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Abstract 
An overview of entropy applications to illustrate a few possible uses of entropy in knowledge transmission and artificial 
intelligence. Artificial intelligence uses entropy as a fundamental concept in many diverse applications, including 
reinforcement learning, data compression, and decision-making. It assists artificial intelligence models in producing well-
informed forecasts and judgments by assessing uncertainty and information content. As such, the purpose of this work is to 
highlight the importance of entropy and draw the attention of the artificial intelligence research community to it as a potent 
tool for advancing artificial intelligence.

This work also addresses the importance of knowledge transfer (KT), especially intergenerational KT (IGT), in knowledge 
management. Knowledge entropy (KE) is a concept that is used to measure the complexity of knowledge distribution within 
an organisation and evaluate the effectiveness of KT activities. Furthermore, the KT model—which is predicated on the ideas 
of information content and tacitness—is presented. It blends techniques for customisation and codification. A few challenging 
open problems are presented along with future study options.

Keywords: Artificial Intelligence (AI), Knowledge Transfer (KT), Intergenerational Knowledge Transfer (IGT), Knowledge Entropy 
(KE), Machine Learning (ML).
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1. Introduction
Within the field of information theory, entropy [1] is a notion that 
has become useful in several applications, including secure data 
transmission, lossless data compression, data mining, machine 
learning (ML), and classification. In [1], information and entropy 
in a fair and fraudulent coin flip game are calculated using 
Shannon's entropy formula, a key measurement tool in information 
theory. The findings demonstrate that entropy quantifies system 
uncertainty and that, by using fewer bits, its application has 
enhanced efficient communication and data storage. Furthermore, 
the entropy formula helps to clarify information measurement, 
quality, and relevance by calculating the minimal number of bits 
needed to encode characters in a data group.

A mathematical concept, called entropy [1] is used to quantify 

the degree of disorder or uncertainty in every data source. It is 
computed using the entropy formula, which considers both the 
total amount of data and the probability that each piece of data 
is important and is denoted by the letter H in information theory. 
Entropy reaches its maximum when the probability of two states 
is equal, signifying the highest degree of uncertainty: as likelihood 
increases, uncertainty decreases. H Reads as:

Entropy, as defined in information theory, is highest when the 
probabilities of two states are equal, meaning 𝑝 = 0.5. This 
indicates the highest level of uncertainty or disorder in the system. 
As the likelihood of a situation increases, the level of uncertainty 
decreases, leading to a reduction in entropy. See figure 1(c.f., [1]).
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Figure 1: The H-bit data amount entropic variation illustrates how uncertainty peaks when 

the probability of two states is equal (       ). As the likelihood of a situation increases, 

uncertainty starts to diminish. This example helps demonstrate the concept of entropy, which 

is used to measure disorder or uncertainty in information theory. 

 

In the context of information criterion approaches, entropy plays a unique role, and one 

commonly used type of entropy in artificial intelligence is Cross-Entropy. When utilising an 

improper encoding scheme, Cross-Entropy is utilised in a variety of AI techniques to 

determine the average amount of bits needed to encode an event [1,2].  

 

Knowledge transfer (KT) is widely regarded as a crucial phase in knowledge management. 

IGT (intergenerational knowledge transfer) is one of these essential forms of KT [3-7]. More 

thought should be given to the fact that the KT process entails complex relationships between 

the three fundamental types of knowledge—rational, emotional, and spiritual knowledge [8-

11]. The notion of knowledge entropy (KE) is introduced in this text, which explains how it 

can be applied to information management and understanding knowledge transfer. KE is a 

measure of complexity that can be related to thermodynamic phenomena, providing insights 

into the intricacies of knowledge distribution and transfer within an organization. We define 

KE [11] as follows:  

 

Figure 1: The H-bit data amount entropic variation illustrates how uncertainty peaks when the probability of two states is equal (p = 0.5). 
As the likelihood of a situation increases, uncertainty starts to diminish. This example helps demonstrate the concept of entropy, which 
is used to measure disorder or uncertainty in information theory.

In the context of information criterion approaches, entropy plays 
a unique role, and one commonly used type of entropy in artificial 
intelligence is Cross-Entropy. When utilising an improper encoding 
scheme, Cross-Entropy is utilised in a variety of AI techniques to 
determine the average amount of bits needed to encode an event 
[1,2]. 

Knowledge transfer (KT) is widely regarded as a crucial phase 
in knowledge management. IGT (intergenerational knowledge 
transfer) is one of these essential forms of KT [3-7]. More thought 
should be given to the fact that the KT process entails complex 
relationships between the three fundamental types of knowledge—
rational, emotional, and spiritual knowledge [8-11]. The notion 
of knowledge entropy (KE) is introduced in this text, which 
explains how it can be applied to information management and 

understanding knowledge transfer. KE is a measure of complexity 
that can be related to thermodynamic phenomena, providing 
insights into the intricacies of knowledge distribution and transfer 
within an organization. We define KE [11] as follows: 

Here, a random positive constant named C is used to calibrate 
the measurement to a specific scale and environment. If every 
employee either possesses the information or serves as a source 
of it, we might assume that p1,…,pn  represents the distribution of 
knowledge inside any organisation.

