated scaling, we created an architecture 
based on the metrics in Section III-A. When specific events are de-
tected that may have an impact on the system's performance and 
availability, our monitoring infrastructure will set off one or more 
scaling rules. These rules simulate situations in which a single met-
ric (or a combination of them) surpasses predetermined thresholds 
and causes the execution of specified scalability actions. To extract 
data from the underlying system and calculate performance met-
rics, our monitoring infrastructure I builds on specific APIs, in this 
case those provided by OpenStack and MongoDB through JMX, 
and ii) is based on Cloudify. Scalability rules are implemented as 
Cloudify recipes, which manage the scale out and scale down of 
the application.

We should point out that scaling up is not an option here because it 
is less successful than a scale out strategy [8].

Table I shows a set of rules that, when certain high/low thresholds 
are crossed, initiate scaling actions at the infrastructure and database 
layers by monitoring and evaluating performance metrics. Expert 
users can define thresholds based on prior tests and the domain un-
der consideration. Table I lists the metrics to be combined for each 
rule (Formula) and describes the scalability steps (Action). We ob-
serve that a single metric's value is normalized from 0 to 1 using 
either the highest value it is capable of reaching or the highest value 
already recorded.

Details are provided in Table I(a), where metrics are used to assess 
the state of resources that are either assigned to the database lay-
er (poolI) or the computing infrastructure layer (poolI) (poolDB). 
When the system encounters a major change in infrastructure per-
formance, or, to put it another way, when pertinent formulas assume 
values above/below the high/low thresholds, an infrastructure-level 
rule is activated. Similar to this, when pertinent formulas indicate 
the requirement for scaling database resources, a database- level 
rule is activated for the database layer. Table I(b), instead, presents 
composite rules that monitor metrics referred to both poolI and 
poolDB. The table's scalability rules can then be applied as Cloudi-
fy recipes (see for example the excerpt in Figure 1).
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Rule Formula Action
1 CLI Status of poolI in terms of CLI . High (Low) values suggest to increase (decrease)

poolI.
2 CLDB Status of poolDB in terms of CLDB. High (Low) values suggest to increase

(decrease) poolDB

3 CLI *ET Status of poolI in terms of CL and ET . High values indicate an increasing of exe-
cution times due to critical infrastructure operations, suggesting to increase poolI .

4 CLDB*ET Status of poolDB in terms of CL and ET . High values indicate an increasing of ex-
ecution times due to critical database computation, suggesting to increase poolDB.

5 HAI /[HAI +(CLI *ReqR)] Status of poolI in terms of no. of available VMs w.r.t. the status of the system and 
the actual request trend.
Low values indicate that the system needs an increase in resources of poolI .

6 HADB/[HADB+(CLDB*R eqR)] Status of poolDB in terms of no. of available VMs w.r.t. the status of the system and 
the actual request trend.
Low values indicate that the system needs an increase in resources of poolDB.

(a) Basic Rules

Rule Formula Action
7 CLI /(CLI +CLDB) Contribution of CLI w.r.t. the total CL. The rule is triggered only if CLI is greater 

than a threshold level.
High values suggest to increase poolI .

8 CLDB/(CLDB+CLI  ) Contribution of CLDB w.r.t. the total CL. The rule is triggered only if CLDB is greater 
than a threshold level.
High values suggest to increase poolDB

(b) Composite Rules
There is a complexity to take into account when many recipes 
apply, request more resources, and must be processed simulta-
neously. These recipes may insist on various cloud layers. As 
was mentioned in Section II, there may be situations in which 
all triggered rules are competing for the same set of resources 
and cannot be implemented simultaneously owing to resource 
and/or financial limits. In this case, we suggest augmenting our 
scalability solution with a priority-based strategy that gives each 
rule a priority. If further rules demanding a scale out activity are 
present, they are applied in accordance with the priority until no 
more resources are available or all rules have been applied. It is 
significant to highlight that Cloudify's monitoring infrastructure 
must be expanded to handle this situation because the existing 
implementation does not provide the selective execution of dis-
tinct recipes based on priority. We experimentally evaluated a 

situation in Section IV-D where Rule 1 and Rule 2 are both trig-
gered and require an additional VM to be assigned to poolI and 
poolDB, but there is only one VM that is accessible. This anal-
ysis was done to demonstrate the possibilities of our technique. 
Our tests demonstrate which option provides the greatest perfor-
mance advantages to establish Rule 1's precedence over Rule 2.

