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Abstract 
Significant changes is being experienced in the climate system due to the unprecedented rate of global warming. This 
has resulted in the increased frequency of weather extreme events which such as heatwave occurrence in the northern 
Nigeria. In order to mitigate the effects of heatwaves, early warning systems are needed to be implemented. Insufficient 
knowledge about the performance of the models is partly a factor that hinders the development of such systems. This 
study thus, addresses the gap by assessing the predictability skills of sub-seasonal to seasonal numerical weather model 
over different time lead and as well improves the predictability skills through the incorporation of deep learning to bias 
correct the model output at a 30-day lead period. The Excess heat index (EHI) was used to detect heatwave occurrence  
over  the study area, using  both observational and forecast data from selected S2S models at 5 -, 7 -, 15 -, and 30 – days 
lead time. Metrics employed to evaluate the skills of the models are; the Anomaly corelation coefficient (ACC), Symmet-
ric External Dependency Index (SEDI) with each evaluating different strength of the models. The result of the analysis 
shows that the three models considered in this research overestimates the heat wave frequency in the region. This results 
in reduced reliability of the models in the region. Further analyses shows that the use of deep learning to bias the model 
output increases the forecast reliability in the region significantly. 
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1. Introduction
Heat wave refers to periods of extended heat and or weather in 
periods of high humidity in reference to normal climate patterns 
of an area. It is responsible for immediate changes in lifestyle and 
depending on the intensity may have severe impact on health of 
the population. Heatwave has been seen experiencing an increas-
ing trend in major part of the world, both at regional and global 
scale according too several studies among other climate extremes 
due to climate change. According to the Intergovernmental Panel 
on Climate Change (IPCC), it was agreed upon that the continuous 
increase in earth’s global average temperature is unequivocal as it 
is clearly observed from the increase in earth’s average air and sea 
temperatures, rising sea level and as well melting of the glaciers 
and sea ice (IPCC 2007d). Within the past century, earth’s average 
temperatures have increased by approximately 0.75°C and the lev-
el of sea rise is over 4 centimeters (IPCC 2007c). Future projection 
warnings shows increase in severity of thermal discomfort for hu-
mans due to global warming. 

Heatwave impact which can be felt on several sector such as health 

sector, Agricultural sector, energy sector, economic sector and sev-
eral other socio-economical sectors as shown in respectively. As 
different locations (or regions) have different weather character-
istics, geographical features, human activities, and population the 
effect and severity of heatwave occurrences differs. The variabil-
ities in the climate trend experienced in recent times thus arouse 
interest of researchers in investigating the variability and extremes 
associated with temperature in the tropical region. Analysis by 
shows significant increase in the frequencies of extreme heat 
waves and reduced frequency of cold extreme events. It is also 
found in a study to investigate the changes in daily temperature 
indices and precipitation extremes in Northwestern Nigeria that 
significant increase in temperature indices that are related to tem-
perature increase.  Changes in extreme temperature and precipita-
tion indices in Kaduna (Northern Nigeria) by shows similar trend. 

Several indices have also been used to define and calculate warm 
or cold spells (heat or cold wave). This index employs the use of a 
number of time steps in daily maximum or minimum temperature 
above a particular threshold value which has been widely used. 
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The combination of threshold exceeding certain values of both 
daytime maximum or nighttime minimum temperatures has also 
been used. The latter defines heat wave event as at least three days 
with a maximum temperature above the 90th percentile (based on 
climatic reference period) for that day followed by a minimum 
temperature above the 80th percentile for that day. This was done 
to include periods with warm daily maximum temperatures with 
much of the heat still trapped at night causing a warmer night. This 
study assess the performance of sub-seasonal to seasonal numer-
ical models in predicting heat wave. It also aim to improve heat 
wave predictability using Deep learning approach to post process 
the model output.

2. Data and Methods
The National Centers for Environmental Prediction (NCEP) Cli-

mate Forecast System version 2 (CFSv2), the ECMWF seasonal 
forecast system (SEAS5) and the UK Met Office seasonal forecast 
system  (GloSea5-GC2-LI) were selected as medium-range fore-
cast models to evaluate the prediction skills of Heatwaves  in the 
Northern Nigeria at the synoptic to subseasonal lead-times. These 
three models provides hindcasts for daily maximum temperature 
(Tmax). The main reason for the preference of this models is that 
the ECMWF has been proven to be highly skilful. Also, the Na-
tional meteorological services can easily access the models high 
resolution forecast data (including the 2 metre maximum tempera-
ture).

2.1 Forecast Models
The Forecast model used in this study is summarized below;

MODEL CFsv2 SEAS5 GloSea5-GC2-LI
Department National Centers for Environ-

mental Prediction (NCEP)
ECMWF UK Met Office

Group/ Project Climate Forecast System 
version 2

Hindcast Period 1982-2010 1981-2016
Frequency Daily Monthly weekly
Time range 9 months 30 days 60 days
Atmospheric Model CFSR IFS Cy43R1 Met Office Unified Model 

(UM) - Global Atmosphere 6.0
Ocean Model GFDL MOM4 NEMO3.4 NEMO v3.4 - Global Ocean 

5.0
Sea Ice Model Sea-Ice Model LIM2 CICE v4.1 - Global Sea-Ice 6.0
Land Surface Model NOAH land HTESSEL JULES - Global Land 6.0
Initial Condition The Climate Forecast

System Reanalysis
(CFSR)

ERA-Interim Reanalysis,
ORAS5 reanalysis 

Met Office operational numer-
ical weather prediction (NWP) 
4D-Var data assimilation 
system

 Table 2.1: Seasonal to Sub-seasonal Numerical Model and their properties

2.2 Heat Wave Metrics
Excess heat index (EHI) is a well-known heat wave metric used 
for heat waves identification and intensity measure. It is high heat 
arising from a high daytime temperature that is not sufficiently dis-
charged overnight due to unusually high overnight temperature. A 
three-day running mean maximum temperature is compared to a 
climate reference value to indicate the unusually high heat in an 
excess heat index. This is referred to as long-term (climatescale) 
temperature anomaly. 

EHI is a perfect metrics for nationally consistent heat wave service 
since it includes analysis and forecasts of low-intensity heat waves 
and for this reason, it will be used for identifying heat wave events 
in this study. 

Excess heat index is calculated as follows:

Where;
 𝑇95 is the 95th percentile of daily temperature,
 𝑇𝑖 is the maximum temperature on day i.
The 𝐸𝐻𝐼𝑠𝑖𝑔 is in effect an anomaly of three-day daily maximum 
temperature with respect to climatological 95th percentile of the 
daily maximum temperature. If the 𝐸𝐻𝐼𝑠𝑖𝑔 is positive, then the 
Three-Day Period (TDP) is unusually warm with respect to local 
annual climate. Conversely, if 𝐸𝐻𝐼𝑠𝑖𝑔 is negative or zero, then the 
TDP cannot be considered as unusually hot, and so for a heatwave 
to be present, we require 𝐸𝐻𝐼𝑠𝑖𝑔 to be positive. 

