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Abstract
The paper provides a comprehensive overview of Neural Architecture Search (NAS), emphasizing its evolution 
from manual design to automated, computationally driven approaches. It covers the inception and growth of NAS, 
highlighting its application across various domains, including medical imaging and natural language processing. The 
document details the shift from expert-driven design to algorithm-driven processes, exploring initial methodologies like 
reinforcement learning and evolutionary algorithms. It also discusses the challenges of computational demands and the 
emergence of efficient NAS methodologies, such as Differentiable Architecture Search and hardware-aware NAS. The 
paper further elaborates on NAS's application in computer vision, NLP, and beyond, demonstrating its versatility and 
potential for optimizing neural network architectures across different tasks. Future directions and challenges, including 
computational efficiency and the integration with emerging AI domains, are addressed, showcasing NAS's dynamic 
nature and its continued evolution towards more sophisticated and efficient architecture search methods.
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1. Introduction
The inception and early development of Neural Architecture 
Search (NAS) represent a transformative phase in artificial 
intelligence, particularly in deep learning. The quest for 
automating the design of neural network architectures has 
seen significant milestones, with research efforts focusing on 
overcoming the limitations of manual architecture design and 
leveraging computational strategies to discover optimal network 
structures. Early research in the domain of NAS was marked 
by efforts to understand and improve recurrent neural networks, 
such as the Long Short-Term Memory (LSTM) networks 
[1]. Conducted one of the largest studies on LSTM variants, 
assessing their utility and optimizing hyperparameters through 
random search, underscoring the early interest in automating 
aspects of neural network design.

Similarly, introduced the Inception architecture, demonstrating 
the potential of carefully crafted design to utilize computing 
resources more efficiently, a principle that would later influence 
NAS approaches [2]. The growing interest in NAS also 
extended to the medical imaging field, where the capabilities of 
deep learning models, including those designed through NAS, 
showed potential for surpassing human performance in certain 
recognition tasks, as highlighted by [3,4]. Further exemplified 
the evolution of NAS into specialized domains such as natural 

language processing, introducing NAS-Bench-NLP to facilitate 
research in the area by providing a comprehensive benchmark.

The trajectory of NAS research from its early days to its current 
status underscores a broad and ambitious effort to automate 
and optimize the design of neural networks across various 
domains. From enhancing LSTM networks to pioneering in the 
convolutional neural network (CNN) architectures and extending 
to medical and language processing applications, NAS embodies 
the transition from manual, expert-driven design to automated, 
computationally-driven architecture search processes. This 
evolution marks a significant shift towards democratizing and 
accelerating innovation in deep learning, promising to unlock 
new capabilities and efficiencies in AI systems.

1.1 Shift from Expert-Driven to Automated Design
Initially, neural network design was predominantly expert-
driven, requiring a deep understanding of how different 
architectural choices, like the number of layers, types of layers 
(e.g., convolutional, recurrent), and connections between layers, 
affect the network’s performance. This expertise was hard-earned 
through extensive experimentation. NAS shifted this paradigm 
by introducing algorithms capable of exploring vast architectural 
spaces, identifying optimal configurations often overlooked 
in manual processes. The first models and algorithms in NAS 
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were foundational, setting the stage for more sophisticated 
techniques. These early efforts explored simple strategies 
like grid search and random search, quickly evolving to more 
complex approaches like reinforcement learning, evolutionary 
algorithms, and gradient-based methods. The evolution of NAS 
reflects a broader trend in AI: the move towards systems that 
can learn and adapt autonomously, reducing reliance on human 
input. NAS sits at the intersection of several disciplines: machine 
learning, optimization, statistics, and computational theory. Its 
development has been bolstered by advances in each of these 
areas, benefitting from improved computational resources, 
theoretical understanding of deep learning models, and the 
growing availability of large datasets. This multidisciplinary 
nature has made NAS a vibrant and rapidly advancing field, 
attracting attention from both academia and industry.

2. Backgrounds and Related Work
2.1 Reducing Human Effort in Network Design
The fundamental aim of Neural Architecture Search (NAS) is to 
mitigate the significant manual effort and expertise historically 
required in the development of neural network architectures. 
Traditionally, the design of effective neural networks has been a 
domain of specialists, necessitating a prolonged process of trial 
and error to identify optimal configurations. NAS introduces 
a revolutionary methodology with the goal of automating and 
refining this design process. By leveraging advanced algorithms, 
NAS endeavors to democratize neural network design, making 
it more universally accessible and diminishing the dependency 
on specialized knowledge. This approach not only accelerates 
the discovery of efficient neural architectures but also broadens 
the scope of innovation by exploring a vast array of design 
possibilities that might be beyond human intuition.

2.2 Exploring a Larger Space of Architectural Possibilities
The traditional approach to designing neural networks has been 
significantly limited by its reliance on human expertise, which 
inherently restricts the exploration of the vast architectural space 
to the realms of prior experience and intuitive guesswork. This 
method often misses out on discovering innovative and more 
efficient architectures that lie beyond conventional wisdom. 
Neural Architecture Search (NAS) emerged as a revolutionary 
solution to this issue, harnessing powerful algorithms to 
systematically explore a much wider range of architectural 
possibilities. By doing so, NAS opens the door to identifying 
novel neural network configurations that, while possibly 
counterintuitive to human designers, could offer vastly superior 
performance and efficiency. This comprehensive exploration 
facilitated by NAS not only broadens the horizon of potential 
designs but also democratizes the design process, making 
the development of high-performing neural networks more 
accessible and less constrained by the bottleneck of specialized 
knowledge.

2.3 Initial Methods and Computational Challenges
The early methods in Neural Architecture Search (NAS) 
utilized strategies such as Reinforcement Learning (RL) and 
Evolutionary Algorithms (EAs) to explore and optimize neural 
network architectures. RL-based NAS approaches employed 

policy networks to generate and refine architectures based on 
performance feedback, whereas EAs drew inspiration from 
biological evolution, iterating over generations of architectures 
to enhance performance through selection, mutation, and 
recombination. Despite their innovativeness, these initial 
strategies demanded extensive computational resources, 
which limited their practical application. Evolutionary design 
methods, particularly for deep convolutional neural networks 
(CNNs) in image classification, underscored the importance 
of multi-objective optimization that balances classification 
performance with computational costs[4]. Subsequent research 
has introduced more efficient NAS methodologies to address 
these computational challenges [5].

