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Abstract 
Data is the new fuel. With the expansion of global technology, the increasing living standards, and modernization, data 
values have caught great height. Nowadays, nearly all top MNCs feed on data. Now, storing all this data is a prime 
concern for all of them, which is relieved by the Data Structures, the systematic way of storing data. Now, once these 
data are stored and charged in secure vaults, it’s time to utilize them most efficiently. Now, many operations need to be 
performed on these massive chunks of data, like searching, sorting, inserting, deleting, merging, and so more. In this 
paper, we would be comparing all the major sorting algorithms, that have prevailed to date. Further, work has been done 
and inequality in the dimension of time between the three Sorting algorithms, operational in n log(n) time, Merge, Quick, 
and Heap, that have been discussed in the paper have been proposed.
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Introduction
Sorting is one of the most important but basic operations that 
may be enacted on any data structure. It involves arranging the 
data in monotonic order of its magnitude [1]. Sorting algorithms 
have got a lot to flaunt, it’s the well-balanced and cunning na-
ture with spikes of intelligence, its efficiency, and not only that, 
even some searching algorithms like binary search, interpola-
tion search need sorting algorithms to drop them in action. The 
orders most often used are numerical order and lexicographic 
order, and either upward or downward [2,3,4]. 

Any sorting algorithm’s output must meet two formal require-
ments:
• The output is in either increasing or decreasing order (each 

element is the same size as the one before it, in the order 
specified).

• The output is a monotonic arrangement of the initial array 
(a reordering of the input while keeping all of the original 
elements).

• The input data is stored in a data structure that allows ran-
dom access rather than sequential access for maximum ef-
ficiency.

The sorting challenge have garnered a large deal of research 
since the dawn of computing, probably due to the difficulty of 
addressing it effectively despite its basic, common expression. 
Betty Holberton, who collaborated on Enigma machine and 

UNIVAC, was one of the early creators of sorting algorithms 
about 1951 [5]. Bubble sort has been studied since 1956. As-
ymptotically optimum algorithms have been recognized since 
the mid-twentieth century; new algorithms are continually being 
developed, with the extensively used Timsort dated from 2002 
and the library sort from 2006.

The necessity of Ω(n log n)  comparisons in comparison sorting 
algorithms is fundamental [6].  Algorithms that aren’t focused 
on comparisons, such as counting sort, often perform better. The 
abundance of methodologies for the conundrum offers a com-
prehensive guide to a diverse array of fundamental heuristic no-
tions, such as big O notation, divide and conquer algorithms, 
data structures such as heaps and binary trees, randomized al-
gorithms, best, worst, and average-case analysis, time-space 
tradeoffs, and upper and lower bounds [7,8].
Sorting algorithms are classed as follows:

• Complexity of computation: In the perspective of list size, 
the best, worst, and average case scenarios exist. The good 
behavior of typical serial sorting algorithms is O(n log n), 
while the bad behaviour is O (n2). The ideal behaviour for a 
serial sort is O(n), although in most cases, this is not attain-
able. The best parallel sorting algorithm is O(log n).

• Memory consumption: Some sorting algorithms, in partic-
ular, are “in-place.” Beyond the entries being sorted, an in-
place sort requires only O(1) memory; nonetheless, O(log 
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n) supplementary cognition is frequently considered “in-
place” [9].

• Recursive in nature: Some algorithms are recursive or 
non-recursive, where recursion means that the function will 
call itself indefinitely such that to attain its final value.

• Cohesion: stable sorting algorithms maintain records with 
equal attributes in just the same order. Whether they are a 
comparison category or not. A comparison sort compares 
two components with a comparison operator to analyze the 
data.

• Generalized Approach: Insertion, exchange, selection, 
merging, and other general methods Bubble sort and quick-
sort are examples of exchange sorts. Cycle sort and heapsort 
are two types of selection sorts. The algorithm’s serial or 
parallel nature. Our paper primarily focuses almost entirely 
on serial algorithms and assumes that they are used in serial 
mode.