2.2 Heat Wave Metrics 

Excess heat index (EHI) is a well-known heat wave metric used for heat waves identification and 

intensity measure. It is high heat arising from a high daytime temperature that is not sufficiently 

discharged overnight due to unusually high overnight temperature. A three-day running mean 

maximum temperature is compared to a climate reference value to indicate the unusually high 

heat in an excess heat index. This is referred to as long-term (climatescale) temperature anomaly.  

 

EHI is a perfect metrics for nationally consistent heat wave service since it includes analysis and 

forecasts of low-intensity heat waves and for this reason, it will be used for identifying heat wave 

events in this study.  

Excess heat index is calculated as follows: 

𝐸𝐸𝐻𝐻I𝑠𝑠𝑖𝑖𝑔𝑔 =             
 –          (2.1) 

Where; 

  95 is the 95th percentile of daily temperature, 

  𝑖𝑖 is the maximum temperature on day i. 

The 𝐸𝐸𝐻𝐻𝐼𝐼𝑠𝑠𝑖𝑖𝑔𝑔 is in effect an anomaly of three-day daily maximum temperature with respect to 

climatological 95th percentile of the daily maximum temperature. If the 𝐸𝐸𝐻𝐻𝐼𝐼𝑠𝑠𝑖𝑖𝑔𝑔 is positive, then 

the Three-Day Period (TDP) is unusually warm with respect to local annual climate. Conversely, 

if 𝐸𝐸𝐻𝐻𝐼𝐼𝑠𝑠𝑖𝑖𝑔𝑔 is negative or zero, then the TDP cannot be considered as unusually hot, and so for a 

heatwave to be present, we require 𝐸𝐸𝐻𝐻𝐼𝐼𝑠𝑠𝑖𝑖𝑔𝑔 to be positive.  

 

The calculated 𝐸𝐸𝐻𝐻𝐼𝐼𝑠𝑠𝑖𝑖𝑔𝑔 will be compared between ERA 5 reanalysis products and the forecast 

models, so the daily maximum, temperature from ERA 5 reanalysis products are aggregated to 

match the model resolution. As a result, the daily 𝐸𝐸𝐻𝐻𝐼𝐼𝑠𝑠𝑖𝑖𝑔𝑔 from the ERA 5 reanalysis products is 

calculated from Tmax within each of the forecast models individually. Using the method 

described above, heatwaves in the ERA5 dataset and the model datasets are defined for the 

𝐸𝐸𝐻𝐻𝐼𝐼𝑠𝑠𝑖𝑖𝑔𝑔 at each grid cells. The model dataset at each grid point consists of the combination of the 

hindcast dataset and the forecast dataset. The combination of the hindcast and the forecast 

datasets thus span from 2000-2020 for each model at different initialization periods.  

 

2.2 Heat Wave Metrics 

Excess heat index (EHI) is a well-known heat wave metric used for heat waves identification and 

intensity measure. It is high heat arising from a high daytime temperature that is not sufficiently 

discharged overnight due to unusually high overnight temperature. A three-day running mean 

maximum temperature is compared to a climate reference value to indicate the unusually high 

heat in an excess heat index. This is referred to as long-term (climatescale) temperature anomaly.  

 

EHI is a perfect metrics for nationally consistent heat wave service since it includes analysis and 

forecasts of low-intensity heat waves and for this reason, it will be used for identifying heat wave 

events in this study.  

Excess heat index is calculated as follows: 

𝐸𝐸𝐻𝐻I𝑠𝑠𝑖𝑖𝑔𝑔 =             
 –          (2.1) 

Where; 

  95 is the 95th percentile of daily temperature, 

  𝑖𝑖 is the maximum temperature on day i. 

The 𝐸𝐸𝐻𝐻𝐼𝐼𝑠𝑠𝑖𝑖𝑔𝑔 is in effect an anomaly of three-day daily maximum temperature with respect to 

climatological 95th percentile of the daily maximum temperature. If the 𝐸𝐸𝐻𝐻𝐼𝐼𝑠𝑠𝑖𝑖𝑔𝑔 is positive, then 

the Three-Day Period (TDP) is unusually warm with respect to local annual climate. Conversely, 

if 𝐸𝐸𝐻𝐻𝐼𝐼𝑠𝑠𝑖𝑖𝑔𝑔 is negative or zero, then the TDP cannot be considered as unusually hot, and so for a 

heatwave to be present, we require 𝐸𝐸𝐻𝐻𝐼𝐼𝑠𝑠𝑖𝑖𝑔𝑔 to be positive.  

 

The calculated 𝐸𝐸𝐻𝐻𝐼𝐼𝑠𝑠𝑖𝑖𝑔𝑔 will be compared between ERA 5 reanalysis products and the forecast 

models, so the daily maximum, temperature from ERA 5 reanalysis products are aggregated to 

match the model resolution. As a result, the daily 𝐸𝐸𝐻𝐻𝐼𝐼𝑠𝑠𝑖𝑖𝑔𝑔 from the ERA 5 reanalysis products is 

calculated from Tmax within each of the forecast models individually. Using the method 

described above, heatwaves in the ERA5 dataset and the model datasets are defined for the 

𝐸𝐸𝐻𝐻𝐼𝐼𝑠𝑠𝑖𝑖𝑔𝑔 at each grid cells. The model dataset at each grid point consists of the combination of the 

hindcast dataset and the forecast dataset. The combination of the hindcast and the forecast 

datasets thus span from 2000-2020 for each model at different initialization periods.  

 



  Volume 1 | Issue 1 | 15Env Sci Climate Res, 2023

The calculated 𝐸𝐻𝐼𝑠𝑖𝑔 will be compared between ERA 5 reanalysis 
products and the forecast models, so the daily maximum, tempera-
ture from ERA 5 reanalysis products are aggregated to match the 
model resolution. As a result, the daily 𝐸𝐻𝐼𝑠𝑖𝑔 from the ERA 5 
reanalysis products is calculated from Tmax within each of the 
forecast models individually. Using the method described above, 
heatwaves in the ERA5 dataset and the model datasets are defined 
for the 𝐸𝐻𝐼𝑠𝑖𝑔 at each grid cells. The model dataset at each grid 
point consists of the combination of the hindcast dataset and the 
forecast dataset. The combination of the hindcast and the forecast 
datasets thus span from 2000-2020 for each model at different ini-

tialization periods.