Adaptive Scalable NAS (AS-NAS): This method combines a 
simplified RL algorithm with the reinforced I-Ching divination 
evolutionary algorithm (IDEA) and a variable-architecture 
encoding strategy for efficient operator selection and scalable 
deep neural architecture design. The integration with L2 
regularization enhances architecture sparsity, significantly 
reducing computational costs while maintaining or improving 
performance [6]. Performance Predictors for ENAS: Introduces 
a novel training protocol for performance predictors in 
evolutionary NAS, addressing the high computational demand 
by improving prediction accuracy of architecture performance 
without extensive computational resources. This method 
employs a pairwise ranking indicator, logistic regression for 
fitting training samples, and a differential method for constructing 
training instances, significantly enhancing the efficiency of 
NAS [7]. Hill Climbing-Based NAS Framework: Proposes a 
new framework using hill-climbing procedures and morphism 
operators, reducing overall training time by focusing on the 
aging of neural network layers. This approach demonstrates 
competitive results with significantly less computational expense 
[8]. Efficient Evolutionary Search of Attention Convolutional 
Networks: This framework introduces a computationally 
efficient evolutionary search method for convolutional networks, 
incorporating sampled training and node inheritance to evaluate 
offspring individuals without extensive training. The inclusion 
of a channel attention mechanism in the search space further 
enhances feature processing capability [9].

2.4 Overcoming Computational Limitations
To tackle the computational challenges inherent in Neural 
Architecture Search (NAS), researchers have pursued more 
efficient methodologies, highlighting innovations beyond early 
adaptations like DARTS (Differentiable Architecture Search). 
The DARTS+ algorithm exemplifies this evolution by refining 
DARTS through the incorporation of early stopping, which 
curtails the optimization process to prevent overfitting—a 
common pitfall that undermines the model's generalization 
ability. This modification significantly enhances the robustness 
of the architecture search process, avoiding the detrimental 
performance collapse frequently observed in conventional 
DARTS implementations [10].

Moreover, alternative strategies have emerged to surpass the 
limitations of early-stopping mechanisms. Notably, the approach 
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of Random Search with weight-sharing has demonstrated 
remarkable effectiveness, challenging the prevailing complexity 
of NAS methodologies. By leveraging a simpler, more stochastic 
process, this method has not only matched but, in some instances, 
outperformed the sophisticated algorithms typically associated 
with NAS, showcasing its prowess on benchmarks such as PTB 
and CIFAR-10. The success of Random Search with weight-
sharing underscores the potential of resource-efficient methods 
to achieve competitive, if not superior, NAS outcomes, thereby 
reshaping the landscape of architectural search paradigms 
[11]. The exploration of NAS methodologies extends into 
diverse adaptations and refinements aimed at overcoming the 
computational hurdles initially posed by traditional approaches. 
For instance, Fair DARTS introduces a collaborative rather 
than exclusive competition among operations by allowing each 
operation's architectural weight to be independent. This strategy 
effectively mitigates the performance collapse associated 
with skip connections, a common issue in DARTS, thereby 
promoting a more equitable and balanced search process that 
yields state-of-the-art results on CIFAR-10 and ImageNet 
[12]. D-DARTS, on the other hand, expands the search space 
by nesting neural networks at the cell level, diverging from the 
conventional weight-sharing mechanism. This innovation allows 
for the production of diversified and specialized architectures, 
highlighting the potential to enhance performance and reduce 
computational time across various computer vision tasks [13].

These advancements represent a pivotal shift towards more 
efficient, effective, and equitable NAS methodologies. By 
addressing the inherent challenges of computational intensity 
and overfitting, the field moves closer to realizing the full 
potential of automated architecture search in advancing deep 
learning innovations.

3. Architecture Search Mechanism
3.1 Defining the Search Space
The foundation of Neural Architecture Search (NAS) lies in 
accurately defining the search space, which is a comprehensive 
catalog of all potential neural network architectures that the 
algorithm might evaluate. This space is multi-dimensional and 
encompasses a wide array of architectural choices, such as 
the types of layers (e.g., convolutional layers for image tasks, 
recurrent layers for sequential data), the connectivity patterns 
between these layers (e.g., sequential, skip connections), 
hyperparameters (including the depth of the network, sizes of 
filters in convolutional layers, and number of units in dense 
layers), and other architectural features like activation functions 
and regularization techniques. The breadth and depth of the 
search space are critical because they directly influence the NAS 
algorithm's ability to discover innovative and high-performing 
architectures. A well-constructed search space should balance 
comprehensiveness with feasibility, ensuring a wide range 
of architectures can be explored without making the search 
impractical due to computational constraints.

3.2 Choosing a Search Strategy
The strategy for navigating the vast search space is pivotal in 
the NAS process. Various methodologies offer different trade-

offs in terms of search efficiency, computational demands, and 
the quality of the resulting architectures. Reinforcement learning 
approaches, for example, use a policy network to sequentially 
choose architectural components, learning to propose better 
architectures based on past performance. Evolutionary 
algorithms simulate a process akin to natural selection, where 
architectures mutate and crossover, with only the fittest surviving 
to the next generation. Gradient-based methods allow for a more 
direct approach by optimizing architecture parameters using 
gradient descent, making them efficient but sometimes less 
exploratory. Bayesian optimization leverages prior knowledge 
to smartly explore the search space, balancing between 
exploitation of known good areas and exploration of new ones. 
The choice among these strategies depends on the specific goals, 
computational resources available, and the characteristics of the 
problem at hand.