• Adaptive Nature : Whether the array is pre-sorted, still the 
source has an impact on the run time. Adaptive algorithms 
are those that incorporate everything into consideration.

• Continuous: An interactive algorithm, such as Insertion 
Sort, can semblance a continuous transmission of bits [10].

Merge sort is a broad sense, resemblance sorting algorithm de-
veloped in computer science. The plurality of implementations 
build a sustainable sort, essentially implies that perhaps the or-
der of identical bits in the source and load is the same. John von 
Neumann devised merge sort in 1945 as a divide-and-conquer 
algorithm. Goldstine and von Neumann published a study in 
1948 that included a comprehensive description and assessment 
of underside merge sort [11,12].

Heapsort is a resemblance sorting method in computer science. 
Heapsort is similar to selection sort in that it separates its input 
together into sorted and an unsorted region, then progressively 
decreases the unsorted part by taking the pivot element from it 
and putting it into the sorted portion. Unlike selection sort, heap-
sort does not waste time scanning the unsorted region in linear 
time; instead, heap sort keeps the unsorted region in a heap data 
structure to identify the largest element in each step more rap-
idly.

Quicksort is a sorting algorithm that works in-place. It was de-
veloped by British computer scientist Tony Hoare in 1959 and 
publicized in 1961, but it is still a prominent sorting algorithm. 
It can be marginally quicker than merge sort and 2 to 3 times 
quicker than heapsort when properly implemented. Quick Sort 
follows divide and conquer technique. It works by selecting a 
‘pivot’ component from the arrays and partitioning the remain-
der into two sub-arrays based on whether they are below than 
or larger than the pivot. As a consequence, it’s also known as 
partition-exchange sort [13]. The sub-arrays are then recursively 
sorted. This could be done in place, with only a small proportion 
of total RAM required for categorizing.

Although this is slightly slower in practice on most processors 
than a well-implemented quicksort, it has a better worst-case 
O(n log n) latency.

The merit of the paper covers the proposition of a new inequa-
tion relating to the time elapsed by Sorting algorithms opera-
tional in n log(n) time - Merge, Quick, and Heap Sort. To enact 
more on our inequation, both the Average and the Worst-Case 
Scenario have been considered. 

Merge Sort
Merge sort is a very good sorting technique as it follows the 
divide and conquer algorithm [14].
Let we have been given a set of unsorted elements in a list (data 
structure with language independence), such that

L(n)={α0,α1,α2,…,αn-1}

Under this algorithm the list is divided into equally sized sub-
parts and merged step by step in a recursive manner to bring it 
to a sorted format [8]. It is often referred to as the best sorting 
technique when we are required to sort a linked list. 

The Pseudocode for this algorithm will be 
function merge (list_of_elements, low_in-
dex, mid_index, high_index)
size_vault1 ← mid_index – low_index + 1
size_vault2 ← high_index - (mid_index + 1) 
+ 1
vault1[size_vault1]
vault2[size_vault2]
for i = 0 to i = size_vault1 – 1
vault1[i] = list_of_elements[low_index + i]
end for
for i = 0 to i = size_vault2 – 1
vault2[i] = list_of_elements[mid_index + 1 
+ i];
end for
i, j ← 0, 0
k ← low_index
while i < size_vault1 and j < size_vault2
 if vault1[i] > vault2[j]
 list_of_elements[k] = vault2[j]
increment j, k
else
list_of_elements[k] = vault1[i];
increment i, k
end if
end while 
while j < size_vault2
 list_of_elements[k] = vault2[j];
increment j, k
end while 
while i < size_vault1
list_of_elements[k] = vault1[i];
increment i, k
end while 
end
function merge_sort (list_of_elements, low_
index, high_index)
if low_index < high_index
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mid_index ← low_index + (high_index – low_
index) 
merge_sort(list_of_elements, low_index, 
mid_index)
merge_sort(list_of_elements, mid_index + 1, 
high_index)
merge (list_of_elements, low_index, mid_in-
dex, high_index) end if   
end