Finally, Figure 1 depicts a Cloudify recipe that implements Rule 
1 from Table I. CLI is first assessed using script statistics. a 
CLInfr that calculates the value of relevant data after retrieval. If 
the ratio surpasses the high threshold, the system then adds one 
VM outfitted with a Tomcat instance to poolI (instancesIncrease) 
(0.75). Conversely, if the ratio falls below the low threshold, it 
removes one instance (decreaseInstance) (0.25). Every 20 sec-
onds, CLI is assessed (movingTimeRangeInSeconds).

s e r v i c e {

name ” tomcat ”
. . .

e l a s t i c t rue numInstances 1
minAllowedInstances 1

maxAllowedInstances 2

scaleCooldownInSeconds 20

samplingPeriodInSeconds 1 s c a l i n g R u l e s ( [
s c a l i n g R u l e {
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s e r v i c e S t a t i s t i c s { m e t r i c ”RULE 1”
movingTimeRangeInSeconds 20

s t a t i s t i c s S t a t i s t i c s . CLInfr

}

highThreshold { value 0.75
i n s t a n c e s I n c r e a s e 1

}

lowThreshold { value 0.25
i n s t a n c e s D e c r e a s e 1

}

}

] )

Figure 1: An example of Cloudify recipe for Rule 1 in Table I.

3. Experimental Evaluation
To test the viability of our strategy, we created the following 
proof-of-concept private cloud architecture, focusing solely on 
reactive scalability. First, we studied a case in which the data-
base (Section IV-C) or computational infrastructure (Section 
IV-B) requires greater resources. Then, we looked at a variety 
of the prior scenarios in which the database and computational 
infrastructure both had to scale up and compete for scarce re-
sources (Section IV-D). We made the assumption that data-in-
tensive apps would use separate pools of virtual machines for 
infrastructure and databases.

A) Experimental setting
Two physical servers were used in a cluster for testing. The first 
server (Server 1) is a Dell Precision T1650 with an Intel Xeon 
Quad Core 2.6 GHz processor, 32 GB of RAM, a 1 TB hard 
drive spinning at 7200 RPM, and two 1 Gb/s Ethernet NICs. The 
second server (Server 2) is an Acer Veriton M6620G with an 
Intel Core- i7 3770 3.40 GHz processor, 16 GB of RAM, a 1 TB 
hard drive spinning at 7200 R On two different pools of virtual 
machines, one for the database and the other for the computing 
infrastructure, the components of our reference architecture (see 
Section II-B) have been installed and set up as follows.

Regarding the computing infrastructure, OpenStack has been set 
up and tested using three virtual machines (VMs): two of the 
machines house the control and network nodes and are deployed 
on Server 2, while the third computer houses the compute node 
and is installed on Server 1. The compute node controls a col-
lection of virtual machines (VMs), each of which has a Tomcat 
instance and 1 vCPU and 1GB of RAM. Regarding the database, 
we considered MongoDB (in a multi-shard configuration) made 
up of three component types (i.e., shard servers, configuration 
servers, and router servers), each of which was installed on a 

virtual machine (VM) located on Server 1 and furnished with a 
single virtual CPU and one gigabyte of RAM.

These hybrid MongoDB configurations are typical of Ru-
by-based data-intensive services and websites. We installed 
Cloudify and connected its shell to OpenStack for IaaS admin-
istration to finish our proof-of- concept cloud stack. Then, using 
Cloudify, we made a virtual machine (VM) for managing Open-
Stack and one for every Tomcat server and MongoDB shard.

Then, we recreated a real-world scenario with multiple clients 
making requests simultaneously (i.e., threads). Using Apache 
JMeter, an open-source functional testing solution for services, 
the demand on the computing infrastructure has been generated 
and supplied to two different web apps, deployed on the Tom-
cat server. The first program is a straightforward hello world 
(hw). Following the Gregory-Leibniz series, the second applica-
tion (hw) expands hw to calculate the value with a precision of 
70,000 digits; hw allows us to primarily stress the CPU of our 
physical infrastructure. Using the Yahoo! Cloud Serving Bench-
mark (YCSB) (https://github.com/brianfrankcooper/YCSB/
wiki/), a framework and a set of workloads frequently used 
for evaluating and benchmarking the performance of various 
NoSQL databases, the load on the database has been generated 
and sent to the MongoDB cluster connected to our applications. 
In each experiment, the average Transactions Per Second were 
measured (TPS).

B) Computing Infrastructure Scaling
We evaluated our strategy under various load fluctuations to de-
termine whether performance would increase as the computing 
infrastructure scaled out (i.e., a single VM is added to poolI ). 
We used the recipe implementing Rule 1 (Figure 1) to manage 
infrastructure scalability when either hw or hw is taken into ac-
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count in order to keep things simple without sacrificing general-
ity. Each test case: I took into account 20 active clients (threads) 
sending requests; ii) simulated different loads, varying the re-
quest per second (rps) in 500rps, 1000rps, 1500rps, 2000rps, 
2500rps, 3000rps, 3500rps, 4000rps (3500rps and 4000rps for 
hw only), and iii) produced a total number of 100,000 requests.