3.3 Performance Evaluation Mechanism
A crucial step in NAS is the evaluation of candidate 
architectures. This step determines how well each proposed 
architecture performs on a given task, which in turn informs the 
search algorithm's future decisions. Typically, the evaluation 
involves training the architecture on a dataset and measuring 
its performance using metrics such as accuracy, loss, or more 
task-specific measures. However, training neural networks from 
scratch for each evaluation can be prohibitively expensive. 
Techniques like weight sharing, where different architectures 
share weights, and proxy tasks, where models are trained and 
evaluated on simplified versions of the task or with reduced 
data, can significantly reduce computational requirements. This 
step not only identifies promising architectures but also helps in 
understanding the impact of different architectural choices on 
performance.

3.4 Optimization Process
With the performance feedback from the evaluation mechanism, 
the NAS algorithm optimizes the search towards architectures 
that show potential for high performance. This optimization 
can take various forms depending on the search strategy. For 
instance, reinforcement learning algorithms adjust the policy 
network to increase the probability of selecting high-performing 
architectures. In contrast, evolutionary algorithms might adjust 
the population towards architectures with higher fitness scores. 
This optimization process is iterative, with each cycle aiming 
to refine the search direction and converge towards optimal 
architectural configurations. The ultimate goal is to discover 
architectures that not only perform well on the evaluation 
metric(s) but also meet other criteria such as efficiency in terms 
of computational resources and model size.

3.5 Refinement and Final Selection
After identifying a subset of promising architectures through 
the search and optimization process, a refinement phase may 
follow. This phase involves further fine-tuning the architectures, 
possibly through additional rounds of training, hyperparameter 
optimization, or architectural tweaks, to squeeze out additional 
performance gains. The final selection of the optimal 
architecture is then made based on a comprehensive assessment 
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of performance metrics, alongside other considerations like 
computational efficiency, model complexity, and adaptability 
to different tasks or datasets. This step ensures that the chosen 
architecture not only performs well in a controlled evaluation 
setting but is also practical for real-world applications.

3.6 Verification and Testing
The selected architecture undergoes rigorous testing to verify 
its performance, generalizability across different datasets or 
tasks, and robustness to variations in input or conditions. This 
step is essential to ensure that the model's performance is not 
overly specific to the training set or evaluation conditions used 
during the NAS process. Extensive testing provides confidence 
that the chosen architecture will perform reliably in practical 
applications, fulfilling the promise of NAS to automate the 
design of effective and efficient neural networks.

3.7 Deployment
Once verified, the final architecture is ready for deployment 
in real-world applications. This could range from image 
and speech recognition systems in consumer electronics to 
complex decision-making systems in autonomous vehicles or 
personalized recommendation systems in e-commerce. The 
deployment phase marks the culmination of the NAS process, 
translating the computational and algorithmic achievements into 
tangible benefits in various applications.
The iterative nature of NAS, with its cycles of exploration, 
evaluation, optimization, and refinement, encapsulates a 
comprehensive approach to automating neural network design. 
While computationally demanding, NAS holds the promise of 
discovering innovative architectures that push the boundaries of 
what is possible in artificial intelligence, offering efficiency and 
performance improvements over traditional, manually designed 
models.

4. Mainstreaming Paradigm of NAS
1. Reinforcement Learning-based NAS (RL-NAS): RL-NAS 
employs a policy network as the decision-maker to sequentially 
propose neural network architectures. This policy network, 
trained through reinforcement learning techniques such as 
Q-learning or policy gradients, learns to navigate the architecture 
search space by receiving feedback on the performance (e.g., 
accuracy, efficiency) of its suggestions. The iterative process 
of proposing architectures, evaluating their performance on a 
validation set, and updating the policy network based on this 
feedback allows RL-NAS to refine its search strategy over time. 
Despite its potential to discover high-performing architectures, 
RL-NAS is noted for its high computational demand, as each 
proposed architecture requires separate training and evaluation, 
making it resource-intensive.
2. Evolutionary Algorithms (EA): Evolutionary algorithms 
mimic the process of natural selection by applying operations 
such as mutation, crossover (recombination of architectural 
elements), and selection to evolve a population of neural 
network architectures over generations. Each architecture in 
the population is evaluated based on its performance, and the 
best-performing architectures are more likely to be selected 
for breeding the next generation. This process encourages 

the exploration of the architecture space and the discovery of 
innovative solutions. However, like RL-NAS, EA-based NAS 
is computationally expensive due to the extensive evaluations 
needed across generations of architectures.
3. Differentiable NAS (D-NAS): Differentiable NAS stands 
out by making the architecture search space continuous, which 
allows the use of gradient descent for optimization. Techniques 
like DARTS (Differentiable Architecture Search) introduce 
architectural parameters that can be optimized alongside 
the network weights, enabling simultaneous learning of the 
architecture and its parameters. This approach dramatically 
accelerates the search process compared to non-differentiable 
methods. D-NAS is celebrated for its efficiency and has been 
instrumental in reducing the computational barrier to performing 
NAS, making it accessible for more researchers and practitioners.
4. Bayesian Optimization-based NAS: Bayesian Optimization 
(BO) is a strategy for global optimization of black-box functions 
that is particularly effective in situations where function 
evaluations (architecture evaluations, in the context of NAS) 
are costly. BO-based NAS uses probabilistic models to predict 
the performance of architectures and applies an acquisition 
function to balance the exploration of new architectures with 
the exploitation of known good ones. This method efficiently 
navigates the search space by prioritizing the evaluation of 
architectures that are most likely to yield improvements, making 
it suitable for scenarios with limited computational resources.
5. Graph-based NAS: Utilizing graph theory, graph-based NAS 
represents the architecture search space as a graph, where nodes 
represent architectural components (e.g., layers, operations) and 
edges represent connections between these components. This 
representation allows for the modeling of complex architectures 
with varying depths and connectivity patterns. Graph-based 
methods can efficiently explore this space using algorithms that 
manipulate the graph structure, offering a versatile approach to 
discovering architectures that can capture intricate data patterns.
6. Hierarchical NAS: Hierarchical NAS addresses the architecture 
search at multiple levels of granularity, distinguishing between 
the macro-architecture (the overall structure and connectivity of 
the network) and the micro-architecture (the design of individual 
layers or blocks within the network). By optimizing both 
levels, hierarchical NAS enables a more detailed and nuanced 
exploration of the architecture space, potentially leading to more 
optimized and task-specific designs that consider both the global 
structure and the local operations of the network.
7. One-shot NAS: One-shot NAS methods streamline the 
search process by constructing a single, over-parameterized 
network (often called a supernet) that encompasses all possible 
architectures within the search space. By training this supernet 
and then evaluating sub-networks (candidate architectures) 
without retraining from scratch, one-shot NAS significantly 
reduces the computational cost of NAS. This approach benefits 
from weight sharing among sub-networks, allowing for rapid 
assessment of numerous architectures.
8. Cell-based NAS: Focusing on finding optimal building blocks 
(cells), which are then replicated to construct the entire network, 
cell-based NAS simplifies the search space and concentrates on 
discovering versatile and reusable architectural patterns. This 
strategy has proven effective in identifying architectures that 
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perform well across different datasets and tasks, as the discovered 
cells can be adapted to various scales and complexities of 
problems.Neuroevolution: Neuroevolution combines the 
principles of evolutionary algorithms with neural networks to 
co-evolve both the architecture and the weights of the network. 
This approach treats the architecture and weights as part of a 
unified evolutionary process, exploring a wide range of potential 
solutions by mutating, recombining, and selecting networks 
based on their performance. Neuroevolution is particularly 
appealing for its ability to discover both innovative architectures 
and optimal weight configurations, offering a holistic approach 
to network design and optimization.