The Complexity in the dimensions of time for this Sorting Algo-
rithm for worst cases will be φ(n log2n).
The Complexity in the dimensions of time for this Sorting Algo-
rithm for average cases will be φ(n log2n).
The Complexity in the dimensions of time for this Sorting Algo-
rithm for best cases will be φ(n log2n).

where φ(.) is the appropriate Asymptotic Notation.

Quick Sort
Quicksort is a very good sorting technique as it follows the di-
vide and conquer algorithm [15]. 
Let we have been given a set of unsorted elements in a list (data 
structure with language independence), such that

L(n)={α0,α1,α2,…,αn-1}

Under this algorithm, we choose an element as a pivot and we 
create a partition of array revolving around that pivot. By re-
peating this technique for each partition, we get our array sorted 
depending on the position of the pivot we can apply quick sort 
in different ways
• Taking the first or last element as a pivot
• Taking median element as pivot.

The Pseudocode for this algorithm will be 
function partition (left, right, pivot)
leftPointer ← left
rightPointer ← right - 1 while True do    
while list_of_elements[++leftPointer] < 
pivot do
end while
while rightPointer > 0 and list_of_ele-
ments[--rightPointer] > pivot do
end while   
if leftPointer ≥ rightPointer
break   
else       
swap leftPointer, rightPointer   
end if       
end while
swap leftPointer, right
return leftPointer 
end
function quicksort(left, right)
if right ≤ left
return
else

pivot ← list_of_elements [right]
part ← partition(left, right, pivot)
quickSort(left, part - 1)
quickSort(partition + 1,right)
end if
end
The Complexity in the dimensions of time for this Sorting Algo-
rithm for worst cases will be φ(n2).
The Complexity in the dimensions of time for this Sorting Algo-
rithm for average cases will be φ(n log2n).
The Complexity in the dimensions of time for this Sorting Algo-
rithm for best cases will be φ(n log2n).

where φ(.) is the appropriate Asymptotic Notation.

Heap Sort
Heap sort is a comparison-based sorting technique based on Bi-
nary Heap data structure
Let we have been given a set of unsorted elements in a list (data 
structure with language independence), such that

L(n)={α0,α1,α2,…,αn-1}

Heapsort can be thought of as an improved selection sort [16]. 
Like selection sort, Heapsort divides its input into a sorted and 
an unsorted region, and it iteratively shrinks the unsorted region 
by extracting the largest element from it and inserting it into the 
sorted region.

The Pseudocode for this algorithm will be

function heapify
max ← i
left_child ← 2i + 1
right_child ← 2i + 2
if leftchild ≤ n and A[i] < A[leftchild]
max ← leftchild
else 
max ← i
end if
if right_child ≤ n and list_of_elements[-
max] > list_of_elements[right_child]

 max ← right_child
 end if
 if max not equal i
 swap(list_of_elements[i], list_of_ele-
ments[max])
 heapify(list_of_elements, n, max)
end if
end
function Heapsort 
n ← length(list_of_elements)
for i from n/2 to 1   
Heapify(list_of_elements, n ,i)
 for i from n to 2
exchange list_of_elements [1] with list_of_
elements [i]
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list_of_elements.heapsize = list_of_ele-
ments.heapsize – 1
 Heapify(list_of_elements, i, 0)
end
The Complexity in the dimensions of time for this Sorting Algo-
rithm for worst cases will be φ(n log2n).
The Complexity in the dimensions of time for this Sorting Algo-
rithm for average cases will be φ(n log2n).
The Complexity in the dimensions of time for this Sorting Algo-
rithm for best cases will be φ(n log2n).

where φ(.) is the appropriate Asymptotic Notation.