The flowchart of this paper is as follows:

      ∑                                                                     (2) 

 

Here, a random positive constant named C is used to calibrate the measurement to a specific 

scale and environment. If every employee either possesses the information or serves as a 

source of it, we might assume that         represents the distribution of knowledge inside 

any organisation. 

The flowchart of this paper is as follows: 

 
2. Entropic Applications to AI and KE 

The current section investigates some entropic applications tom AI and KE. 

 

2.1 Entropy AI 

In AI systems, the concept of entropy is used to measure uncertainty and information disorder 

[1]. Entropy plays a crucial role in various techniques, such as Bayesian inference and 

maximum entropy, which aim to find the best distribution or model for a given dataset [1]. 

These approaches utilize conditional probability and information disorder to compare 

occurrences and optimize the distribution's entropy [1]. 

 

Decision trees are a classification technique that uses entropy to construct a tree structure [1]. 

Information Gain (IG) is a measure of the difference in entropy between different states and 

is used in decision tree algorithms like ID3 and C4.5. Loss functions, such as Mean Squared 

Error, are used in classification techniques like Artificial Neural Networks to evaluate the 

performance of the model by measuring the average irregularity of the predicted outcomes 

compared to the actual ones [1]. Logistic Regression is a classification method that calculates 

the logarithm of the ratio between the occurrence and non-occurrence of an event, using 

categorical dependent variables [1]. 

      ∑                                                                     (2) 

 

Here, a random positive constant named C is used to calibrate the measurement to a specific 

scale and environment. If every employee either possesses the information or serves as a 

source of it, we might assume that         represents the distribution of knowledge inside 

any organisation. 

The flowchart of this paper is as follows: 

 
2. Entropic Applications to AI and KE 

The current section investigates some entropic applications tom AI and KE. 

 

2.1 Entropy AI 

In AI systems, the concept of entropy is used to measure uncertainty and information disorder 

[1]. Entropy plays a crucial role in various techniques, such as Bayesian inference and 

maximum entropy, which aim to find the best distribution or model for a given dataset [1]. 

These approaches utilize conditional probability and information disorder to compare 

occurrences and optimize the distribution's entropy [1]. 

 

Decision trees are a classification technique that uses entropy to construct a tree structure [1]. 

Information Gain (IG) is a measure of the difference in entropy between different states and 

is used in decision tree algorithms like ID3 and C4.5. Loss functions, such as Mean Squared 

Error, are used in classification techniques like Artificial Neural Networks to evaluate the 

performance of the model by measuring the average irregularity of the predicted outcomes 

compared to the actual ones [1]. Logistic Regression is a classification method that calculates 

the logarithm of the ratio between the occurrence and non-occurrence of an event, using 

categorical dependent variables [1]. 



Volume 5 | Issue 2 |3Adv Mach Lear Art Inte,  2024

      ∑                                                                     (2) 

 

Here, a random positive constant named C is used to calibrate the measurement to a specific 

scale and environment. If every employee either possesses the information or serves as a 

source of it, we might assume that         represents the distribution of knowledge inside 

any organisation. 

The flowchart of this paper is as follows: 

 
2. Entropic Applications to AI and KE 

The current section investigates some entropic applications tom AI and KE. 

 

2.1 Entropy AI 

In AI systems, the concept of entropy is used to measure uncertainty and information disorder 

[1]. Entropy plays a crucial role in various techniques, such as Bayesian inference and 

maximum entropy, which aim to find the best distribution or model for a given dataset [1]. 

These approaches utilize conditional probability and information disorder to compare 

occurrences and optimize the distribution's entropy [1]. 

 

Decision trees are a classification technique that uses entropy to construct a tree structure [1]. 

Information Gain (IG) is a measure of the difference in entropy between different states and 

is used in decision tree algorithms like ID3 and C4.5. Loss functions, such as Mean Squared 

Error, are used in classification techniques like Artificial Neural Networks to evaluate the 

performance of the model by measuring the average irregularity of the predicted outcomes 

compared to the actual ones [1]. Logistic Regression is a classification method that calculates 

the logarithm of the ratio between the occurrence and non-occurrence of an event, using 

categorical dependent variables [1]. 
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The current section investigates some entropic applications tom 
AI and KE.

2.1 Entropy AI
In AI systems, the concept of entropy is used to measure uncertainty 
and information disorder [1]. Entropy plays a crucial role in 
various techniques, such as Bayesian inference and maximum 
entropy, which aim to find the best distribution or model for a 
given dataset [1]. These approaches utilize conditional probability 
and information disorder to compare occurrences and optimize the 
distribution's entropy [1].

Decision trees are a classification technique that uses entropy to 
construct a tree structure [1]. Information Gain (IG) is a measure 
of the difference in entropy between different states and is used 
in decision tree algorithms like ID3 and C4.5. Loss functions, 
such as Mean Squared Error, are used in classification techniques 
like Artificial Neural Networks to evaluate the performance of 

the model by measuring the average irregularity of the predicted 
outcomes compared to the actual ones [1]. Logistic Regression is 
a classification method that calculates the logarithm of the ratio 
between the occurrence and non-occurrence of an event, using 
categorical dependent variables [1].