Each of these NAS methodologies offers unique advantages and 
trade-offs, reflecting the diversity of challenges and objectives 
present in neural network design. As NAS continues to evolve, 
the interplay among these approaches will likely yield even more 
sophisticated and efficient methods for automated architecture 
search.

5. Development and Elaboration
NAS has made significant advancements in recent years, 
addressing its initial shortcomings and introducing more 
sophisticated and efficient methods:
1. Hardware-Aware NAS: Recent approaches like hardware-
aware frameworks have focused on optimizing NAS not only for 
model accuracy but also for hardware efficiency. These methods 
use evolutionary algorithms paired with objective predictors to 
efficiently find optimized architectures for various performance 
metrics and hardware configurations [14].
2. NAS-Bench-101 for Reproducibility: The introduction of 
NAS-Bench-101, the first public architecture dataset for NAS 
research, aims to address the high computational demand of 
NAS and make experiments more reproducible. It compiles a 
large dataset of over 5 million trained models, allowing rapid 
evaluation of a diverse range of architectures [15].
3. Optimization for Embedded Devices:** Adaptations of 
methods like Efficient Neural Architecture Search (ENAS) 
consider constraints for deploying networks on embedded 
devices, demonstrating NAS's flexibility and applicability in 
resource-constrained environments[16].
4. Pareto-Optimal Approaches: Multi-objective frameworks like 
MONAS and DPP-Net extend NAS to optimize for accuracy 
and other objectives imposed by devices, searching for neural 
architectures that can be deployed across a wide spectrum of 
devices [17].
5. Efficient NAS for Image Denoising:** Developments in NAS 
have also been applied to image denoising, with techniques like 
superkernel implementations enabling fast training of models 
for dense predictions, showcasing NAS's versatility in different 
application domains [18].
6. Evolutionary Design for Image Classification:** Evolutionary 
algorithms have been used to design deep convolutional neural 
networks for image classification, addressing multiple objectives 
such as classification performance and computational efficiency 
[19]. These advancements demonstrate the dynamic nature of 
NAS, continually evolving to address computational efficiency, 
hardware constraints, and application-specific requirements. The 

field is moving towards more versatile, efficient, and application-
tailored architecture search methods, paving the way for broader 
adoption and more innovative applications of NAS.

6. Application of NAS
In the realm of computer vision and beyond [20-22], Neural 
Architecture Search (NAS) has emerged as a transformative 
force, propelling advancements in image classification, object 
detection, semantic segmentation, and Natural Language 
Processing (NLP). The integration of frameworks like DQNAS, 
which combines reinforcement learning with one-shot training, 
illustrates NAS's capacity to surpass manually designed models 
across various image-related applications. This approach not 
only streamlines the creation of efficient models for complex 
tasks such as language modeling and translation but also extends 
its utility to optimizing convolutional networks for feature 
extraction at multiple resolutions [23-26]. The adaptability of 
NAS is further demonstrated in its application to Human Activity 
Recognition (HAR), where it refines neural architectures for 
analyzing mobility-related human activities using techniques 
like Bayesian optimization. This showcases NAS's effectiveness 
in specialized domains, underscoring its role in enhancing the 
accuracy and efficiency of models tailored for specific tasks and 
data types [27].

Expanding its influence, NAS plays a pivotal role in spatio-
temporal prediction tasks within smart city applications, 
exemplified by methods like AutoST for crowd flow prediction, 
highlighting NAS's contribution to urban planning and 
intelligent transportation. This broad applicability of NAS 
across different fields—from enhancing machine interpretation 
of visual information to improving interaction with human 
language, and advancing our understanding of human movement 
through technology—emphasizes its integral role in automating 
the design of neural network architectures. As NAS continues 
to evolve [29-30], it promises to further drive innovations 
and optimizations in neural network architectures, cementing 
its impact across diverse areas of AI and machine learning. 
The ongoing advancements underscore the potential of NAS 
to revolutionize various aspects of research and application, 
making it a cornerstone of future developments in technology 
[31-42].

References
1. Greff, K., Srivastava, R. K., Koutník, J., Steunebrink, B. R., 

& Schmidhuber, J. (2016). LSTM: A search space odyssey. 
IEEE transactions on neural networks and learning systems, 
28(10), 2222-2232.

2. Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., 
Anguelov, D., ... & Rabinovich, A. (2015). Going deeper 
with convolutions. In Proceedings of the IEEE conference 
on computer vision and pattern recognition (pp. 1-9).