Figure 2 illustrates the changes in TPS depending on whether hw 
or hw is taken into account. In both cases, we started with a fun-
damental architecture—a single system running Tomcat—and 
scaled it up to four virtual machines. Figure 2(a) demonstrates 
that when 4 VMs are deployed with application hardware, the 
system can handle a maximum load of 1896 TPS for 4000rps. 
With compared to configurations with 1 VM, 2 VMs, and 3 VMs, 

respectively, we saw improvements of 39.5%, 28.7%, and 7.1% 
in this case. However, a configuration with 1 or 2 VMs yields the 
best performance for situations with 1500, 2000, and 2500 RPS.

This is mostly caused by the complexity added by managing 
several VMs and by the properties of hardware that responds 
after very little computation. Figure 2(b) demonstrates that when 
4 VMs are deployed with application hardware, the system can 
handle a maximum load of 1650 TPS for 2000rps. With com-
pared to configurations with 1 VM, 2 VMs, and 3 VMs, respec-
tively, we were able to boost performance in this case by 53.6%, 
27.2%, and 12.2%, respectively, following a similar pattern to 
the one seen for the hardware.

Figure 2: Performance evaluation (TPS)

Additionally, we observe that the findings demonstrate a more 
pronounced correlation between the number of VMs and the 
supported TPS due to the fact that hardware needs more work on 

the Tomcat server to compute. For example, the system responds 
to (nearly) every request received up to 1500RPS for 3 and 4 
VMs, 1000RPS for 2 VMs, and 500RPS for 1 VM.

Figure 3: Performance analysis after database pool scale up.
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C) Database Scaling
We examined our strategy under various loads to evaluate per-
formance gains as the database layer scales out. We used a single 
recipe (implementing Rule 2 in Table I), which adds a VM to 
poolDB when a decline in performance is noticed, same to in-
frastructure scaling. Each test case generated 100,000 requests 
while simulating various loads with rps of 50, 100, 200, and 
400. Three scenarios with different database request types were 
examined for each load: 5% read, 95% update; 95% read, 50% 
update; and 50% read, 50% update (RU0595). In each case, we 
expanded up to 4 shares from the initial basic MongoDB config-
uration with 1 shard (i.e., 1 VM) (i.e., 4 VMs) [26].

Figure 3 depicts the changes in TPS that occur when poolDB 
scales out in situations I through iii). First, we should point out 
that poolDB can support more TPS the more VMs are provided 
for it. The database was able to handle a load of 50 rps in all cas-
es, we then note. Additionally, in scenario I as shown in Figure 
3(a), the system could handle a load of no more than 90 TPS 
when configured with just two VMs, and this number increased 
to 131 TPS when four VMs were used. In case ii), as depicted 
in Figure 3, (b), In the configuration with two VMs, the system 
could handle a maximum load of 212 TPS; this number rose to 
399 TPS with four VMs. In this instance, when 400 rps are put 
into the database, MongoDB is able to handle all the queries 
thanks to 4 VMs. The outcomes of cases I and ii) demonstrate 
MongoDB's capacity to significantly boost performance when 
read operations outnumber update operations. In scenario iii), 
where we pressured the DB infrastructure sending primarily up-
date queries, this point is made more obvious. MongoDB could 
handle a maximum of 79 TPS with just 2 VMs and 121 TPS with 
4 VMs, as shown in Figure 3(c). In conclusion, we observed 
increases of 46% in scenario I, 88% in scenario II, and 53% in 
scenario III when we increased our poolDB from 2 VMs to 4 
VMs [26].

D) Competitive Scaling
We took into account a situation where poolI and poolDB need-
ed to grow out simultaneously but had a finite amount of re-
sources. To do this, the following three web applications were 
deployed: I) the hardware used in earlier experiments; II) an ex-
tension of the hardware called hw,r that makes it possible to send 
read requests to MongoDB for each request received; and III) 
an extension of the hardware called hw,u that makes it possible 

to send update requests to MongoDB for each request received.
Then, under various rates of rps generated as follows, we eval-
uated the performance benefits when the extra VM is either as-
signed to poolI or poolDB. A rate rd=•ri of rps is generated and 
sent to hw,r (95%) and hw,u (5%), given a rate ri of rps deliv-
ered to hw. In particular, we first altered rd in 100rps and 400rps 
while fixing ri to 1000rps. Then, we varied ri between 1500, 
2000, and 2500 rps while fixing rd to 200 rps.

Figure 4 illustrates the rise in TPS that results from adding a 
single VM to poolI or poolDB after choosing the appropriate 
ri, rd, and corresponding. The graph takes into account the 
combined TPS of the three services and exhibits a noticeable 
performance improvement in both scalability scenarios, with a 
greater improvement when the VM is added to poolI. Particular-
ly, the system demonstrated good responsiveness and a consis-
tent upward trend as demands on the computing infrastructure 
rose. Generally speaking, these experiments can be utilized to 
create a best practice strategy for a competitive situation with 
limited resources, allowing scaling in an ideal manner based on 
the environment under consideration (see Section IV-E for more 
details).

