
 Volume 6 | Issue 8 | 139

Citation: Dashti, S. E., Abdulzahra, A. R. (2023). Examine the Advantages of An Integrated Scalability Approach at Various Cloud
Stack Layers. Adv Bioeng Biomed Sci Res 6(8), 139-147.

Examine the Advantages of An Integrated Scalability Approach at Various
Cloud Stack Layers

*Corresponding Author
SeyedEbrahim Dashti, Department of Computer Engineering, Jahrom
Branch, Islamic Azad University

Submitted: 2023, April 12; Accepted: 2023, May 20; Published: 2023, Aug 31

Advances in Bioengineering & Biomedical Science Research

Adv Bioeng Biomed Sci Res, 2023

ISSN: 2640-4133

Seyed Ebrahim Dashti1* and Ahmed Rahman Abdulzahra2

1Department of Computer Engineering, Jahrom
Branch, Islamic Azad University

2Department of Computer Engineering, shiraz Branch,
Islamic Azad University

Abstract
The development of cloud computing has significantly altered how services are built, deployed, and made accessible to
users outside of the organization. In actuality, the pay-as-you-go model of dispersed IT supported by the cloud comput-
ing paradigm calls for the outsourcing of software services and applications. In this situation, the capacity to ensure
effective cloud performance management and to facilitate automated scalability become fundamental prerequisites.
Users of the cloud are becoming more and more interested in a transparent and coherent image of the cloud, where per-
formance is guaranteed in a variety of situations and under a variety of loads. In this essay, we examine the advantages
of an integrated scalability approach at various cloud stack layers, concentrating on the database and compute infra-
structure layers. In order to achieve this, we offer various performance measurements and a set of rules based on them to
assess the cloud stack's condition and scale it as needed to maintain stable performance. Then, using a proof-of-concept
architecture, we empirically investigate three scaling scenarios for cloud performance: database only, computing infra-
structure solely, and the scenario where computing infrastructure and database compete for resources.

Review Article

Keywords: Scalability, Cloud, Stack.

I. Introduction
The preferred method for providing IT services is moving toward
the cloud [1]. The cloud paradigm offers its users (i.e., end users
and service providers) a number of benefits, including the ability
to outsource a portion of their operations to the cloud (for which
strong IT skills are required), a decrease in the cost of owning,
operating, and maintaining computational infrastructures, an in-
crease in flexibility, and access to a scalable infrastructure. The
spread of cloud technologies and solutions, on the other hand,
leads to the deployment of numerous heterogeneous multi-layer
cloud stacks [2]. New methods for performance monitoring and
automatic scaling that are independent of cloud configuration
and operate at many layers are becoming more and more in de-
mand in this context.

In order to analyze the performance of several technologies of-
fering functionality for a given cloud layer, existing performance
evaluation and automatic scalability methodologies typically fo-
cus on a single cloud layer at a time [3,4]. As an illustration,
various NoSQL databases are contrasted to assess their function-
ality and support for scalability in various scenarios [3,5,6]. The
same holds true when comparing various cloud infrastructures
(IaaS) [4]. In this way, even when multiple layers of the cloud
stack compete for the same physical resources, inter-layer syn-
ergy and interference effects are not taken into account. Addi-
tionally, many current solutions presuppose an endless supply
of resources that scale up on demand without any constraints

(e.g., [4,7]). But as mentioned in, this is not always the case,
particularly in situations where there are limited IT resources (as
in a private cloud) or financial resources (as in a hybrid/public
cloud) [8]. This situation prevents us from treating each layer
of the cloud stack as an independent building block; instead, it
forces us to prioritize which layer to grow first when resources
are scarce and many levels (such the database and computing
infrastructure layers) need to scale.

In this article, we address the aforementioned issue and propose
an integrated approach to cloud scalability that centers on a sce-
nario in which the database and computational infrastructure
layers are in competition for resources. Our contention is that
blind scaling is inapplicable to the cloud settings of today, ne-
cessitating the definition of scalability solutions that take into
account the possibility that the demands of the entire cloud stack
cannot be met by the resources at hand. First, our method defines
a set of indicators that can be assessed and quantified using com-
mercial and open-source software, as well as a set of guidelines
for automatic scaling and performance monitoring that apply to
both the database and computing infrastructure levels. Then, it is
applied to three scalability scenarios: database only, computing
infrastructure solely, and a mix of the two where database and
computing infrastructure fight for resources. A private cloud ar-
chitecture is used to experimentally examine the three scenarios.
The rest of this essay is structured as follows. Section II provides
examples of our reference architecture and motivating scenario.

Volume 6 | Issue 8 | 140Adv Bioeng Biomed Sci Res, 2023

The metrics and guidelines for automatic scalability are present-
ed in Section III. Section IV details the results of our experiment.
The relevant study is summarized in Section V, and our conclu-
sions are presented in Section VI.