2.3 Forecast Evaluation Metrics
To evaluate the skills of the models in predicting heatwave, evalu-
ation metrics as presented in are used;

2.3.1 Anomaly Correlation Coefficients
Anomaly Correlation Coefficient (ACC) is one of the most widely 
used measures in the verification of spatial fields. It is the correla-
tion between anomalies of model data and observational value. 
ACC is mathematically defined as;
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Where; Fi, Ai, and Ci represent forecast, verifying value, and ref-
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coefficient. It indicates the strength of the association between the 
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Hits - represents the instances heatwaves were detected in the observational data as well as the 

model data 

Misses - represents the instances heatwaves were detected in the observational data but not 

detected from the model data 

False alarms - represents the instances heatwaves were not detected in the observational data but 

detected from the model data 

Correct Negatives - represents the instances heatwaves were not detected in the observational 

data as well as from the model data 
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system which is worse.   

 

 Observed 

Yes No 

Forecast Yes Hits False alarm 

No Misses Correct negative 

Table 2.2: Contingency Table of heatwave occurrence between a deterministic forecast and the 

observation 

 

Hits - represents the instances heatwaves were detected in the observational data as well as the model data
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tion skills of numerical models involves assessing the agreement 
between the observed frequency of heatwave occurrence and the 
hindcast probabilities of dichotomous outcome (e.g., occurrence/
non-occurrence) of heatwaves. 

Reliability score measures the accuracy of a forecast model in pre-
dicting extreme events. It is typically calculated as the ratio of the 
number of observed events that were correctly forecast to the total 
number of events predicted by the model.

The formula for the reliability score is:

The reliability score can take values between 0 and 1, with 0 in-
dicating that the model's forecasts are completely unreliable and 
1 indicating that the model's forecasts are perfectly reliable. This 
range of values is widely accepted in the literature, as discussed in 
sources such as.

2.4 Deep Learning for bias correction 
Deep Learning provides the potential avenue to develop and im-
prove S2S forecasts systems with significantly lower computation-
al costs. Here, a grid specific data-driven deep learning heat wave 
bias correction model is developed. The model takes the daily 

output predictions of the three seasonal to sub-seasonal numerical 
model used in this study as features and takes a binary data of heat 
wave occurrence computed from the Era-5 reanalysis datasets as 
labels (0 means no heat wave occurrence while 1 means heat wave 
occurrence). The model is designed for each grid point using data 
from years 1990 – 2005 as training dataset and the model is vali-
dated on datasets from 2005 -2015. The data from 2015-2020 are 
used as test sets. The model is then used to predict a dichotomous 
output of heat wave occurrence within the study period.

The model architecture is designed as shown in the table below;

Model Layers Activation Funtction
64 Relu
40 Relu
32 Relu
24 Relu
12 Relu
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6 Relu
1 Sigmoid

Table 2.3: Deep learning model architecture

Other functions included in the model at compilation stage:
Loss = ‘binary_crossentropy’
Optimizer = ‘Adam’
Metrics = ‘accuracy’ 
Best model fit functions such as epochs and batch sizes were se-
lected per grid point using the Grid Search option to get the best 
loss magnitude size. 

3. Results and Discussion
The temperature hindcast of the models are evaluated against the 

re-analysis (ERA5) dataset using Pearson correlation. Fig 3.1 
reveals that the correlation shows high relationship between the 
NCEP’s CSFV2 model at all-time leads in major part of the study 
area except the 7-days’ time lead. The model shows maximum 
correlation with values of 0.6 in the northern part to 0.8 in the 
southern part of the study area at 15-days’ time lead. The average 
correlation at is observed to be 0.4 at both 5-days and 30-days’ 
time leads in major part while the northern part shows correlation 
of 0.2. The 7-days’ time lead generally shows a weak negative cor-
relation with value of -0.2 in major part of the study area.   

in the southern part of the study area at 15-days‘ time lead. The average correlation at is 

observed to be 0.4 at both 5-days and 30-days‘ time leads in major part while the northern part 

shows correlation of 0.2. The 7-days‘ time lead generally shows a weak negative correlation with 

value of -0.2 in major part of the study area..    

 

 

Figure 3.1: Correlation co-efficient between the NCEP CSFV2 and ERA5 reanalysis data of 

maximum temperature at 5-days, 7-days, 15-days and 30-days time lead. 

 

The UKMO hindcast correlation shows that the 5-days lead period have the weakest correlation 

especially in the northern region with value of 0.5 and increase southward with observed value of 

0.6 in the in the central region. Both the 7-days and 15-days time lead shows average spatial 

correlation of 0.7 while the 30-days lead period shows 0.6. Generally, a local maximum in the 

southern part of the region is observed at all time lead. 

Figure 3.1: Correlation co-efficient between the NCEP CSFV2 and ERA5 reanalysis data of maximum temperature at 5-days, 7-days, 
15-days and 30-days time lead.

The UKMO hindcast correlation shows that the 5-days lead period have the weakest correlation especially in the northern region with 
value of 0.5 and increase southward with observed value of 0.6 in the in the central region. Both the 7-days and 15-days time lead shows 
average spatial correlation of 0.7 while the 30-days lead period shows 0.6. Generally, a local maximum in the southern part of the region 
is observed at all time lead.
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Figure 3.2: Correlation co-efficient between the UKMO GloSea5-GC2-LI and ERA5 reanalysis 

data of maximum temperature at 5-days, 7-days, 15-days and 30-days time lead. 

The ECMWF model only available at 30-days time lead shows a southward increase in the 

correlation coefficient. The plot shows 0.5, 0.6 and 0.7 magnitude for the correlation coefficient 

in the norther, central and southern part of the study area. 

 

 

Figure 3.3: Correlation co-efficient between the ECMWF SEAS5 and ERA5 reanalysis data of 

maximum temperature at 30-days time lead. 
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Figure 3.2: Correlation co-efficient between the UKMO GloSea5-GC2-LI and ERA5 reanalysis data of maximum temperature at 
5-days, 7-days, 15-days and 30-days time lead.

The ECMWF model only available at 30-days time lead shows a southward increase in the correlation coefficient. The plot shows 0.5, 
0.6 and 0.7 magnitude for the correlation coefficient in the norther, central and southern part of the study area.

Figure 3.3: Correlation co-efficient between the ECMWF SEAS5 and ERA5 reanalysis data of maximum temperature at 30-days time 
lead.

