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Abstract
Most recent observations from the James Webb space telescope (JWST) have shown by highly resolved infrared 
observations of highest sensitivity that structure formation in the universe into the forms of early galaxies has 
already taken place at cosmic times less than 0.6 Gigayears after the Big-Bang. This is taken up with a big 
surprise in the whole astronomic community, though, as it seems, it could have been predicted from simple 
theoretical considerations. In this article, we are demonstrating that this result already would have clearly 
come out from theoretical considerations of gravitational structure formation processes in the early expanding 
universe just after the cosmic matter recombination period. While, however, it can be easily understood how 
matter structures of the order of 108 solar masses could evolve in the cosmic meantime, it nevertheless remains 
obscure, how galaxies of the type of the Milky way or more massive structures with 1011 or more solar masses 
can have evolved up to the present cosmic days without some not yet specified collapse-accelerating processes.
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Collapse in Expanding Universes
In principle it is a problem hard to understand that matter may 
be able to collapse into large local mass units, though in an ex-
panding universe the initially widely and uniformly distributed 
cosmic matter must be subject to the expansion into a perma-
nently growing cosmic space with permanently decreasing cos-
mic mass densities. This only can be possible, if the structuring 
collapse velocity is larger than the general expansion velocity. 
The problem thus evidently is and must be connected with the 
specific form of the actual expansion dynamics of the whole uni-
verse.

Therefore this study certainly is and must be based on the specific 
form of the cosmic expansion of the universe. In a static universe 
structure formation runs along the lines that astronomers have 
developed since long ago for the static space [1, 2]. Processes 
of structure formation of course are very much different in the 
expanding universe, because then structure formation definitely 
will depend on the specific form of the prevailing cosmic expan-
sion (e.g. decelerated, accelerated or coasting expansion etc.). 
To best explain the SN 1a luminosities Perlmutter et al. (1998), 
Schmidt et al.(1998), or Riess et al. (1998) have preferred the 
accelerated expansion of the universe connected with action of 
a constant vacuum energy density [3-10], however, there are 
attempts by Casado (2011) and Casado and Jou (2013) show-
ing that a ”coasting non-accelerated universe” can equally well 
explain these supernovae luminosities [11-12]. In our following 
con- siderations we shall consider first here - mainly for math-

ematical reasons - the case of a “coasting expansion” [13-16], 
which in fact can be expected to prevail, if the universe expands 
under the form of thermodynamic and gravidynamic action of 
vacuum pressure [17]. Alternative forms of a cosmic expansion 
may be discussed at the end of this paper and lead to very inter-
esting conclusions.

If then as our working basis such a ”coasting universe” can be 
assumed to prevail, like given in the case when ρΛ~R−2 (ϱΛ de-
noting the mass density equivalent of the vacuum energy, R de-
noting the scale of the universe, see e.g. Fahr, 2022) and when 
vacuum energy is the dominant ingredient to the cosmic mass 
density ρΛ ≫ρb , ρd , ρν, (indices b, d, ν standing for baryons, dark 
matter, and photons, respectively) and to the relativistic ener-
gy-momentum tensor, then one unavoidably finds:

                                                                                           

which in fact means and necessarily implies: a ”coasting expan-
sion” of the universe! Then consequently, a Hubble parameter 
must be expected falling off with the scale R like:

This means that the Hubble parameter in course of the coasting 
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Under these cosmic auspices one finds that the local free-fall 
time τff = (4πGϱ)−1/2 of baryonic, cosmic matter (see Jeans, 1929) 
is smaller than the expansion time τex = 1/H of that matter (i.e. so 
that mass structures can grow even in the expanding universe!), 
as soon as:

i,e, if actual free fall times are shorter than expansion times of 
material structures. This means one would need to have the fol-
lowing relation fulfilled:

or:

This implies that the critical scale Rc from which upwards a 
progress of structuring despite of cosmic expansion can and will 
occur is given by:

That means for world times with R(t) ≥ Rc one thus cannot expect 
to have any more a homogeneous cosmic matter distribution, but 
a hierarchical mass structure in the universe like described by 
Fahr and Heyl (2019) [18].

On the other hand - since matter can anyway not gravitationally 
condense, before it has recombined to neutral atoms due to the 
strong interactions of free electrons with the strongly coupling 
el-mag. radiation fields (photon fields), one can therefore start 
this consideration here with the time t0 = tr of matter recombi-
nation, since before that time no irreversible condensations are 
possible in the form of enduring, persisting structures. Hence 
along this argumentation one might find this critical scale by:

This obviously says that structuring of cosmic matter can only 
start when the scale of the world has increased to at least Rc = 
5.02 • Rr , i.e. to about five times the recombination scale Rr!