2. Motivating Scenario and Reference Architecture
Our inspiring scenario and reference structure are presented in
this section.

A) Motivating Scenario
Leading European telecommunications provider Telecom Ita-
lia offers its customers a range of mobile and cloud services.
The Telecom Italia cloud computing offering known as Nuvola
Italiana, or the "Italian Cloud," consists of a variety of services
that assist businesses in the distribution of their applications and
the implementation of their business processes. One of the most
demanding needs in this situation is the ability to offer an auton-
omous scalability solution that targets the cloud stack at various
stages. Since applications typically need resources for service
execution and delivery as well as resources for database opera-
tions (such as the conventional NoSQL map- reduce operations),
many of the provisioned services, in particular, require scalabili-
ty at least of the computing infrastructure and database [9].

Here, we focus on data-intensive applications (such as data-in-
tensive websites developed in Ruby and deployed on the cloud1),
which demand on two distinct pools of virtual machines because
business logic and data layers are separated (VMs). First, we
specifically concentrate on conventional cases where the busi-
ness logic (i.e., computational infrastructure) and the data (i.e.,
database) layers are scaled independently depending on the
loads of requests. Then, we concentrate on a scenario where the
two levels compete with one another for resources. The research
presented in this paper tries to address the following scalability
requirements.

• Elasticity Scaling
The pay-as-you-go paradigm must be taken into consideration
when discussing cloud scalability, and elastic approaches that
scale up, out, and down based on the real load must also be sup-
ported.

• Reactivity vs Proactivity
Scalability must accommodate both proactive and reactive strat-
egies. By using appropriate metrics (such as CPU and memo-
ry use), a reactive method to scalability assesses the status and
configuration of the cloud and scales as necessary in accordance
with rules concerning those metrics. In order to decrease the
likelihood of situations when the stack is overloaded or under-
loaded and a reactive approach is required, a proactive method
monitors the status and configuration of the cloud and preemp-
tively scales.

• Multi-Layer
Clouds are inherently multi-layered and diverse. A cloud scal-
ability strategy must address the heterogeneity of the cloud and
support various methods that enable scaling at various layers of
the cloud architecture.

• Resource Limitations
A scalable infrastructure with boundless resources that are ac-
cessible on demand is frequently how the cloud is viewed. This
isn't always the case, though [8], and as a result, a scalability
strategy that optimally assigns/revokes resources when and
when needed is required.

B) Typical Architecture
The layers in our reference architecture's cloud stack are as
follows: the management of infrastructure resources (such as
compute, network, and storage) through the deployment of com-
ponents providing IaaS functionalities; the management of ap-
plication lifecycle and scaling rules through the deployment of
components providing PaaS functionalities; and the implemen-
tation and management of databases through the provision of da-
tabase infrastructure. Our approach is based on Telecom Italia's
cloud offering, which covers the following group of products.

• OpenStack
IaaS open source software that enables management and mon-
itoring of infrastructure resources It establishes infrastructure
templates for VM provisioning, controls network and storage
operations, and provides a number of APIs that expose moni-
tored data to the architecture's higher layers.

• Cloudify
A PaaS system that is open source and allows management of
the application lifetime. In order to offer scalability at the in-
frastructure layer, it implements a collection of recipes that are
mapped on OpenStack templates. It offers a list of supported ap-
plication architectures, supports metrics definition, and scaling
rules (i.e., Apache, Tomcat, and MongoDB in our scenario).

• MongoDB
A document-oriented, NoSQL database with no schema. It is
made up of three basic parts: a router service that receives and
distributes requests to shards; shard servers that store data; con-
figuration servers that store database configurations.

• KVM
It is the hypervisor that OpenStack uses to operate within the
computing node.

We observe that OpenStack has been set up in a multi-node con-
figuration, with three virtual machines serving as the controller,
network, and computing nodes, respectively. We should also
mention that VMWare ESXi 5.5 is the hypervisor used to deploy
the entire system.

II- Performance Metrics and Scalability Rules
A strategy for automated scaling must first define a set of met-
rics tracking the condition of various cloud stack levels (Section
III-A). Following that, a set of rules that can support automatic
scaling at various layers can be implemented using these metrics
(Section III-B). Database layers and computer infrastructure are
the main topics of this section.