E) Discussion
The first outcome of our tests is one that would seem to be obvi-
ous: the more resources devoted to a single layer, the better the 
performance. This incremental behavior is noticeable at both the 
infrastructure and database layers, where the best TPS perfor-
mance is frequently attained by deploying 4 virtual machines, 
each of which installs a Tomcat server or a MongoDB shard, 
as appropriate. The database scalability test results also demon-
strate MongoDB's capacity to perform better when read opera-
tions predominate over update operations. Operations outnum-
ber updates in terms of importance. Additionally, based on the 
earlier findings, it can be assumed that situations in which the 
infrastructure and database layers both demand on the same pool 
of resources will result in the same performance improvement. 
Here, we suppose that as the design scales out, a single VM will 
be added to the pool of resources, containing the resources of 
one VM with a Tomcat server and one VM with a MongoDB 
shard. Furthermore, we note that the best performance boost 
is seen when a competitive scaling is involved. higher priority 
should be given to the relevant rules when the VM is added to 
pool I.
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Figure 4; Competitive scaling performance.

To sum up, we first note that neither our solution's primary goal 
was to increase the architecture's overall performance nor was it 
designed to offer yet another performance assessment in a cloud 
environment. Instead, we wanted to research how scalability af-
fected different cloud stack levels in a competitive environment 
with limited resources. Our findings may therefore be viewed as 
a practice run that will enable the development of a performance 
lookup table that will direct the operations of a probe that imple-
ments a scalability manager. The probe can then employ an ideal 
scaling method that takes into account the unique characteristics 
of each user's environment (e.g., application types).

This is based on how the user's applications are distributed in 
relation to the request load. The probe can also boost the trans-
parency of the cloud by enabling the cloud provider to define 
precise and efficient scalability techniques while also providing 
a clear picture of how a scalability process is controlled by the 
cloud provider and tailored to the needs of the user.

4. Related Work
Different layers can be established for scalability approaches for 
distributed systems and environments, which often rely on met-
ric-based regulations [11,12].

Traditional methods of scalability and elasticity compare the per-
formance of various technologies that provide functionality for 
each cloud layer, taking into account only one cloud layer and 
one scenario at a time [3], [4,13]. For instance, several strategies 
have concentrated on the scalability of IaaS, PaaS, and SaaS. 
Salah and Boutaba offer a model for evaluating elastic cloud ap-
plications by predicting service response time, whereas Iosup et 
al. analyze the performance of cloud computing services for sci-
entific computing workloads [14,15]. Espadas et al [16]. 'S strat-
egy based on resource allocation for SaaS to establish a cost- 
effective scalable environment offers a systematic measurement 
for under and over provisioning of cloud resources. Other works 
have analyzed the process of adaptive resource expansion and 
contraction, provided strategies for their performance evalua-
tion, and controlled the flexibility of NoSQL databases and stor-

age [3,5, 6,17,18]. Copil et al. provide a multi-layer solution for 
the management of elasticity and scalability on the cloud, which 
is very similar to the work in this paper [19]. While we focus 
on the issue of competing requests for resources, they define a 
mechanism for managing conflicting elasticity requirements.

Finally, numerous concerns have been discussed in literature 
in relation to cloud performance optimization. The issue of re-
source and data allocation has been the focus of some methodol-
ogies [20,21]. Yi et al [21] 's alternative perspective on the SaaS 
scalability issue includes a heuristic that, given a fixed number 
of nodes, distributes tenants so as to maximize the sum of their 
numbers. DejaVu is a framework presented by Vasic et al. [20] 
that enhances and accelerates resource allocation in virtualized 
environments and can adjust to changing workloads [20]. The 
capacity of a cloud framework to adapt to various circumstances 
has also been intensively studied in the literature, with measure-
ments and benchmarks defined [22-24]. Additionally, Ali-Eldin 
et al. describe an adaptive controller for cloud infrastructures 
allowing horizontal elasticity that is both proactive and reactive 
[25].

5. Conclusions
One significant possibility provided by cloud platforms is in-
tegrated, multi-layer scalability. In this article, we discussed a 
method for automatic scaling in a multi-layer scenario where 
various cloud stack levels compete for resources that are inher-
ently scarce. In particular, the suggested solution takes into ac-
count scalability at the database and computing infrastructure 
layers and is based on performance indicators and scalability 
criteria. In a data-intensive environment where the database and 
computational infrastructure layers each have a separate pool of 
virtual machines (VMs) and may compete for a finite number of 
resources, we also experimentally examined scalability criteria.
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