The evaluation of the predictability skills of the models are done 
using complimentary metrics: Reliability; Equitable Threat Score 
(ETS), Symetric External Dependency Index (SEDI). These metrics 
are selected as they evaluate different facet of the forecast skills of 
the model. AUC measures the discrimination, this implies that the 
higher the AUC score the more the forecast have prediction hits and 
the lower the false positives. Both the reliability and ETS score met-
rics rewards the consistency in the models while penalizing false 
positives and false negatives. However, Reliability assess the en-
semble member while the ETS assesses the ensemble mean. SEDI 
score offers the possibility of assessing the general performance of a 
forecast system and its ability to predict rare extreme events. An im-
portant property of this metric is its resistance to ‘hedging’ (i.e when 
a forecast that is issued differs from the forecast which would have 
been given). The metrics, when all evaluated on a model provides a 
detailed evaluation of each model heat wave predictability skill. The 

forecast lead time in this research are 5, 7, 15, 30- day lead period 
for the NCEP’s CFsv2 and UK Met Office GloSea5-GC2-LI while 
the ECMWF SEAS5 model has a 30-day lead time forecast only.

3.1. NCEP’s CFsv2
Fig 3.1.1 shows reliability maps for dichotomous heat wave hind-
casts with lead times of 5, 7, 15, and 30 days. The model's reliability 
decreases as values approach 0, and increases as they approach 1. 
The model's estimation of heatwave occurrence is either an under-
estimation or overestimation when compared to the observational 
data (Perfect Forecast). Based on the reliability plots for 5-day, 15-
day, and 30-day lead times, it appears that the model tends be less 
reliable in predicting heatwave occurrence in most of the region as 
the reliability score is averagely between 0.2 and 0.3. However, the 
reliability of the model further decrease at the 5-day lead time.
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Figure 3.1.1: NCEP CFsv2 Reliability Map at 5 -, 7 -, 15 -, and 30 – days lead period 

 

Temporal Autocorrelation bias maps of dichotomous heat wave hindcasts are plotted for 5-day, 

7-day, 15-day, 30-day lead time (fig 2 (a-d)). The plots at 5-day, 15-day and 30-day lead time 

indicates that the CFsv2 model overestimates the autocorrelation (i.e persistence of maximum 

temperature). This thus implies that the model overestimates the heat wave frequency in the 

whole region causing the model to be less reliable in the whole region at these lead periods. 

Although, at 30-day lead time, the over-estimation is relatively low when compared to the other 

lead time. It is also observed that with decreasing lead time, the model over-estimation of heat 

wave increases. Also, the 7-day lead time model output shows the maximum over-estimation of 

heat wave frequency. 

 

 

 

 

 

 

 

Figure 3.1.1: NCEP CFsv2 Reliability Map at 5 -, 7 -, 15 -, and 30 – days lead period
Temporal Autocorrelation bias maps of dichotomous heat wave 
hindcasts are plotted for 5-day, 7-day, 15-day, 30-day lead time 
(fig 2 (a-d)). The plots at 5-day, 15-day and 30-day lead time indi-
cates that the CFsv2 model overestimates the autocorrelation (i.e 
persistence of maximum temperature). This thus implies that the 
model overestimates the heat wave frequency in the whole region 
causing the model to be less reliable in the whole region at these 
lead periods. Although, at 30-day lead time, the over-estimation is 

relatively low when compared to the other lead time. It is also ob-
served that with decreasing lead time, the model over-estimation 
of heat wave increases. Also, the 7-day lead time model output 
shows the maximum over-estimation of heat wave frequency.

Finally, the model does not under-estimate the heat wave frequen-
cy has no negative value across all the lead times.

Finally, the model does not under-estimate the heat wave frequency has no negative value across 

all the lead times. 

Figure 3.1.2: NCEP CFsv2 Auto-correlation bias at 5 -, 7 -, 15 -, and 30 – days lead period  

 

The CFsv2 model's equitable threat score (ETS) maps for heat wave prediction indicate that the 

model's heat wave prediction abilities are generally weak in the region, as demonstrated by the 

low ETS scores generated at all lead times. However, the ETS scores improve at 15-day and 30-

day lead times, with values reaching up to 0.15 and 0.13, respectively. As the lead time 

decreases, the ETS score also decreases, with the maximum score being less than 0.1 at 7-day 

and 5-day lead times. Additionally, a longitudinal peak is observed at 15-day and 30-day lead 

times (6.27oE, 10.27oE, and 14.27oE), which corresponds to the area of maximum reliability. 

Regions where the forecast model performs more along those longitudes are observed to have 

certain features. The maxima at the North-East part of the region can be attributed to the 

presence of lake in the region while the maxima at the North-West and North-Central can be 

attributed to presence of vegetation in both region which is absent in the surrounding region. 

Figure 3.1.2: NCEP CFsv2 Auto-correlation bias at 5 -, 7 -, 15 -, and 30 – days lead period

The CFsv2 model's equitable threat score (ETS) maps for heat 
wave prediction indicate that the model's heat wave prediction abil-
ities are generally weak in the region, as demonstrated by the low 
ETS scores generated at all lead times. However, the ETS scores 
improve at 15-day and 30-day lead times, with values reaching up 
to 0.15 and 0.13, respectively. As the lead time decreases, the ETS 

score also decreases, with the maximum score being less than 0.1 
at 7-day and 5-day lead times. Additionally, a longitudinal peak 
is observed at 15-day and 30-day lead times (6.27oE, 10.27oE, 
and 14.27oE), which corresponds to the area of maximum reli-
ability. Regions where the forecast model performs more along 
those longitudes are observed to have certain features. The max-
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ima at the North-East part of the region can be attributed to the 
presence of lake in the region while the maxima at the North-West 

and North-Central can be attributed to presence of vegetation in 
both region which is absent in the surrounding region.

Figure 3.1.3: NCEP CFsv2 Equitable Threat score at 5 -, 7 -, 15 -, and 30 – days lead period 

 

The NCEP's CFsv2 performs excellently in terms of hit rate, which increases as time lead 

decreases. Hit rate scores near a perfect score of 1 are observed at 5-day and 7-day lead periods 

with little to no spatial variation. However, the northern part of the region shows an average hit 

rate score of 0.6 to 0.7 at 30-day lead, while a score greater than 0.8 is observed at 15-day lead. 

The model's low reliability is due to its high false alarm rate, indicating overestimation of heat 

wave frequency in the region. A closer examination of false alarm rates reveals that the model 

overestimates heat wave occurrence to a greater extent at lower lead times. At a 30-day lead 

time, lower false alarm rates appear along longitude (6.27, 10.27 and 14.27), which gradually 

decrease at 15-day lead and almost disappear at 7-day and 5-day lead times, likely due to surface 

characteristics of the area. Additionally, the hit rate tends to increase as lead time decreases. The 

high hit rate is most likely attributable to shared bias between the MERRA-2 reanalysis CFS 

reanalysis product, the latter of which is used for initial conditions in the NCEP model. 