Worst Case Scenario
Every program, perhaps once in it’s run time, faces the difficulty 
to go the hurdles and difficulties which stick to their maximum 
at that point of time, such a case is termed as Worst Case. We 
have plotted pie chart for 10 sets of data, with 10 trials for each 
set, involving 3 types of Merge, Quick, and Heap Sort taking the 
time taken in terms of 10-9 seconds or nanoseconds by them as a 
whole of 100%. and the result was quite promising. The data set 
used was arranged in descending order in terms of it’s magnitude 
for the case for Merge and Heap Sort, and in ascending order for 
Quick Sort, and the algorithms we designed arranged them in 
ascending order of their magnitude.

Table 1: Time taken in nano - seconds (averaged for 10 tests) for MQH Sort.

Number of Elements Merge Sort Quick Sort Heap Sort
1000 98400 784100 395400
10000 199800 3063000 2367000
100000 272000 10454300 299100
1000000 0 18120400 544000
10000000 401800 28290500 796700
100000000 598900 35658800 808400
1000000000 296800 50567100 799400
10000000000 799000 70179400 1166200
100000000000 598800 88498900 1196100
1000000000000 697100 108973400 878700

Figure 1: For a Data set of 1000 entries

Figure 2: For a Data set of 10000 entries

Figure 3: For a Data set of 100000 entries

Figure 4: For a Data set of 1000000 entries
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Figure 5: For a Data set of 10000000 entries

Figure 6: For a Data set of 100000000 entries

Figure 7: For a Data set of 1000000000 entries

Figure 8: For a Data set of 10000000000 entries

Figure 9: For a Data set of 100000000000 entries

Figure 10: For a Data set of 1000000000000 entries

Now, we will undertake a detailed statistical assay on the exact 
execution time of the three sorting algorithms i.e., Merge Sort, 
Heap Sort and Quick Sort. Taking in consideration the execution 
time of these three sorting algorithms, the computer architecture 
on which we ran these algorithms becomes one of the main fac-
tors to consider. To be precise we have used Harvard architecture 
to carry our tests runs of these algorithms. The precise details of 
the architecture we used is given below :

o Device Specifications

Processor Intel(R) Core(TM) i7-1065G7 CPU @ 1.30GHz, 1.50 
GHz Installed         
 RAM 16.0 GB (15.8 GB usable)
System type 64-bit operating system, x64-based processor

o Windows Specification

 Edition Windows 11 Home Single Language 
Version 21H2
OS build   22000.613
ExperienceWindows  Feature  Experience  Pack 1000.22000.613.0
The System is having a Harvard Architecture.

Now we will analyse the execution time of Quick sort :
When one of the subsists returned by the partitioning procedure 
is of size n-1, the partition is the most imbalanced. This could 
happen if the pivot is the least or largest element in the list, or if 
all the items are equal in some implementations.

 

 
Figure 5: For a Data set of 10000000 entries 
 
 
 

 
Figure 6: For a Data set of 100000000 entries 

 

10000000  

Merge Quick Heap

100000000  

Merge Quick Heap

 

 
Figure 5: For a Data set of 10000000 entries 
 
 
 

 
Figure 6: For a Data set of 100000000 entries 

 

10000000  

Merge Quick Heap

100000000  

Merge Quick Heap

 

 
Figure 7: For a Data set of 1000000000 entries 
 
 
 

 
Figure 8: For a Data set of 10000000000 entries 

 

1000000000  

Merge Quick Heap

10000000000  

Merge Quick Heap

 

 
Figure 7: For a Data set of 1000000000 entries 
 
 
 

 
Figure 8: For a Data set of 10000000000 entries 

 

1000000000  

Merge Quick Heap

10000000000  

Merge Quick Heap

 

 
Figure 9: For a Data set of 100000000000 entries 
 
 
 

 
Figure 10: For a Data set of 1000000000000 entries 

 