3. Lee, J. G., Jun, S., Cho, Y. W., Lee, H., Kim, G. B., Seo, J. 
B., & Kim, N. (2017). Deep learning in medical imaging: 
general overview. Korean journal of radiology, 18(4), 570-
584.

4. Klyuchnikov, N., Trofimov, I., Artemova, E., Salnikov, 
M., Fedorov, M., Filippov, A., & Burnaev, E. (2022). Nas-

https://ieeexplore.ieee.org/abstract/document/7508408/
https://ieeexplore.ieee.org/abstract/document/7508408/
https://ieeexplore.ieee.org/abstract/document/7508408/
https://ieeexplore.ieee.org/abstract/document/7508408/
https://www.cv-foundation.org/openaccess/content_cvpr_2015/html/Szegedy_Going_Deeper_With_2015_CVPR_paper.html
https://www.cv-foundation.org/openaccess/content_cvpr_2015/html/Szegedy_Going_Deeper_With_2015_CVPR_paper.html
https://www.cv-foundation.org/openaccess/content_cvpr_2015/html/Szegedy_Going_Deeper_With_2015_CVPR_paper.html
https://www.cv-foundation.org/openaccess/content_cvpr_2015/html/Szegedy_Going_Deeper_With_2015_CVPR_paper.html
https://synapse.koreamed.org/articles/1027354
https://synapse.koreamed.org/articles/1027354
https://synapse.koreamed.org/articles/1027354
https://synapse.koreamed.org/articles/1027354
https://ieeexplore.ieee.org/abstract/document/9762315/
https://ieeexplore.ieee.org/abstract/document/9762315/


   Volume 3 | Issue 3 | 6J Math Techniques Comput Math, 2024

bench-nlp: neural architecture search benchmark for natural 
language processing. IEEE Access, 10, 45736-45747.

5. Lu, Z., Whalen, I., Dhebar, Y., Deb, K., Goodman, E. D., 
Banzhaf, W., & Boddeti, V. N. (2020). Multiobjective 
evolutionary design of deep convolutional neural networks 
for image classification. IEEE Transactions on Evolutionary 
Computation, 25(2), 277-291.

6. Zhang, T., Lei, C., Zhang, Z., Meng, X. B., & Chen, C. 
P. (2021). AS-NAS: Adaptive scalable neural architecture 
search with reinforced evolutionary algorithm for deep 
learning. IEEE Transactions on Evolutionary Computation, 
25(5), 830-841.

7. Sun, Y., Sun, X., Fang, Y., Yen, G. G., & Liu, Y. (2021). 
A novel training protocol for performance predictors of 
evolutionary neural architecture search algorithms. IEEE 
Transactions on Evolutionary Computation, 25(3), 524-
536.

8. Verma, M., Sinha, P., Goyal, K., Verma, A., & Susan, S. 
(2019, June). A novel framework for neural architecture 
search in the hill climbing domain. In 2019 IEEE Second 
International Conference on Artificial Intelligence and 
Knowledge Engineering (AIKE) (pp. 1-8). IEEE.

9. Zhang, H., Jin, Y., Cheng, R., & Hao, K. (2020). Efficient 
evolutionary search of attention convolutional networks via 
sampled training and node inheritance. IEEE Transactions 
on Evolutionary Computation, 25(2), 371-385.

10. Liang, H., Zhang, S., Sun, J., He, X., Huang, W., Zhuang, 
K., & Li, Z. (2019). Darts+: Improved differentiable 
architecture search with early stopping. arXiv preprint 
arXiv:1909.06035.

11. Li, L., & Talwalkar, A. (2020, August). Random search and 
reproducibility for neural architecture search. In Uncertainty 
in artificial intelligence (pp. 367-377). PMLR.

12. Chu, X., Zhou, T., Zhang, B., & Li, J. (2020, August). 
Fair darts: Eliminating unfair advantages in differentiable 
architecture search. In European conference on computer 
vision (pp. 465-480). Cham: Springer International 
Publishing.

13. Heuillet, A., Tabia, H., Arioui, H., & Youcef-Toumi, K. 
(2023). D-DARTS: Distributed differentiable architecture 
search. Pattern Recognition Letters, 176, 42-48.

14. Cummings, D., Sarah, A., Sridhar, S. N., Szankin, M., 
Munoz, J. P., & Sundaresan, S. (2022). A hardware-aware 
framework for accelerating neural architecture search 
across modalities. arXiv preprint arXiv:2205.10358.

15.  Ying, C., Klein, A., Christiansen, E., Real, E., Murphy, 
K., & Hutter, F. (2019, May). Nas-bench-101: Towards 
reproducible neural architecture search. In International 
conference on machine learning (pp. 7105-7114). PMLR.

16. Cassimon, T., Vanneste, S., Bosmans, S., Mercelis, S., & 
Hellinckx, P. (2020). Using neural architecture search 
to optimize neural networks for embedded devices. In 
Advances on P2P, Parallel, Grid, Cloud and Internet 
Computing: Proceedings of the 14th International 
Conference on P2P, Parallel, Grid, Cloud and Internet 
Computing (3PGCIC-2019) 14 (pp. 684-693). Springer 
International Publishing.

17. Cheng, A. C., Dong, J. D., Hsu, C. H., Chang, S. H., Sun, M., 

Chang, S. C., ... & Juan, D. C. (2018, November). Searching 
toward pareto-optimal device-aware neural architectures. In 
Proceedings of the international conference on computer-
aided design (pp. 1-7).

18. Mozejko, M., Latkowski, T., Treszczotko, L., Szafraniuk, 
M., & Trojanowski, K. (2020). Superkernel neural 
architecture search for image denoising. In Proceedings of 
the IEEE/CVF Conference on Computer Vision and Pattern 
Recognition Workshops (pp. 484-485).