Figure 3.1.3: NCEP CFsv2 Equitable Threat score at 5 -, 7 -, 15 -, and 30 – days lead period

The NCEP's CFsv2 performs excellently in terms of hit rate, which 
increases as time lead decreases. Hit rate scores near a perfect 
score of 1 are observed at 5-day and 7-day lead periods with little 
to no spatial variation. However, the northern part of the region 
shows an average hit rate score of 0.6 to 0.7 at 30-day lead, while 
a score greater than 0.8 is observed at 15-day lead. The model's 
low reliability is due to its high false alarm rate, indicating over-
estimation of heat wave frequency in the region. A closer exam-
ination of false alarm rates reveals that the model overestimates 

heat wave occurrence to a greater extent at lower lead times. At a 
30-day lead time, lower false alarm rates appear along longitude 
(6.27, 10.27 and 14.27), which gradually decrease at 15-day lead 
and almost disappear at 7-day and 5-day lead times, likely due to 
surface characteristics of the area. Additionally, the hit rate tends 
to increase as lead time decreases. The high hit rate is most likely 
attributable to shared bias between the MERRA-2 reanalysis CFS 
reanalysis product, the latter of which is used for initial conditions 
in the NCEP model.

Figure 3.1.4: NCEP CFsv2 Hit Rate at 5 -, 7 -, 15 -, and 30 – days lead period 

 

Figure 3.1.5: NCEP CFsv2 False Rate at 5 -, 7 -, 15 -, and 30 – days lead period 

 

The skill of the NCEP‘s CFsv2 in predicting heat wave in the region is assessed using the SEDI 

score. Similarly to the ACCs of the indices, both the 30-day and 15-day lead time model data 

shows larger SEDI score of heatwave prediction than 7-day and 5-day model data showing 

greater skills. At 30-day lead time, the score is as high as 0.64 and few regions of less than 0.2. 

Figure 3.1.4: NCEP CFsv2 Hit Rate at 5 -, 7 -, 15 -, and 30 – days lead period
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Figure 3.1.4: NCEP CFsv2 Hit Rate at 5 -, 7 -, 15 -, and 30 – days lead period 

 

Figure 3.1.5: NCEP CFsv2 False Rate at 5 -, 7 -, 15 -, and 30 – days lead period 

 

The skill of the NCEP‘s CFsv2 in predicting heat wave in the region is assessed using the SEDI 

score. Similarly to the ACCs of the indices, both the 30-day and 15-day lead time model data 

shows larger SEDI score of heatwave prediction than 7-day and 5-day model data showing 

greater skills. At 30-day lead time, the score is as high as 0.64 and few regions of less than 0.2. 

Figure 3.1.5: NCEP CFsv2 False Rate at 5 -, 7 -, 15 -, and 30 – days lead period

The skill of the NCEP’s CFsv2 in predicting heat wave in the re-
gion is assessed using the SEDI score. Similarly to the ACCs of the 
indices, both the 30-day and 15-day lead time model data shows 
larger SEDI score of heatwave prediction than 7-day and 5-day 
model data showing greater skills. At 30-day lead time, the score 
is as high as 0.64 and few regions of less than 0.2. Also, the 15-day 
lead model data has a higher score of up to 0.73 and average of 0.4 
in some areas. 

The skill vanishes quicker as the forecast lead time decreases such 
that there is almost no skill (SEDI score below zero means random 
forecast better than the model) in forecast initialized at 5-day and 
7-day lead period. Though some areas at 7-day lead time still have 
positive SEDI score values but very weak. At 5-day lead period, 
the model perform woefully with the skill of the SEDI score van-
ishing in most areas. Also, the effect of surface characteristics still 
improves the score at places where both water body and vegetation 
are present.

Also, the 15-day lead model data has a higher score of up to 0.73 and average of 0.4 in some 

areas.  

The skill vanishes quicker as the forecast lead time decreases such that there is almost no skill 

(SEDI score below zero means random forecast better than the model) in forecast initialized at 5-

day and 7-day lead period. Though some areas at 7-day lead time still have positive SEDI score 

values but very weak. At 5-day lead period, the model perform woefully with the skill of the 

SEDI score vanishing in most areas. Also, the effect of surface characteristics still improves the 

score at places where both water body and vegetation are present. 

 

Figure 3.1.6: NCEP CFsv2 SEDI Score at 5 -, 7 -, 15 -, and 30 – days lead period 

 

3.2. UK Met Office GloSea5-GC2-LI 

Fig. 6 displays reliability maps for dichotomous heat wave hindcasts with lead times of 5 days, 7 

days, 15 days, and 30 days. Notably, the 30-day lead time exhibits the lowest reliability, with a 

reliability score of 0.3 in much of the region. However, the northwestern part of the study area 

demonstrates improved reliability with a score of 0.5. Conversely, the reliability score gradually 

increases for lower lead times. Additionally, a persistent local maximum of reliability score is 

observed at latitudes 6°E, 10.5°E, and 13°E, while other regions appear to be fairly reliable at 

lead times of 5, 7, and 15 days. 

Figure 3.1.6: NCEP CFsv2 SEDI Score at 5 -, 7 -, 15 -, and 30 – days lead period

3.2. UK Met Office GloSea5-GC2-LI
Fig. 6 displays reliability maps for dichotomous heat wave hind-
casts with lead times of 5 days, 7 days, 15 days, and 30 days. No-
tably, the 30-day lead time exhibits the lowest reliability, with a 
reliability score of 0.3 in much of the region. However, the north-
western part of the study area demonstrates improved reliability 

with a score of 0.5. Conversely, the reliability score gradually in-
creases for lower lead times. Additionally, a persistent local max-
imum of reliability score is observed at latitudes 6°E, 10.5°E, and 
13°E, while other regions appear to be fairly reliable at lead times 
of 5, 7, and 15 days.
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Figure 3.2.1: UKMO Reliability Map at 5 -, 7 -, 15 -, and 30 – days lead period 

 

Temporal Autocorrelation bias maps of dichotomous heat wave hindcasts are plotted for 5-day, 

7-day, 15-day, 30-day lead time (Fig 3.2.2). The plots at 5-day, 7-day, 15-day and 30-day lead 

time indicates that the GloSea5-GC2-LI model overestimates the autocorrelation (i.e persistence 

of maximum temperature). Although, at 30-day lead time, the over-estimation is relatively low 

when compared to the other lead time while at 5-day, 7-day and 15-day lead time, the Northern 

part of the region at longitudes 6.27, 10.27 and 12.27 shows a maximum autocorrelation bias 

score compared to other region. It is also observed that with decreasing lead time, the model 

over-estimation of heat wave increases. This same pattern is observed in the reliability plot. In 

addition, the model as well does not under-estimate the heat wave frequency has no negative 

value across all the lead times. 