Volume 6 | Issue 8 | 141Adv Bioeng Biomed Sci Res, 2023

A. Performance Indicators
Performance metrics are numerical indicators of a certain cloud
stack's health and can be tracked to inform various scalability
strategies according to the scenario under consideration. We
make a distinction between reactive and aggressive scaling.
First, metrics for reactive scalability provide a quick snapshot
of the current
state of a particular computing infrastructure and/or database,
enabling prompt responses to situations where an event may
have an impact on the performance and availability of a certain
configuration. We take into account the subsequent indicators
for reactive scalability:
• CPU Load (CL): It gauges the actual CPU usage of a group of
virtual machines that are assigned to a system. For instance, high
levels of CL can indicate that a system is having trouble address-
ing a certain set of requests.
Memory Occupancy (MO) is a measurement of how much
memory a pool of virtual machines given to a system actually
uses. For instance, high values of MO can indicate that a system
is having trouble handling situations when applications need to
manage large amounts of data.
• Network Utilization (NU): This metric assesses how well net-
work bandwidth is being used. High NU values, for instance,
may indicate situations where the distribution of data in a data-
base is not ideal, necessitating numerous data exchanges (such
as for map-reduce processes), or they may indicate the need to
reallocate resources from outside the system to handle a spike
in demand.
• Host Availability (HA): This measure determines how many
VMs are available and reachable via the network.
• Response Time (RT): the period of time between the dispatch
of a request and the client's receipt of the appropriate response.
• Execution Time (ET): This metric gauges how long it takes for
a service to respond to a request after receiving it.
• Request Ratio (RR): This metric compares the proportion of
requests that are directed at various cloud stack layers.
•
Metrics for proactive scalability must also be established. These
metrics analyze the performance trend and system evolution
over a predetermined time window with a size of t seconds in
order to predict and deduce potential demands for extra resourc-
es. Preemptive scaling minimizes potential service performance
degradations and enables long-term maintenance of a constant
performance level. If recurring patterns of computing infrastruc-
ture/database usage are present, these metrics are more useful.
For proactive scalability, we take the following metrics into ac-
count:
• Request Rate (ReqR): This metric counts how many requests
have come in within the specified time period. It can be used
to recognize a specific pattern and subsequently estimate future
resource scalability needs.
• Request Faults (RF): This metric evaluates the proportion of
requests that were not fulfilled within a given time frame, allow-
ing for the detection of systemic issues.
• Request Type (ReqT): It calculates the frequency of each type
of request over a specified time period. As an illustration, we
can keep track of the rate of MongoDB queries per type (such as
read, insert, and update) and respond appropriately. The measure

Value can also be affected by the complexity of incoming re-
quests, which can be assessed using the service description [10]
or professional recommendations.
• CPU Load Pattern (CLT): It tracks the trend of CPU usage
throughout the selected time period. It can be used to monitor the
system's evolution and respond appropriately.
Similar to CLT, but for memory occupancy, is the Memory Oc-
cupancy Trend (MOT).
• Network Utilization Trend (NUT): similar to CLT but for net-
work usage

The state of the database layer and the computing infrastructure
can both be assessed using the aforementioned metrics. Addi-
tionally, they can be combined to provide more in-depth infor-
mation, such as the current CPU Load with a rising or falling
trend.

B) Scalability Rules
To track the performance of cloud-based systems and choose the
best strategy for automated scaling, we created an architecture
based on the metrics in Section III-A. When specific events are de-
tected that may have an impact on the system's performance and
availability, our monitoring infrastructure will set off one or more
scaling rules. These rules simulate situations in which a single met-
ric (or a combination of them) surpasses predetermined thresholds
and causes the execution of specified scalability actions. To extract
data from the underlying system and calculate performance met-
rics, our monitoring infrastructure I builds on specific APIs, in this
case those provided by OpenStack and MongoDB through JMX,
and ii) is based on Cloudify. Scalability rules are implemented as
Cloudify recipes, which manage the scale out and scale down of
the application.

We should point out that scaling up is not an option here because it
is less successful than a scale out strategy [8].

Table I shows a set of rules that, when certain high/low thresholds
are crossed, initiate scaling actions at the infrastructure and database
layers by monitoring and evaluating performance metrics. Expert
users can define thresholds based on prior tests and the domain un-
der consideration. Table I lists the metrics to be combined for each
rule (Formula) and describes the scalability steps (Action). We ob-
serve that a single metric's value is normalized from 0 to 1 using
either the highest value it is capable of reaching or the highest value
already recorded.

Details are provided in Table I(a), where metrics are used to assess
the state of resources that are either assigned to the database lay-
er (poolI) or the computing infrastructure layer (poolI) (poolDB).
When the system encounters a major change in infrastructure per-
formance, or, to put it another way, when pertinent formulas assume
values above/below the high/low thresholds, an infrastructure-level
rule is activated. Similar to this, when pertinent formulas indicate
the requirement for scaling database resources, a database- level
rule is activated for the database layer. Table I(b), instead, presents
composite rules that monitor metrics referred to both poolI and
poolDB. The table's scalability rules can then be applied as Cloudi-
fy recipes (see for example the excerpt in Figure 1).

Volume 6 | Issue 8 | 142Adv Bioeng Biomed Sci Res, 2023

Rule Formula Action
1 CLI Status of poolI in terms of CLI . High (Low) values suggest to increase (decrease)

poolI.
2 CLDB Status of poolDB in terms of CLDB. High (Low) values suggest to increase

(decrease) poolDB

3 CLI *ET Status of poolI in terms of CL and ET . High values indicate an increasing of exe-
cution times due to critical infrastructure operations, suggesting to increase poolI .