Now, we will undertake a detailed statistical assay on the exact execution time of the three 

sorting algorithms i.e., Merge Sort, Heap Sort and Quick Sort. Taking in consideration the 

execution time of these three sorting algorithms, the computer architecture on which we ran 

these algorithms becomes one of the main factors to consider. To be precise we have used 

100000000000 

Merge Quick Heap

1000000000000 

Merge Quick Heap

 

 
Figure 9: For a Data set of 100000000000 entries 
 
 
 

 
Figure 10: For a Data set of 1000000000000 entries 

 

Now, we will undertake a detailed statistical assay on the exact execution time of the three 

sorting algorithms i.e., Merge Sort, Heap Sort and Quick Sort. Taking in consideration the 

execution time of these three sorting algorithms, the computer architecture on which we ran 

these algorithms becomes one of the main factors to consider. To be precise we have used 

100000000000 

Merge Quick Heap

1000000000000 

Merge Quick Heap



J Robot Auto Res, 2022 225    Volume 3 | Issue 2 | 

If this applies throughout every partition, subsequent recursive 
operation would process a listing that really is unit size smaller 
than the prior list. As a result, before we reach a list of size 1, we 
can make n-1 nested calls. The call tree is therefore a linear se-
quence of n-1 nested calls. So, the execution time turns out to be 

For Merge sort, to find the middle of any subarray, we use a sin-
gle-step using an one-step operation.
An O(n) execution time of O(n) will be required to integrate the 
subarrays created by partitioning the initial array of n elements.
As a result, the overall time for the Merge sort function will be  
O(1)n(log n + 1)

Binary heaps are predicated on comprehensive binary trees; the 
bottom level will have n/2 nodes, the second category will al-
ways have n/4 nodes, and so on. We cut the number of nodes in 
half whenever we advance a threshold.
When we add everything up, we get:

This can also be expressed as a summarization: 

This summation turns out to be 

Now, our aim is to evacuate the element α_i to its original lo-
cation. To get back to its original location, we’ll have to look 
in as many areas as possible. Now, once it has been dumped in 
its original location, we will go on to the next element of and 
in order to evacuate it to its proper location, we must search at 
least n-1 locations, with the number of locations to be searched 
varying from n-3,n-4,n-5,n-6,...,1 [17].
So, total time 

Figure 11: Graphical representation of comparative analysis of 
run time of Merge, Quick and Heap sort.

Here, the blue curve represents the run time of Merge sort, the 
red curve represents the run time of Quick sort and the black 
curve represents the run time of Heap sort respectively.  

Conclusion
From the study, we have conducted in this paper, we can con-
clude that, in each of trials, irrespective of Architecture and 
Specification of the computational device. It is clear from the 
figure 10 that the worst case run time taken by Heap sort to sort 
certain elements in a given array is less than the worst case run 
time taken by both Quick sort and Merge sort.   

T (Q) ≥ T (M) + T (H)  & T (M) < T (H)
∋ Q = Quick Sort, M = Merge Sort, H = Heap Sort

where,
T(ξ) is the time taken in terms of nanoseconds by that specific 
sorting algorithm ∀ξ∈ Comparison Sorting Techniques and

This error / tolerance limit is due to the variation in processing 
speed and time due to various architectural aspects and physical 
aspects. Some of the aspects that may result in increasing the 
tolerance limit are:
System Temperature (θs ): If θs>θ0, overheating of computation 
system occurs, that results in decrease of processing speed, and 
hence claims more time.

where, θ0=Threshold Temperature

Network Stability: This issue is more taken in account if the 
computation is done online. The instability in network may in-
duce more time being claimed. 
Power Stability: If the machine is undergoing a sudden surge or 
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decline in power, the performance may be hindered, resulting in 
claim of more time. 

The data sets that we have obtained in this study are generated 
by system working on Harvard Architecture,though the inequa-
tion developed is irrespective of the architecture. 
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