Figure 3.2.1: UKMO Reliability Map at 5 -, 7 -, 15 -, and 30 – days lead period

Temporal Autocorrelation bias maps of dichotomous heat wave 
hindcasts are plotted for 5-day, 7-day, 15-day, 30-day lead time 
(Fig 3.2.2). The plots at 5-day, 7-day, 15-day and 30-day lead time 
indicates that the GloSea5-GC2-LI model overestimates the auto-
correlation (i.e persistence of maximum temperature). Although, 
at 30-day lead time, the over-estimation is relatively low when 
compared to the other lead time while at 5-day, 7-day and 15-day 

lead time, the Northern part of the region at longitudes 6.27, 10.27 
and 12.27 shows a maximum autocorrelation bias score compared 
to other region. It is also observed that with decreasing lead time, 
the model over-estimation of heat wave increases. This same pat-
tern is observed in the reliability plot. In addition, the model as 
well does not under-estimate the heat wave frequency has no neg-
ative value across all the lead times.

Figure 3.2.2: UKMO Auto-correlation bias at 5 -, 7 -, 15 -, and 30 – days lead period 

 

3.2.2 Equitable Threat Score  

The GloSea5-GC2-LI model's heat wave prediction is evaluated using the equitable threat score 

(ETS) at different time leads, as displayed in Fig 3.2.3. The maps show that the model has low 

reliability in the region for 15-day and 30-day leads, as evidenced by the low ETS scores. 

However, the reliability of the model improves for 5-day and 7-day leads, with ETS scores of up 

to 0.3 and 0.4, respectively, in some areas. Notably, a reverse trend is observed compared to 

CFsv2, where the reliability increases with increasing time lead. Additionally, the presence of 

water bodies and vegetation has a positive effect on the ETS score, although not as significant as 

observed in NCEP's model. 

Figure 3.2.2: UKMO Auto-correlation bias at 5 -, 7 -, 15 -, and 30 – days lead period

3.2.2 Equitable Threat Score 
The GloSea5-GC2-LI model's heat wave prediction is evaluated 
using the equitable threat score (ETS) at different time leads, as 
displayed in Fig 3.2.3. The maps show that the model has low re-
liability in the region for 15-day and 30-day leads, as evidenced 
by the low ETS scores. However, the reliability of the model im-

proves for 5-day and 7-day leads, with ETS scores of up to 0.3 
and 0.4, respectively, in some areas. Notably, a reverse trend is 
observed compared to CFsv2, where the reliability increases with 
increasing time lead. Additionally, the presence of water bodies 
and vegetation has a positive effect on the ETS score, although not 
as significant as observed in NCEP's model.
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Figure 3.2.3: UKMO Equitable Threat Score at 5 -, 7 -, 15 -, and 30 – days lead period 

 

The hit rate of the GloSea5-GC2-LI model is generally high, except for a time lead of 15 days 

where the hit rate drops to around 0.2 in the northern region, with a local maximum of 0.6 at 4oE 

and 8oE, which is relatively low compared to other time leads. The northwest region consistently 

shows lower hit rate scores than other areas across all time leads. In contrast, the false alarm rate 

plots indicate low scores (ranging from 0.1 to 0.3) compared to the corresponding hit rate scores. 

The plots show a maximum false alarm rate score of 0.5 at a 30-day time lead in the same area 

with a local maximum observed in the hit rate plot (Fig 3.2.4) and tend to decrease with 

decreasing time lead. 

Figure 3.2.3: UKMO Equitable Threat Score at 5 -, 7 -, 15 -, and 30 – days lead period
The hit rate of the GloSea5-GC2-LI model is generally high, ex-
cept for a time lead of 15 days where the hit rate drops to around 
0.2 in the northern region, with a local maximum of 0.6 at 4oE 
and 8oE, which is relatively low compared to other time leads. 
The northwest region consistently shows lower hit rate scores than 
other areas across all time leads. In contrast, the false alarm rate 

plots indicate low scores (ranging from 0.1 to 0.3) compared to the 
corresponding hit rate scores. The plots show a maximum false 
alarm rate score of 0.5 at a 30-day time lead in the same area with 
a local maximum observed in the hit rate plot (Fig 3.2.4) and tend 
to decrease with decreasing time lead.

Figure 3.2.4: UKMO Hit Rate at 5 -, 7 -, 15 -, and 30 – days lead period 

Figure 3.2.5: UKMO False Alarm Rate at 5 -, 7 -, 15 -, and 30 – days lead period 

 

3.2.4 SEDI SCORE 

The skill of the UK Met Office‘s GloSea5-GC2-LI in predicting heat wave in the region is 

assessed using the SEDI score. The SEDI score map at all lead time shows a high value of the 

score across all lead time. This shows that the model has better skill at predicting heat wave in 

the region than the NCEP‘s CFsv2. The score tends to increase with decreasing lead time. At 15-

Figure 3.2.4: UKMO Hit Rate at 5 -, 7 -, 15 -, and 30 – days lead period
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Figure 3.2.4: UKMO Hit Rate at 5 -, 7 -, 15 -, and 30 – days lead period 

Figure 3.2.5: UKMO False Alarm Rate at 5 -, 7 -, 15 -, and 30 – days lead period 

 

3.2.4 SEDI SCORE 

The skill of the UK Met Office‘s GloSea5-GC2-LI in predicting heat wave in the region is 

assessed using the SEDI score. The SEDI score map at all lead time shows a high value of the 

score across all lead time. This shows that the model has better skill at predicting heat wave in 

the region than the NCEP‘s CFsv2. The score tends to increase with decreasing lead time. At 15-

Figure 3.2.5: UKMO False Alarm Rate at 5 -, 7 -, 15 -, and 30 – days lead period

3.2.4 SEDI SCORE
The skill of the UK Met Office’s GloSea5-GC2-LI in predicting 
heat wave in the region is assessed using the SEDI score. The SEDI 
score map at all lead time shows a high value of the score across all 
lead time. This shows that the model has better skill at predicting 

heat wave in the region than the NCEP’s CFsv2. The score tends 
to increase with decreasing lead time. At 15-day lead time, the skill 
vanishes toward the Northern part of the region while at 5-day and 
7-day lead period, the skill vanishes at few points in the region. 

day lead time, the skill vanishes toward the Northern part of the region while at 5-day and 7-day 

lead period, the skill vanishes at few points in the region.  

Figure 3.2.6: UKMO SEDI Score at 5 -, 7 -, 15 -, and 30 – days lead period 

 

3.3. ECMWF SEAS5 

Unlike the NCEP's CFsv2 and the UK Met Office's GloSea5-GC2-LI, the ECMWF SEAS5 is 

initiated only once a month, thereby allowing for a maximum evaluation of the model at a 30-

day lead time. The reliability map for the 30-day lead time exhibits a localized maximum at 

latitudes 6°E-7°E, while a significant part of the region indicates lower reliability in detecting 

heatwave occurrences by the model. 