4 CLDB*ET Status of poolDB in terms of CL and ET . High values indicate an increasing of ex-
ecution times due to critical database computation, suggesting to increase poolDB.

5 HAI /[HAI +(CLI *ReqR)] Status of poolI in terms of no. of available VMs w.r.t. the status of the system and
the actual request trend.
Low values indicate that the system needs an increase in resources of poolI .

6 HADB/[HADB+(CLDB*R eqR)] Status of poolDB in terms of no. of available VMs w.r.t. the status of the system and
the actual request trend.
Low values indicate that the system needs an increase in resources of poolDB.

(a) Basic Rules

Rule Formula Action
7 CLI /(CLI +CLDB) Contribution of CLI w.r.t. the total CL. The rule is triggered only if CLI is greater

than a threshold level.
High values suggest to increase poolI .

8 CLDB/(CLDB+CLI) Contribution of CLDB w.r.t. the total CL. The rule is triggered only if CLDB is greater
than a threshold level.
High values suggest to increase poolDB

(b) Composite Rules
There is a complexity to take into account when many recipes
apply, request more resources, and must be processed simulta-
neously. These recipes may insist on various cloud layers. As
was mentioned in Section II, there may be situations in which
all triggered rules are competing for the same set of resources
and cannot be implemented simultaneously owing to resource
and/or financial limits. In this case, we suggest augmenting our
scalability solution with a priority-based strategy that gives each
rule a priority. If further rules demanding a scale out activity are
present, they are applied in accordance with the priority until no
more resources are available or all rules have been applied. It is
significant to highlight that Cloudify's monitoring infrastructure
must be expanded to handle this situation because the existing
implementation does not provide the selective execution of dis-
tinct recipes based on priority. We experimentally evaluated a

situation in Section IV-D where Rule 1 and Rule 2 are both trig-
gered and require an additional VM to be assigned to poolI and
poolDB, but there is only one VM that is accessible. This anal-
ysis was done to demonstrate the possibilities of our technique.
Our tests demonstrate which option provides the greatest perfor-
mance advantages to establish Rule 1's precedence over Rule 2.

Finally, Figure 1 depicts a Cloudify recipe that implements Rule
1 from Table I. CLI is first assessed using script statistics. a
CLInfr that calculates the value of relevant data after retrieval. If
the ratio surpasses the high threshold, the system then adds one
VM outfitted with a Tomcat instance to poolI (instancesIncrease)
(0.75). Conversely, if the ratio falls below the low threshold, it
removes one instance (decreaseInstance) (0.25). Every 20 sec-
onds, CLI is assessed (movingTimeRangeInSeconds).

s e r v i c e {

name ” tomcat ”
. . .

e l a s t i c t rue numInstances 1
minAllowedInstances 1

maxAllowedInstances 2

scaleCooldownInSeconds 20

samplingPeriodInSeconds 1 s c a l i n g R u l e s ([
s c a l i n g R u l e {

Volume 6 | Issue 8 | 143Adv Bioeng Biomed Sci Res, 2023

s e r v i c e S t a t i s t i c s { m e t r i c ”RULE 1”
movingTimeRangeInSeconds 20

s t a t i s t i c s S t a t i s t i c s . CLInfr

}

highThreshold { value 0.75
i n s t a n c e s I n c r e a s e 1

}

lowThreshold { value 0.25
i n s t a n c e s D e c r e a s e 1

}

}

])

Figure 1: An example of Cloudify recipe for Rule 1 in Table I.

3. Experimental Evaluation
To test the viability of our strategy, we created the following
proof-of-concept private cloud architecture, focusing solely on
reactive scalability. First, we studied a case in which the data-
base (Section IV-C) or computational infrastructure (Section
IV-B) requires greater resources. Then, we looked at a variety
of the prior scenarios in which the database and computational
infrastructure both had to scale up and compete for scarce re-
sources (Section IV-D). We made the assumption that data-in-
tensive apps would use separate pools of virtual machines for
infrastructure and databases.

A) Experimental setting
Two physical servers were used in a cluster for testing. The first
server (Server 1) is a Dell Precision T1650 with an Intel Xeon
Quad Core 2.6 GHz processor, 32 GB of RAM, a 1 TB hard
drive spinning at 7200 RPM, and two 1 Gb/s Ethernet NICs. The
second server (Server 2) is an Acer Veriton M6620G with an
Intel Core- i7 3770 3.40 GHz processor, 16 GB of RAM, a 1 TB
hard drive spinning at 7200 R On two different pools of virtual
machines, one for the database and the other for the computing
infrastructure, the components of our reference architecture (see
Section II-B) have been installed and set up as follows.