19. Lu, Z., Whalen, I., Dhebar, Y., Deb, K., Goodman, E. D., 
Banzhaf, W., & Boddeti, V. N. (2020). Multiobjective 
evolutionary design of deep convolutional neural networks 
for image classification. IEEE Transactions on Evolutionary 
Computation, 25(2), 277-291.

20. Meng, F., & Wang, Y. (2023). Transformers: Statistical 
interpretation, architectures and applications. Authorea 
Preprints.

21. Meng, B. G. F., & Ghena, B. (2023). Research on text 
recognition methods based on artificial intelligence and 
machine learning. preprint under review.

22. Meng, F., & Demeter, D. (2023). Sentiment analysis with 
adaptive multi-head attention in Transformer. arXiv preprint 
arXiv:2310.14505.

23. Razeghi, M., Dehzangi, A., Wu, D., McClintock, R., Zhang, 
Y., Durlin, Q., ... & Meng, F. (2019, May). Antimonite-
based gap-engineered type-II superlattice materials grown 
by MBE and MOCVD for the third generation of infrared 
imagers. In Infrared Technology and Applications XLV (Vol. 
11002, pp. 108-125). SPIE.

24. Meng, F., Zhang, L., Chen, Y., & Wang, Y. (2023). FedEmb: 
A Vertical and Hybrid Federated Learning Algorithm using 
Network And Feature Embedding Aggregation. arXiv 
preprint arXiv:2312.00102.

25. Meng, F., Zhang, L., Chen, Y., & Wang, Y. (2023). Sample-
based Dynamic Hierarchical Transformer with Layer and 
Head Flexibility via Contextual Bandit. Authorea Preprints.

26. Meng, F., & Wang, C. A. (2023). A Dynamic Interactive 
Learning Interface for Computer Science Education: 
Programming Decomposition Tool. Authorea Preprints.

27. Ling, C., Zhang, C., Wang, M., Meng, F., Du, L., & Yuan, 
X. (2020). Fast structured illumination microscopy via deep 
learning. Photonics Research, 8(8), 1350-1359.

28. Meng, F., Jagadeesan, L., & Thottan, M. (2021). Model-
based reinforcement learning for service mesh fault 
resiliency in a web application-level. arXiv preprint 
arXiv:2110.13621.

29. Wang, Y., Meng, F., Wang, X., & Xie, C. (2023). Optimizing 
the Passenger Flow for Airport Security Check. arXiv 
preprint arXiv:2312.05259.

30. Chen, J. J., Xu, Q., Wang, T., Meng, F. F., Li, Z. W., Fang, L. 
Q., & Liu, W. (2022). A dataset of diversity and distribution 
of rodents and shrews in China. Scientific Data, 9(1), 304.

31. Meng, F., Zhang, L., Wang, Y., & Zhao, Y. (2023). Joint 
detection algorithm for multiple cognitive users in spectrum 
sensing. Authorea Preprints.

32. Meng, B. G. F., & Ghena, B. (2023). Research on text 
recognition methods based on artificial intelligence and 
machine learning. preprint under review.