Figure 3.2.6: UKMO SEDI Score at 5 -, 7 -, 15 -, and 30 – days lead period

3.3. ECMWF SEAS5
Unlike the NCEP's CFsv2 and the UK Met Office's GloSea5-GC2-
LI, the ECMWF SEAS5 is initiated only once a month, thereby 
allowing for a maximum evaluation of the model at a 30-day lead 
time. The reliability map for the 30-day lead time exhibits a local-

ized maximum at latitudes 6°E-7°E, while a significant part of the 
region indicates lower reliability in detecting heatwave occurrenc-
es by the model.
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Figure 3.3.1: ECMWF Reliability at 30 – days lead period 

 

The temporal autocorrelation of dichotomous heat wave hindcasts of the SEAS5 model at 30-day 

lead period shows that the model over-estimates the heat wave frequency at certain locations 

(longitude 6.27, 10.27 and 14.27 degree). Aside the locations mentioned earlier, the model have 

a fair estimation of the heat wave frequency in the other areas of the region. The model does not 

underestimate the heat wave frequency at any point in the whole region.  

Figure 3.3.2: ECMWF Auto-correlation bias at 30 – days lead period 
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Figure 3.3.1: ECMWF Reliability at 30 – days lead period

The temporal autocorrelation of dichotomous heat wave hindcasts 
of the SEAS5 model at 30-day lead period shows that the model 
over-estimates the heat wave frequency at certain locations (longi-
tude 6.27, 10.27 and 14.27 degree). Aside the locations mentioned 

earlier, the model have a fair estimation of the heat wave frequency 
in the other areas of the region. The model does not underestimate 
the heat wave frequency at any point in the whole region.

Figure 3.3.2: ECMWF Auto-correlation bias at 30 – days lead period

According to the equitable threat score (ETS) maps for heat wave prediction of the SEAS5 model at a 30-day lead time, the model 
exhibits low reliability throughout the region. Specifically, the ETS score across most of the region is 0.2, with some localized minima 
observed at latitudes 7oE and 11oE.
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The SEAS5 model exhibits hit rate scores of 0.4 or greater in most major areas of the region, 

with only a few areas showing values of 0.2. The false alarm rate scores, on the other hand, are 

generally low across most areas, with an average score of 0.15. These results suggest that the 

SEAS5 model has the potential to be a reliable model that does not overestimate heatwave 
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3.3.2 Hit Rate and False Rate
The SEAS5 model exhibits hit rate scores of 0.4 or greater in most 
major areas of the region, with only a few areas showing values of 
0.2. The false alarm rate scores, on the other hand, are generally 

low across most areas, with an average score of 0.15. These results 
suggest that the SEAS5 model has the potential to be a reliable 
model that does not overestimate heatwave frequency.

Figure 3.3.4: ECMWF Hit Rate at 30 – days lead period 

 

Figure 3.3.5: ECMWF False Rate at 30 – days lead period 

 

The SEDI score of the SEAS5 initiated at a 30-day lead time shows resemblance to the NCEP‘s 

CFsv2 model SEDI score initiated at the same time lead (30-day time lead). The skill have its 

highest scores of up to 0.6 in the region in a pattern that matches that of the NCEP‘s CFsv2 

model. Areas having lower score in the region have a pattern that as well matches that of the 

NCEP‘s CFsv2.  
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The SEDI score of the SEAS5 initiated at a 30-day lead time shows 
resemblance to the NCEP’s CFsv2 model SEDI score initiated at 
the same time lead (30-day time lead). The skill have its highest 

scores of up to 0.6 in the region in a pattern that matches that of 
the NCEP’s CFsv2 model. Areas having lower score in the region 
have a pattern that as well matches that of the NCEP’s CFsv2.

Figure 3.3.6: ECMWF SEDI Score at 30 – days lead period 
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30-day lead model data (ECMWF‘s SEAS5, NCEP‘s CFsv2 and the UK Met Office‘s GloSea5-

GC2-LI) and the time steps as input. The model also takes the analyzed daily heat wave index as 
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output has produced reliability maps for the dichotomous heat wave at a 30-day lead time, as 
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region, indicating an improvement over the individual models. Additionally, the deep learning 

bias corrected output has identified localized areas with higher reliability scores, which have 

been consistently reliable. 
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3.4 DEEP LEARNING POST-PROCESSED OUTPUT
The output of the numerical models are used develop a deep learn-
ing model. The model takes the 30-day lead model data (ECMWF’s 
SEAS5, NCEP’s CFsv2 and the UK Met Office’s GloSea5-GC2-
LI) and the time steps as input. The model also takes the analyzed 
daily heat wave index as output which is derived from the ERA-5 
reanalysis data. This, thus form a classification model that deter-
mine heat wave occurrence using the set of input data. The Deep 

learning bias corrected output has produced reliability maps for 
the dichotomous heat wave at a 30-day lead time, as shown in Fig 
3.4.1. These maps reveal that the average reliability score is 0.9 
in most parts of the region, indicating an improvement over the 
individual models. Additionally, the deep learning bias corrected 
output has identified localized areas with higher reliability scores, 
which have been consistently reliable.
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Figure 3.4.1: Deep Learning Model Reliability Score at 30 – days lead period 

 

The temporal autocorrelation of dichotomous heat wave hindcasts of the deep learning model at 

30-day lead period shows high value correlation at all region. 
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The equitable threat score (ETS) maps of heat wave prediction of the deep learning model at 30-

day lead time shows that the model generally has high reliability in the region. A high score of 

the metrics is observed at all areas of the region.  
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Figure 3.4.1: Deep Learning Model Reliability Score at 30 – days lead period

The temporal autocorrelation of dichotomous heat wave hindcasts of the deep learning model at 30-day lead period shows high value 
correlation at all region.

Figure 3.4.2: Deep Learning Auto-correlation bias at 30 – days lead period

The equitable threat score (ETS) maps of heat wave prediction of the deep learning model at 30-day lead time shows that the model 
generally has high reliability in the region. A high score of the metrics is observed at all areas of the region.
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Figure 3.4.3: Deep Learning Equitable Threat score at 30 – days lead period 
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of the region. Few areas are observed to have value of 0.8 within the region. This shows that the 

bias corrected model have a good skill at predicting the heat wave at exactly when they occur. In 

comparison with the False alarm rate score which is shown to be relatively low (less than 0.1) in 

all areas of the region, the deep learning model shows a better skill of reduced false alarm rate 

when compared to all the numerical model at all time steps.  
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Figure 3.4.3: Deep Learning Equitable Threat score at 30 – days lead period

The hit rate performance of the deep learning model shows values 
of 0.9 or more in major areas of the region. Few areas are observed 
to have value of 0.8 within the region. This shows that the bias 
corrected model have a good skill at predicting the heat wave at 
exactly when they occur. In comparison with the False alarm rate 

score which is shown to be relatively low (less than 0.1) in all 
areas of the region, the deep learning model shows a better skill 
of reduced false alarm rate when compared to all the numerical 
model at all time steps.