Regarding the computing infrastructure, OpenStack has been set
up and tested using three virtual machines (VMs): two of the
machines house the control and network nodes and are deployed
on Server 2, while the third computer houses the compute node
and is installed on Server 1. The compute node controls a col-
lection of virtual machines (VMs), each of which has a Tomcat
instance and 1 vCPU and 1GB of RAM. Regarding the database,
we considered MongoDB (in a multi-shard configuration) made
up of three component types (i.e., shard servers, configuration
servers, and router servers), each of which was installed on a

virtual machine (VM) located on Server 1 and furnished with a
single virtual CPU and one gigabyte of RAM.

These hybrid MongoDB configurations are typical of Ru-
by-based data-intensive services and websites. We installed
Cloudify and connected its shell to OpenStack for IaaS admin-
istration to finish our proof-of- concept cloud stack. Then, using
Cloudify, we made a virtual machine (VM) for managing Open-
Stack and one for every Tomcat server and MongoDB shard.

Then, we recreated a real-world scenario with multiple clients
making requests simultaneously (i.e., threads). Using Apache
JMeter, an open-source functional testing solution for services,
the demand on the computing infrastructure has been generated
and supplied to two different web apps, deployed on the Tom-
cat server. The first program is a straightforward hello world
(hw). Following the Gregory-Leibniz series, the second applica-
tion (hw) expands hw to calculate the value with a precision of
70,000 digits; hw allows us to primarily stress the CPU of our
physical infrastructure. Using the Yahoo! Cloud Serving Bench-
mark (YCSB) (https://github.com/brianfrankcooper/YCSB/
wiki/), a framework and a set of workloads frequently used
for evaluating and benchmarking the performance of various
NoSQL databases, the load on the database has been generated
and sent to the MongoDB cluster connected to our applications.
In each experiment, the average Transactions Per Second were
measured (TPS).

B) Computing Infrastructure Scaling
We evaluated our strategy under various load fluctuations to de-
termine whether performance would increase as the computing
infrastructure scaled out (i.e., a single VM is added to poolI).
We used the recipe implementing Rule 1 (Figure 1) to manage
infrastructure scalability when either hw or hw is taken into ac-

Volume 6 | Issue 8 | 144Adv Bioeng Biomed Sci Res, 2023

count in order to keep things simple without sacrificing general-
ity. Each test case: I took into account 20 active clients (threads)
sending requests; ii) simulated different loads, varying the re-
quest per second (rps) in 500rps, 1000rps, 1500rps, 2000rps,
2500rps, 3000rps, 3500rps, 4000rps (3500rps and 4000rps for
hw only), and iii) produced a total number of 100,000 requests.

Figure 2 illustrates the changes in TPS depending on whether hw
or hw is taken into account. In both cases, we started with a fun-
damental architecture—a single system running Tomcat—and
scaled it up to four virtual machines. Figure 2(a) demonstrates
that when 4 VMs are deployed with application hardware, the
system can handle a maximum load of 1896 TPS for 4000rps.
With compared to configurations with 1 VM, 2 VMs, and 3 VMs,

respectively, we saw improvements of 39.5%, 28.7%, and 7.1%
in this case. However, a configuration with 1 or 2 VMs yields the
best performance for situations with 1500, 2000, and 2500 RPS.

This is mostly caused by the complexity added by managing
several VMs and by the properties of hardware that responds
after very little computation. Figure 2(b) demonstrates that when
4 VMs are deployed with application hardware, the system can
handle a maximum load of 1650 TPS for 2000rps. With com-
pared to configurations with 1 VM, 2 VMs, and 3 VMs, respec-
tively, we were able to boost performance in this case by 53.6%,
27.2%, and 12.2%, respectively, following a similar pattern to
the one seen for the hardware.

Figure 2: Performance evaluation (TPS)

Additionally, we observe that the findings demonstrate a more
pronounced correlation between the number of VMs and the
supported TPS due to the fact that hardware needs more work on

the Tomcat server to compute. For example, the system responds
to (nearly) every request received up to 1500RPS for 3 and 4
VMs, 1000RPS for 2 VMs, and 500RPS for 1 VM.

Figure 3: Performance analysis after database pool scale up.

Volume 6 | Issue 8 | 145Adv Bioeng Biomed Sci Res, 2023

C) Database Scaling
We examined our strategy under various loads to evaluate per-
formance gains as the database layer scales out. We used a single
recipe (implementing Rule 2 in Table I), which adds a VM to
poolDB when a decline in performance is noticed, same to in-
frastructure scaling. Each test case generated 100,000 requests
while simulating various loads with rps of 50, 100, 200, and
400. Three scenarios with different database request types were
examined for each load: 5% read, 95% update; 95% read, 50%
update; and 50% read, 50% update (RU0595). In each case, we
expanded up to 4 shares from the initial basic MongoDB config-
uration with 1 shard (i.e., 1 VM) (i.e., 4 VMs) [26].