The question now may pose itself concerning the critical mass 
Mc that is connected with such a selfstructuring mass unit Mc(Rc). 
The answer must come from the usual knowledge of the col-
lapse-critical mass unit Mc given by a comparison of the free-fall 
time τff and the sound time (pressure counterreaction time) given 
by τs = D/cs (D being the radial dimension of the collaps-critical 
mass unit Mc) and thus leading to the following request:

with P and γ denoting the baryonic gas pressure and the pol-
ytropic index of the gas. This then with Fahr and Heyl (2021) 
leads to the following expression for Mc = Mc(R):

Assuming that pressure and density during the cosmic expan-
sion conserve the gas entropy, i.e.P/ϱγ = const, then leads to the 
result:

where hereby the typical collapse mass Mc(Rr) at the recombina-
tion scale has been calculated by Fahr and Heyl [19] to be 
Mc(Rr) = 105 Mօ.
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Obviously a further mass growth of more than three orders of 
magnitude would still be left over for an upcoming better expla-
nation. One idea for an ongoing mass growth is connected with 
the process of a cumulative mass growth of mass units collapsed 
before that time. This idea we shall briefly sketch here below.

The Idea of a Cumulative Mass Growth
Let us start from a homogeneous universe under Hubble expan-
sion that has, as discussed above, started to produce the first gen-
eration of massive collapse centers with masses of the order of 
Mc ≃105Mօ. Assuming furthermore a symmetric production of 
collapse centers in this homogeneous universe one could then 
assume that these collapse centers conserve the general Hubble 
expansion dynamics. This would allow to assume that two of 
such neighboring centers of masses Mc,A and Mc,B in a radial dis-
tance of twice the collapse radius D = D(Mc) of such objects A 
and B would have a mutual, relative Hubble migration velocity 
of:

One can now  compare  the  relative  Hubble  energy Ekin = (1/2)
Mc V

2
AB of these two objects A and B with the gravitational bind-

ing energy Ebind = GMc
2/2D between these two mass centers and 

can study their absolute magnitudes investigating:

or leading to:

Studying then the situation when first in the universe collapse 
structures can be expected, i.e. at R = Rc = 5Rr, will lead to:

In view of Rc = 5Rr and                                                       we 
then obtain:

which finally with τ0 = 1/H0 = 13.7 Gigayears means:

or:

That finally expresses the fact that the left side (i.e. kinetic ener-
gy Ekin,AB) is much greater than the right side (i.e. binding energy 
Ebind,AB). This indicates that the two centers A and B of collapsed 
masses would be essentially free to continue their Hubble dy-

namics, - i.e. no! further accumulation of collapsed materials 
would occur. The latter to the contrast would, however, occur, if 
the binding energy would turn out to be larger than the kinetic 
energy, because in this case the two mass clusters would produce 
one new gravitationally bound system decoupling from the free 
Hubble expansion, and, in view of the other equivalent systems 
in the neighborhood, would induce a multi-cluster collaps sys-
tem.

As it looks so far, however, accumulation of cosmic masses 
beyond a cluster mass of Mc ≃105 Mօ until the present age of 
the universe remains unexplained by our present theory. When 
JWST in its highly resolving infrared observations can really 
find indications for the existence of systems of clustered masses 
with  1011Mօ with an age of 13.1 Gigayears, - then this! is really 
an exciting message.

On the other hand perhaps, taking serious what Perlmutter et al. 
(1999), Schmidt et al. (1999), and Riess et al. (1999) are claim-
ing, namely that they are seeing in the SN1a luminosities of the 
most distant galaxies already clear indications of an accelerated 
expansion of the universe would express the fact that already at 
that early times [21-24], all the more at all later cosmic times, the 
Hubble constant would have been given by:

meaning that the expansion times               would have stayed 
constant  all the way  since  that  time  till  today  and  later,  while  
the  free-fall  times                         are increasing permanently 
since that time like

which would mean that since that early time no collapse 
could have happened anymore, and especially young galaxies 
could not at all be understood in this context of the universe. 
Does that mean: H = HΛ = const can be ruled out?, while                                                 
.                                              might appear as the better, since 
more valid approach?
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already at that early times [21-24], all the more at all later cosmic times, the Hubble constant would 

have been given by: 

 

 
 

meaning that the expansion times  would have stayed constant  all the way  since  that  time  

till  today  and  later,  while  the  free-fall  times    are increasing permanently since that time 

like 

 
 

which would mean that since that early time no collapse could have happened anymore, and especially young 

galaxies could not at all be understood in this context of the universe. Does that mean: H = HΛ = const 

can be ruled out?, while  might appear as the better, since more valid 

approach? 
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