https://ieeexplore.ieee.org/abstract/document/9762315/
https://ieeexplore.ieee.org/abstract/document/9762315/
https://ieeexplore.ieee.org/abstract/document/9201169/
https://ieeexplore.ieee.org/abstract/document/9201169/
https://ieeexplore.ieee.org/abstract/document/9201169/
https://ieeexplore.ieee.org/abstract/document/9201169/
https://ieeexplore.ieee.org/abstract/document/9201169/
https://ieeexplore.ieee.org/abstract/document/9360872/
https://ieeexplore.ieee.org/abstract/document/9360872/
https://ieeexplore.ieee.org/abstract/document/9360872/
https://ieeexplore.ieee.org/abstract/document/9360872/
https://ieeexplore.ieee.org/abstract/document/9360872/
https://ieeexplore.ieee.org/abstract/document/9336721/
https://ieeexplore.ieee.org/abstract/document/9336721/
https://ieeexplore.ieee.org/abstract/document/9336721/
https://ieeexplore.ieee.org/abstract/document/9336721/
https://ieeexplore.ieee.org/abstract/document/9336721/
https://ieeexplore.ieee.org/abstract/document/8791709/
https://ieeexplore.ieee.org/abstract/document/8791709/
https://ieeexplore.ieee.org/abstract/document/8791709/
https://ieeexplore.ieee.org/abstract/document/8791709/
https://ieeexplore.ieee.org/abstract/document/8791709/
https://ieeexplore.ieee.org/abstract/document/9268174/
https://ieeexplore.ieee.org/abstract/document/9268174/
https://ieeexplore.ieee.org/abstract/document/9268174/
https://ieeexplore.ieee.org/abstract/document/9268174/
https://arxiv.org/abs/1909.06035
https://arxiv.org/abs/1909.06035
https://arxiv.org/abs/1909.06035
https://arxiv.org/abs/1909.06035
http://proceedings.mlr.press/v115/li20c.html
http://proceedings.mlr.press/v115/li20c.html
http://proceedings.mlr.press/v115/li20c.html
https://link.springer.com/chapter/10.1007/978-3-030-58555-6_28
https://link.springer.com/chapter/10.1007/978-3-030-58555-6_28
https://link.springer.com/chapter/10.1007/978-3-030-58555-6_28
https://link.springer.com/chapter/10.1007/978-3-030-58555-6_28
https://link.springer.com/chapter/10.1007/978-3-030-58555-6_28
https://www.sciencedirect.com/science/article/pii/S0167865523002921
https://www.sciencedirect.com/science/article/pii/S0167865523002921
https://www.sciencedirect.com/science/article/pii/S0167865523002921
https://arxiv.org/abs/2205.10358
https://arxiv.org/abs/2205.10358
https://arxiv.org/abs/2205.10358
https://arxiv.org/abs/2205.10358
https://proceedings.mlr.press/v97/ying19a.html
https://proceedings.mlr.press/v97/ying19a.html
https://proceedings.mlr.press/v97/ying19a.html
https://proceedings.mlr.press/v97/ying19a.html
https://link.springer.com/chapter/10.1007/978-3-030-33509-0_64
https://link.springer.com/chapter/10.1007/978-3-030-33509-0_64
https://link.springer.com/chapter/10.1007/978-3-030-33509-0_64
https://link.springer.com/chapter/10.1007/978-3-030-33509-0_64
https://link.springer.com/chapter/10.1007/978-3-030-33509-0_64
https://link.springer.com/chapter/10.1007/978-3-030-33509-0_64
https://link.springer.com/chapter/10.1007/978-3-030-33509-0_64
https://link.springer.com/chapter/10.1007/978-3-030-33509-0_64
https://dl.acm.org/doi/abs/10.1145/3240765.3243494
https://dl.acm.org/doi/abs/10.1145/3240765.3243494
https://dl.acm.org/doi/abs/10.1145/3240765.3243494
https://dl.acm.org/doi/abs/10.1145/3240765.3243494
https://dl.acm.org/doi/abs/10.1145/3240765.3243494
http://openaccess.thecvf.com/content_CVPRW_2020/html/w31/Mozejko_Superkernel_Neural_Architecture_Search_for_Image_Denoising_CVPRW_2020_paper.html
http://openaccess.thecvf.com/content_CVPRW_2020/html/w31/Mozejko_Superkernel_Neural_Architecture_Search_for_Image_Denoising_CVPRW_2020_paper.html
http://openaccess.thecvf.com/content_CVPRW_2020/html/w31/Mozejko_Superkernel_Neural_Architecture_Search_for_Image_Denoising_CVPRW_2020_paper.html
http://openaccess.thecvf.com/content_CVPRW_2020/html/w31/Mozejko_Superkernel_Neural_Architecture_Search_for_Image_Denoising_CVPRW_2020_paper.html
http://openaccess.thecvf.com/content_CVPRW_2020/html/w31/Mozejko_Superkernel_Neural_Architecture_Search_for_Image_Denoising_CVPRW_2020_paper.html
https://ieeexplore.ieee.org/abstract/document/9201169/
https://ieeexplore.ieee.org/abstract/document/9201169/
https://ieeexplore.ieee.org/abstract/document/9201169/
https://ieeexplore.ieee.org/abstract/document/9201169/
https://ieeexplore.ieee.org/abstract/document/9201169/
https://ieeexplore.ieee.org/abstract/document/9201169/
https://ieeexplore.ieee.org/abstract/document/9201169/
https://ieeexplore.ieee.org/abstract/document/9201169/
http://www.hillpublisher.com/UpFile/202311/20231130191638.pdf
http://www.hillpublisher.com/UpFile/202311/20231130191638.pdf
http://www.hillpublisher.com/UpFile/202311/20231130191638.pdf
https://arxiv.org/abs/2310.14505
https://arxiv.org/abs/2310.14505
https://arxiv.org/abs/2310.14505
https://www.spiedigitallibrary.org/conference-proceedings-of-spie/11002/110020G/Antimonite-based-gap-engineered-type-II-superlattice-materials-grown-by/10.1117/12.2521173.short
https://www.spiedigitallibrary.org/conference-proceedings-of-spie/11002/110020G/Antimonite-based-gap-engineered-type-II-superlattice-materials-grown-by/10.1117/12.2521173.short
https://www.spiedigitallibrary.org/conference-proceedings-of-spie/11002/110020G/Antimonite-based-gap-engineered-type-II-superlattice-materials-grown-by/10.1117/12.2521173.short
https://www.spiedigitallibrary.org/conference-proceedings-of-spie/11002/110020G/Antimonite-based-gap-engineered-type-II-superlattice-materials-grown-by/10.1117/12.2521173.short
https://www.spiedigitallibrary.org/conference-proceedings-of-spie/11002/110020G/Antimonite-based-gap-engineered-type-II-superlattice-materials-grown-by/10.1117/12.2521173.short
https://www.spiedigitallibrary.org/conference-proceedings-of-spie/11002/110020G/Antimonite-based-gap-engineered-type-II-superlattice-materials-grown-by/10.1117/12.2521173.short
https://arxiv.org/abs/2312.00102
https://arxiv.org/abs/2312.00102
https://arxiv.org/abs/2312.00102
https://arxiv.org/abs/2312.00102
https://www.techrxiv.org/doi/full/10.36227/techrxiv.24680943.v1
https://www.techrxiv.org/doi/full/10.36227/techrxiv.24680943.v1
https://www.techrxiv.org/doi/full/10.36227/techrxiv.24680943.v1
https://www.techrxiv.org/doi/full/10.36227/techrxiv.24613701.v1
https://www.techrxiv.org/doi/full/10.36227/techrxiv.24613701.v1
https://www.techrxiv.org/doi/full/10.36227/techrxiv.24613701.v1
https://opg.optica.org/abstract.cfm?uri=prj-8-8-1350
https://opg.optica.org/abstract.cfm?uri=prj-8-8-1350
https://opg.optica.org/abstract.cfm?uri=prj-8-8-1350
https://arxiv.org/abs/2110.13621
https://arxiv.org/abs/2110.13621
https://arxiv.org/abs/2110.13621
https://arxiv.org/abs/2110.13621
https://arxiv.org/abs/2312.05259
https://arxiv.org/abs/2312.05259
https://arxiv.org/abs/2312.05259
https://www.nature.com/articles/s41597-022-01422-2
https://www.nature.com/articles/s41597-022-01422-2
https://www.nature.com/articles/s41597-022-01422-2
https://www.techrxiv.org/doi/full/10.36227/techrxiv.24566077.v1
https://www.techrxiv.org/doi/full/10.36227/techrxiv.24566077.v1
https://www.techrxiv.org/doi/full/10.36227/techrxiv.24566077.v1
http://www.hillpublisher.com/UpFile/202311/20231130191638.pdf
http://www.hillpublisher.com/UpFile/202311/20231130191638.pdf
http://www.hillpublisher.com/UpFile/202311/20231130191638.pdf


   Volume 3 | Issue 3 | 7J Math Techniques Comput Math, 2024

33. Meng, F., & Demeter, D. (2023). Sentiment analysis with 
adaptive multi-head attention in Transformer. arXiv preprint 
arXiv:2310.14505.