Figure 3 depicts the changes in TPS that occur when poolDB
scales out in situations I through iii). First, we should point out
that poolDB can support more TPS the more VMs are provided
for it. The database was able to handle a load of 50 rps in all cas-
es, we then note. Additionally, in scenario I as shown in Figure
3(a), the system could handle a load of no more than 90 TPS
when configured with just two VMs, and this number increased
to 131 TPS when four VMs were used. In case ii), as depicted
in Figure 3, (b), In the configuration with two VMs, the system
could handle a maximum load of 212 TPS; this number rose to
399 TPS with four VMs. In this instance, when 400 rps are put
into the database, MongoDB is able to handle all the queries
thanks to 4 VMs. The outcomes of cases I and ii) demonstrate
MongoDB's capacity to significantly boost performance when
read operations outnumber update operations. In scenario iii),
where we pressured the DB infrastructure sending primarily up-
date queries, this point is made more obvious. MongoDB could
handle a maximum of 79 TPS with just 2 VMs and 121 TPS with
4 VMs, as shown in Figure 3(c). In conclusion, we observed
increases of 46% in scenario I, 88% in scenario II, and 53% in
scenario III when we increased our poolDB from 2 VMs to 4
VMs [26].

D) Competitive Scaling
We took into account a situation where poolI and poolDB need-
ed to grow out simultaneously but had a finite amount of re-
sources. To do this, the following three web applications were
deployed: I) the hardware used in earlier experiments; II) an ex-
tension of the hardware called hw,r that makes it possible to send
read requests to MongoDB for each request received; and III)
an extension of the hardware called hw,u that makes it possible

to send update requests to MongoDB for each request received.
Then, under various rates of rps generated as follows, we eval-
uated the performance benefits when the extra VM is either as-
signed to poolI or poolDB. A rate rd=•ri of rps is generated and
sent to hw,r (95%) and hw,u (5%), given a rate ri of rps deliv-
ered to hw. In particular, we first altered rd in 100rps and 400rps
while fixing ri to 1000rps. Then, we varied ri between 1500,
2000, and 2500 rps while fixing rd to 200 rps.

Figure 4 illustrates the rise in TPS that results from adding a
single VM to poolI or poolDB after choosing the appropriate
ri, rd, and corresponding. The graph takes into account the
combined TPS of the three services and exhibits a noticeable
performance improvement in both scalability scenarios, with a
greater improvement when the VM is added to poolI. Particular-
ly, the system demonstrated good responsiveness and a consis-
tent upward trend as demands on the computing infrastructure
rose. Generally speaking, these experiments can be utilized to
create a best practice strategy for a competitive situation with
limited resources, allowing scaling in an ideal manner based on
the environment under consideration (see Section IV-E for more
details).

E) Discussion
The first outcome of our tests is one that would seem to be obvi-
ous: the more resources devoted to a single layer, the better the
performance. This incremental behavior is noticeable at both the
infrastructure and database layers, where the best TPS perfor-
mance is frequently attained by deploying 4 virtual machines,
each of which installs a Tomcat server or a MongoDB shard,
as appropriate. The database scalability test results also demon-
strate MongoDB's capacity to perform better when read opera-
tions predominate over update operations. Operations outnum-
ber updates in terms of importance. Additionally, based on the
earlier findings, it can be assumed that situations in which the
infrastructure and database layers both demand on the same pool
of resources will result in the same performance improvement.
Here, we suppose that as the design scales out, a single VM will
be added to the pool of resources, containing the resources of
one VM with a Tomcat server and one VM with a MongoDB
shard. Furthermore, we note that the best performance boost
is seen when a competitive scaling is involved. higher priority
should be given to the relevant rules when the VM is added to
pool I.

Volume 6 | Issue 8 | 146Adv Bioeng Biomed Sci Res, 2023

Figure 4; Competitive scaling performance.

To sum up, we first note that neither our solution's primary goal
was to increase the architecture's overall performance nor was it
designed to offer yet another performance assessment in a cloud
environment. Instead, we wanted to research how scalability af-
fected different cloud stack levels in a competitive environment
with limited resources. Our findings may therefore be viewed as
a practice run that will enable the development of a performance
lookup table that will direct the operations of a probe that imple-
ments a scalability manager. The probe can then employ an ideal
scaling method that takes into account the unique characteristics
of each user's environment (e.g., application types).

This is based on how the user's applications are distributed in
relation to the request load. The probe can also boost the trans-
parency of the cloud by enabling the cloud provider to define
precise and efficient scalability techniques while also providing
a clear picture of how a scalability process is controlled by the
cloud provider and tailored to the needs of the user.

4. Related Work
Different layers can be established for scalability approaches for
distributed systems and environments, which often rely on met-
ric-based regulations [11,12].