Figure 3.4.4: Deep Learning Hit Rate at 30 – days lead period

Figure 3.4.5: Deep Learning False Rate at 30 – days lead period 

 

The SEDI score of the deep learning model at a 30-day lead time shows a good performance of 

the skill with all areas having value between 0.9 and 1.0. This shows a significant increase over 

the numerical models considered in this research at all the time leads. 

Figure 3.4.6: Deep Learning SEDI score at 30 – days lead period 

 

The models' ability to predict heatwave occurrence in the region is generally observed to be 

insensitive to the evaluation metrics used, with all metrics showing results that support one 

another. However, the prediction skills vary spatially, depending on the land cover 

characteristics, which is specific to each model. For instance, the Argugu River in the western 

part of the region (longitude 4-50E), Hadejia River/watershed in the central part of the region 

Figure 3.4.5: Deep Learning False Rate at 30 – days lead period
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The SEDI score of the deep learning model at a 30-day lead time shows a good performance of the skill with all areas having value 
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Figure 3.4.6: Deep Learning SEDI score at 30 – days lead period

The models' ability to predict heatwave occurrence in the region is 
generally observed to be insensitive to the evaluation metrics used, 
with all metrics showing results that support one another. However, 
the prediction skills vary spatially, depending on the land cover 
characteristics, which is specific to each model. For instance, the 
Argugu River in the western part of the region (longitude 4-50E), 
Hadejia River/watershed in the central part of the region (longitude 
9-100E), and the Lake Chad basin (longitude 130E) have improved 
the models' heatwave prediction skills. Land-atmosphere feedbacks 
are a crucial factor in heatwave maintenance in southern latitudes, 
but the models may misrepresent these feedbacks, resulting in 
poor skills in the region.

4. Conclusion
This study evaluates the skills of sub-seasonal to seasonal heat 
wave prediction skills of Numerical models over the Northern 
Nigeria. The data used consists of the Numerical model data 
(hindcast and forecast data) of three different models namely, 
NCEP’s CFsv2, UKMO’s GloSea5-GC2-LI, ECMWF’s SEAS5 
and ERA 5 reanalysis datasets. The data output of both the NCEP’s 
CFsv2 and UKMO’s GloSea5-GC2-LI initialized at 5, 7, 15 and 
30-day lead between year 2000 and year 2020 (21years data) are 
used. While the ECMWF’s SEAS5 data used are at 30-day lead 
time of the same year range, the ERA 5 reanalysis was used to 
compare the skills of the models. The heat index used in this study 
is the excessive heat index (EHI). The EHI was used to characterize 
the occurrence of heat wave. This was computed on daily basis at 
each grid point on both the reanalysis data and the model output 
data. Grid point specific deep learning classification model was 
developed using the output of the numerical model and lead-time 
as input. The deep learning output gives a binary output of either 0 
or 1 that represents heat wave occurrence or not respectively.

The heat wave predictability skills of the three numerical sub-

seasonal to seasonal models are lower in the entire region. At all 
lead times, the models tends to overestimate heat wave frequency 
though it is more pronounced in the NCEP’s CFsv2 model.  The 
ECMWF’s SEAS5 and UKMO’s GloSea5-GC2-LI models also 
overestimates the heat wave frequency, but at a reduced rate (up to 
44% decrease) from the NCEP’s CFsv2 model. The overestimation 
of the heat wave frequency in the region contributes to the lower 
reliability scores and forecast skills of the models in the region.
The skills of the model at different time lead shows different 
behavior. The NCEP’s CFsv2 model shows decrease in reliability 
of the model with decreasing time leads. This makes the model to 
have a fair performance at 30-day lead period when compared to 
other time leads. The equitable threat score show similar pattern 
while the SEDI score show the same pattern at only 15-day lead and 
30-day lead. The hit rate and the false alarm rate shows a different 
trend, they both tend to increase with decreasing lead time. Thus, 
the maximum hit rate and false alarm rate are observed at 5-day 
lead period. The overestimation of heat wave due to bias towards 
maximum temperature was due to correlations between surface 
soil moisture and evaporative fraction during summer are generally 
high, indicating soil moisture’s control on surface fluxes and the 
potential for land–atmosphere coupling. The UKMO’s GloSea5-
GC2-LI model on the other hand, shows increased reliability with 
decreasing time leads. This is shown from the pattern observed in 
the ETS metrics where the metrics shows higher score at 5-day 
and 7-day time lead while the score at 15-day and 30-day leads 
appear to be relatively low when compared to the first two time 
lead period. While the SEDI metrics shows similar pattern, the 
number of areas where the skill vanishes tends to be more at 5-day 
time lead. The hit rate shows no significant pattern but the false 
rate is observed to reduce with decreasing time lead. At all the time 
lead period, the UKMO’s GloSea5-GC2-LI model is observed to 
be more reliable than the NCEP’s CFsv2 model, the forecast skill 
of the UKMO’s GloSea5-GC2-LI model surpasses that of NCEP’s 
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CFsv2 model at all the time step with higher equitable threat score 
(ETS) than NCEP’s CFsv2 model. While the NCEP’s CFsv2 
model SEDI score skill are lower or  vanishes at depending on 
the time step, the UKMO’s GloSea5-GC2-LI model still have a 
relatively high score in most areas at tall time step. The hit rate and 
false alarm rate on the other hand is highest in the NCEP’s CFsv2 
model while the UKMO’s GloSea5-GC2-LI model have lower hit 
rate and false alarm rate.

At 30-day time lead, the ECMWF’s SEAS5 model’s forecast skill 
also beats the NCEP’s CFsv2 model forecast skill but average the 
same skill as the UKMO’s GloSea5-GC2-LI model. Although, 
the NCEP’s CFsv2 model have higher value in terms of both hit 
rate and false alarm rate, the hit rate and false alarm rate value of 
ECMWF’s SEAS5 model is lower than that  of NCEP’s CFsv2 
model and UKMO’s GloSea5-GC2-LI model. The deep learning 
model shows a more uniform score of all the evaluation metrics 
and still perform better and satisfactorily than the three numerical 
model at the 30-day time lead. The model averages 0.90 value for 
hit rate at all point, 0.02 value for false alarm rates, 0.94 SEDI 
score, 0.87 reliability and 0.75 ETS score. From the extensive 
analysis above, the UKMO’s GloSea5-GC2-LI model performs 
best of the three numerical model at 5-day, 7-day and 15-day time 
lead. While the deep learning classification model performs better 
than all the model at 30-day time lead [1-25].
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