34. Razeghi, M., Dehzangi, A., Wu, D., McClintock, R., Zhang, 
Y., Durlin, Q., ... & Meng, F. (2019, May). Antimonite-
based gap-engineered type-II superlattice materials grown 
by MBE and MOCVD for the third generation of infrared 
imagers. In Infrared Technology and Applications XLV (Vol. 
11002, pp. 108-125). SPIE.

35. Meng, F., Zhang, L., Chen, Y., & Wang, Y. (2023). FedEmb: 
A Vertical and Hybrid Federated Learning Algorithm using 
Network And Feature Embedding Aggregation. arXiv 
preprint arXiv:2312.00102.

36. Meng, F., Zhang, L., Chen, Y., & Wang, Y. (2023). Sample-
based Dynamic Hierarchical Transformer with Layer and 
Head Flexibility via Contextual Bandit. Authorea Preprints.

37. Meng, F., & Wang, C. A. (2023). A Dynamic Interactive 
Learning Interface for Computer Science Education: 
Programming Decomposition Tool. Authorea Preprints.

38. Ling, C., Zhang, C., Wang, M., Meng, F., Du, L., & Yuan, 
X. (2020). Fast structured illumination microscopy via deep 
learning. Photonics Research, 8(8), 1350-1359.

39. Meng, F., Jagadeesan, L., & Thottan, M. (2021). Model-
based reinforcement learning for service mesh fault 
resiliency in a web application-level. arXiv preprint 
arXiv:2110.13621.

40. Wang, Y., Meng, F., Wang, X., & Xie, C. (2023). Optimizing 
the Passenger Flow for Airport Security Check. arXiv 
preprint arXiv:2312.05259.

41. Chen, J. J., Xu, Q., Wang, T., Meng, F. F., Li, Z. W., Fang, L. 
Q., & Liu, W. (2022). A dataset of diversity and distribution 
of rodents and shrews in China. Scientific Data, 9(1), 304.

42. Meng, F., Zhang, L., Wang, Y., & Zhao, Y. (2023). Joint 
detection algorithm for multiple cognitive users in spectrum 
sensing. Authorea Preprints.

43. Meng, F., & Wang, Y. (2023). Transformers: Statistical 
interpretation, architectures and applications. Authorea 
Preprints.

Copyright: ©2024 Fanfei Meng, et al. This is an open-access article 
distributed under the terms of the Creative Commons Attribution License, 
which permits unrestricted use, distribution, and reproduction in any 
medium, provided the original author and source are credited.

https://opastpublishers.com

https://arxiv.org/abs/2310.14505
https://arxiv.org/abs/2310.14505
https://arxiv.org/abs/2310.14505
https://www.spiedigitallibrary.org/conference-proceedings-of-spie/11002/110020G/Antimonite-based-gap-engineered-type-II-superlattice-materials-grown-by/10.1117/12.2521173.short
https://www.spiedigitallibrary.org/conference-proceedings-of-spie/11002/110020G/Antimonite-based-gap-engineered-type-II-superlattice-materials-grown-by/10.1117/12.2521173.short
https://www.spiedigitallibrary.org/conference-proceedings-of-spie/11002/110020G/Antimonite-based-gap-engineered-type-II-superlattice-materials-grown-by/10.1117/12.2521173.short
https://www.spiedigitallibrary.org/conference-proceedings-of-spie/11002/110020G/Antimonite-based-gap-engineered-type-II-superlattice-materials-grown-by/10.1117/12.2521173.short
https://www.spiedigitallibrary.org/conference-proceedings-of-spie/11002/110020G/Antimonite-based-gap-engineered-type-II-superlattice-materials-grown-by/10.1117/12.2521173.short
https://www.spiedigitallibrary.org/conference-proceedings-of-spie/11002/110020G/Antimonite-based-gap-engineered-type-II-superlattice-materials-grown-by/10.1117/12.2521173.short
https://arxiv.org/abs/2312.00102
https://arxiv.org/abs/2312.00102
https://arxiv.org/abs/2312.00102
https://arxiv.org/abs/2312.00102
https://www.techrxiv.org/doi/full/10.36227/techrxiv.24680943.v1
https://www.techrxiv.org/doi/full/10.36227/techrxiv.24680943.v1
https://www.techrxiv.org/doi/full/10.36227/techrxiv.24680943.v1
https://www.techrxiv.org/doi/full/10.36227/techrxiv.24613701.v1
https://www.techrxiv.org/doi/full/10.36227/techrxiv.24613701.v1
https://www.techrxiv.org/doi/full/10.36227/techrxiv.24613701.v1
https://opg.optica.org/abstract.cfm?uri=prj-8-8-1350
https://opg.optica.org/abstract.cfm?uri=prj-8-8-1350
https://opg.optica.org/abstract.cfm?uri=prj-8-8-1350
https://arxiv.org/abs/2110.13621
https://arxiv.org/abs/2110.13621
https://arxiv.org/abs/2110.13621
https://arxiv.org/abs/2110.13621
https://arxiv.org/abs/2312.05259
https://arxiv.org/abs/2312.05259
https://arxiv.org/abs/2312.05259
https://www.nature.com/articles/s41597-022-01422-2
https://www.nature.com/articles/s41597-022-01422-2
https://www.nature.com/articles/s41597-022-01422-2
https://www.techrxiv.org/doi/full/10.36227/techrxiv.24566077.v1
https://www.techrxiv.org/doi/full/10.36227/techrxiv.24566077.v1
https://www.techrxiv.org/doi/full/10.36227/techrxiv.24566077.v1
https://www.techrxiv.org/doi/full/10.36227/techrxiv.24638811.v1
https://www.techrxiv.org/doi/full/10.36227/techrxiv.24638811.v1
https://www.techrxiv.org/doi/full/10.36227/techrxiv.24638811.v1