Traditional methods of scalability and elasticity compare the per-
formance of various technologies that provide functionality for
each cloud layer, taking into account only one cloud layer and
one scenario at a time [3], [4,13]. For instance, several strategies
have concentrated on the scalability of IaaS, PaaS, and SaaS.
Salah and Boutaba offer a model for evaluating elastic cloud ap-
plications by predicting service response time, whereas Iosup et
al. analyze the performance of cloud computing services for sci-
entific computing workloads [14,15]. Espadas et al [16]. 'S strat-
egy based on resource allocation for SaaS to establish a cost-
effective scalable environment offers a systematic measurement
for under and over provisioning of cloud resources. Other works
have analyzed the process of adaptive resource expansion and
contraction, provided strategies for their performance evalua-
tion, and controlled the flexibility of NoSQL databases and stor-

age [3,5, 6,17,18]. Copil et al. provide a multi-layer solution for
the management of elasticity and scalability on the cloud, which
is very similar to the work in this paper [19]. While we focus
on the issue of competing requests for resources, they define a
mechanism for managing conflicting elasticity requirements.

Finally, numerous concerns have been discussed in literature
in relation to cloud performance optimization. The issue of re-
source and data allocation has been the focus of some methodol-
ogies [20,21]. Yi et al [21] 's alternative perspective on the SaaS
scalability issue includes a heuristic that, given a fixed number
of nodes, distributes tenants so as to maximize the sum of their
numbers. DejaVu is a framework presented by Vasic et al. [20]
that enhances and accelerates resource allocation in virtualized
environments and can adjust to changing workloads [20]. The
capacity of a cloud framework to adapt to various circumstances
has also been intensively studied in the literature, with measure-
ments and benchmarks defined [22-24]. Additionally, Ali-Eldin
et al. describe an adaptive controller for cloud infrastructures
allowing horizontal elasticity that is both proactive and reactive
[25].

5. Conclusions
One significant possibility provided by cloud platforms is in-
tegrated, multi-layer scalability. In this article, we discussed a
method for automatic scaling in a multi-layer scenario where
various cloud stack levels compete for resources that are inher-
ently scarce. In particular, the suggested solution takes into ac-
count scalability at the database and computing infrastructure
layers and is based on performance indicators and scalability
criteria. In a data-intensive environment where the database and
computational infrastructure layers each have a separate pool of
virtual machines (VMs) and may compete for a finite number of
resources, we also experimentally examined scalability criteria.

References
1. Fox, A., Griffith, R., Joseph, A., Katz, R., Konwinski, A.,

Lee, G., ... & Stoica, I. (2009). Above the clouds: A berke-
ley view of cloud computing. Dept. Electrical Eng. and

Volume 6 | Issue 8 | 147Adv Bioeng Biomed Sci Res, 2023

Copyright: ©2023 SeyedEbrahim Dashti, et al. This is an open-access
article distributed under the terms of the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in
any medium, provided the original author and source are credited.

https://opastpublishers.com

Comput. Sciences, University of California, Berkeley, Rep.
UCB/EECS, 28(13), 2009.

2. Mell, P., & Grance, T. (2011). The NIST definition of cloud
computing. National Institute of Standards and Technology
(NIST). Vers, 15, 800-145.

3. Cooper, B. F., Silberstein, A., Tam, E., Ramakrishnan, R.,
& Sears, R. (2010, June). Benchmarking cloud serving sys-
tems with YCSB. In Proceedings of the 1st ACM sympo-
sium on Cloud computing (pp. 143-154)..

4. CloudSpectator, Cloud Computing Performance a Compar-
ative Analysis of 5 Large Cloud IaaS Providers, 2013.

5. Tsoumakos, D., Konstantinou, I., Boumpouka, C., Sioutas,
S., & Koziris, N. (2013, May). Automated, elastic resource
provisioning for nosql clusters using tiramola. In 2013 13th
IEEE/ACM International Symposium on Cluster, Cloud,
and Grid Computing (pp. 34-41). IEEE.

6. Dory, T., Mejías, B., Van Roy, P., & Tran, N. L. (2011, Oc-
tober). Comparative elasticity and scalability measurements
of cloud databases. In Proc of the 2nd ACM symposium on
cloud computing (SoCC) (Vol. 11).

7. Li, A., Yang, X., Kandula, S., & Zhang, M. (2010, Novem-
ber). CloudCmp: comparing public cloud providers. In Pro-
ceedings of the 10th ACM SIGCOMM conference on Inter-
net measurement (pp. 1-14).

8. Ardagna, C. A., Damiani, E., Frati, F., Rebeccani, D., &
Ughetti, M. (2012, June). Scalability patterns for platform-
as-a-service. In 2012 IEEE Fifth International Conference
on Cloud Computing (pp. 718-725). IEEE.

9. J. Ekanayake, S. Pallickara, and G. Fox. (2008). Mapreduce
for data intensive scientific analyses,‖ in Proc. of IEEE In-
ternational Conference on eScience, Indianapolis.

10. Ardagna, C. A., Damiani, E., Sagbo, K. A., & Frati, F.
(2014, January). Zero-knowledge evaluation of service per-
formance based on simulation. In 2014 IEEE 15th Interna-
tional Symposium on High-Assurance Systems Engineer-
ing (pp. 254-258). IEEE.

11. Cáceres, J., Vaquero, L. M., Rodero-Merino, L., Polo, A.,
& Hierro, J. J. (2010). Service scalability over the cloud.
Handbook of Cloud Computing, 357-377.

12. Jimenez-Peris, R., Patiño-Martinez, M., Kemme, B., Pe-
rez-Sorrosal, F., & Serrano, D. (2009). A system of archi-
tectural patterns for scalable, consistent and highly avail-
able multi-tier service-oriented infrastructures. Architecting
Dependable Systems VI, 1-23.

13. Vaquero, L. M., Rodero-Merino, L., & Buyya, R. (2011).
Dynamically scaling applications in the cloud. ACM SIG-
COMM Computer Communication Review, 41(1), 45-52.

14. Iosup, A., Ostermann, S., Yigitbasi, M. N., Prodan, R.,
Fahringer, T., & Epema, D. (2011). Performance analysis of
cloud computing services for many-tasks scientific comput-
ing. IEEE Transactions on Parallel and Distributed systems,
22(6), 931-945.

15. Salah, K., & Boutaba, R. (2012, November). Estimating
service response time for elastic cloud applications. In 2012
IEEE 1st International Conference on Cloud Networking
(CLOUDNET) (pp. 12-16). IEEE.

16. Espadas, J., Molina, A., Jiménez, G., Molina, M., Ramírez,
R., & Concha, D. (2013). A tenant-based resource allocation

model for scaling Software-as-a-Service applications over
cloud computing infrastructures. Future Generation Com-
puter Systems, 29(1), 273-286.

17. Li, Y., & Manoharan, S. (2013, August). A performance
comparison of SQL and NoSQL databases. In 2013 IEEE
Pacific Rim conference on communications, computers and
signal processing (PACRIM) (pp. 15-19). IEEE.

18. Konstantinou, I., Angelou, E., Boumpouka, C., Tsouma-
kos, D., & Koziris, N. (2011, October). On the elasticity
of NoSQL databases over cloud management platforms. In
Proceedings of the 20th ACM international conference on
Information and knowledge management (pp. 2385-2388).

19. Copil, G., Moldovan, D., Truong, H. L., & Dustdar, S.
(2013). Multi-level elasticity control of cloud services. In
Service-Oriented Computing: 11th International Confer-
ence, ICSOC 2013, Berlin, Germany, December 2-5, 2013,
Proceedings 11 (pp. 429-436). Springer Berlin Heidelberg.

20. Vasić, N., Novaković, D., Miučin, S., Kostić, D., & Bi-
anchini, R. (2012, March). Dejavu: accelerating resource
allocation in virtualized environments. In Proceedings of
the seventeenth international conference on Architectural
Support for Programming Languages and Operating Sys-
tems (pp. 423-436).

21. Zhang, Y., Wang, Z., Gao, B., Guo, C., Sun, W., & Li, X.
(2010, July). An effective heuristic for on-line tenant place-
ment problem in SaaS. In 2010 IEEE International Confer-
ence on Web Services (pp. 425-432). IEEE.

22. Krebs, R., Wert, A., & Kounev, S. (2013). Multi-tenancy
performance benchmark for web application platforms. In
Web Engineering: 13th International Conference, ICWE
2013, Aalborg, Denmark, July 8-12, 2013. Proceedings 13
(pp. 424-438). Springer Berlin Heidelberg.

23. Li, Z., O'brien, L., Zhang, H., & Cai, R. (2012, September).
On a catalogue of metrics for evaluating commercial cloud
services. In 2012 ACM/IEEE 13th International Conference
on Grid Computing (pp. 164-173). IEEE.

24. Islam, S., Lee, K., Fekete, A., & Liu, A. (2012, April). How
a consumer can measure elasticity for cloud platforms. In
Proceedings of the 3rd ACM/SPEC International Confer-
ence on Performance Engineering (pp. 85-96).

25. Ali-Eldin, A., Tordsson, J., & Elmroth, E. (2012, April). An
adaptive hybrid elasticity controller for cloud infrastruc-
tures. In 2012 IEEE Network Operations and Management
Symposium (pp. 204-212). IEEE.

26. Ardagna, C. A., Damiani, E., Frati, F., Montalbano, G.,
Rebeccani, D., & Ughetti, M. (2014, June). A competitive
scalability approach for cloud architectures. In 2014 IEEE
7th International Conference on Cloud Computing (pp. 610-
617). IEEE.

http://www.scribd.com/doc/146167581/
http://www.scribd.com/doc/146167581/