In the field of AI, when working with datasets to address problems, 
it is important to utilize information from previous attempts 
or problems [1]. Depending on the structure and content of the 
dataset, various preprocessing techniques are applied to ensure the 
data is suitable for analysis and modelling to achieve effective AI 
solutions.

Figure 2 (c.f., [1]), illustrates the two main categories of supervised 
and unsupervised learning in the field of Artificial Intelligence, 
specifically in the context of ML. From these categories, three 
subcategories are derived: classification, clustering, and regression. 
These subcategories represent different approaches used to address 
various challenges in AI.
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Figure 2: The ML categorical structure in the context of supervised learning involves training a system to categorize data based on 
specific outcomes. The model is generated using provided data and parameters, and subsequent questions or challenges are addressed 
using the knowledge gained during training. This structure is one of the fundamental categories in artificial intelligence approaches, 
particularly in ML.

Decision trees are a commonly used technique for grouping 
and estimation problems [1]. During the training phase, these 
algorithms follow a top-down or general-to-specific approach, 
creating branches based on the attribute values of each node in the 

tree structure. This structure resembles a flowchart and helps in 
making decisions or predictions based on the input data. See figure 
3(c.f., [1]).
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Figure 3: The example decision tree is a visual representation of a classification model that 

helps make decisions based on certain attributes. It shows how the model divides the data 

based on different criteria, such as age, foreign language proficiency, and salary expectation, 

to determine the hiring status of potential employees. By following the branches of the 

decision tree, one can assess whether an individual is likely to be hired or not based on their 

qualifications. 
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it has been stated that the degree of uncertainty reduction depends on both the probability of 

an outcome and the decision-maker's attitude towards risk [12]. The proposed information 

gain function, characterized by probability (  ) and the agent's conservatism level (𝑎𝑎), shows 

that as    increases, the information gain decreases, with the rate of decrease determined by 

𝑎𝑎, as shown by figure 4 (c.f., [12]) [12]. 
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an individual is likely to be hired or not based on their qualifications.

In, the concept of information gain in decision-making has been 
thoroughly explained, where it has been stated that the degree 
of uncertainty reduction depends on both the probability of an 
outcome and the decision-maker's attitude towards risk [12]. The 

proposed information gain function, characterized by probability 
(pi) and the agent's conservatism level (𝑎), shows that as pi  
increases, the information gain decreases, with the rate of decrease 
determined by 𝑎, as shown by figure 4 (c.f., [12]) [12].
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2.2 Entropy KE
One can conceptualise that distribution both in terms of time and 
space. However, as every individual is different from the next and 
has their own experiences, feelings, and spirituality, this kind of 
situation is not possible. This suggests that it is not possible to 
quantify absolute knowledge for everyone using a knowledge 
management metric. Instead, relative values of knowledge can be 
used in relation to a specific degree of knowledge. This approach 
acknowledges that individuals have different experiences and 
perspectives, making it more practical to assess knowledge in a 
relative sense rather than an absolute one.

Here, a random positive constant named C is used to calibrate 
the measurement to a specific scale and environment. If every 
employee either possesses the information or serves as a source 
of it, we might assume that p_1,…,p_n  represents the distribution 
of knowledge inside any organisation. That distribution can be 
thought of in terms of both space and time. However, as every 
individual is different from the next and has their own experiences, 
feelings, and spirituality, this kind of situation is not possible. The 
concept of Knowledge Entropy (KE) can be valuable in evaluating 
the effectiveness of Knowledge Transfer (KT) in training programs 
or information-sharing activities within businesses or communities 
of practice. By assessing the distribution of information within a 
department or organization, managers can determine how to enhance 
knowledge entropy, which promotes innovation. Researchers can 
also utilize knowledge entropy to develop intellectual capital and 
establish intelligent organizations, as it provides insights into the 
expected distribution of knowledge within a specific company at a 
given time [9]. By assessing the information distribution inside a 
certain department or organisation, managers can determine how 
best to increase knowledge entropy, which fosters innovation. By 
measuring knowledge entropy, researchers may also show how 
to develop intellectual capital and create intelligent organisations 
[10,11].

As stated in, KE illustrates how knowledge is expected to be 
distributed within a specific company at a given time [7]. Although 
we think of organisational knowledge as being like a field, it resides 
with particular people and produces the distribution of individual 
knowledge for a given amount of time. KE and information entropy 
are similar from the standpoint of mathematical modelling, but 
they are entirely distinct from a semantic one.

Due to the current study trend's exclusive focus on KE and lack 
of empirical research, KE has become limited. When examining 
the knowledge probability distribution function theoretically, it 
can be challenging to interpret. However, there are useful methods 
available to gather relevant data and calculate the knowledge 
entropy indicator for different scenarios and time points. Future 
research should focus on developing practical approaches to 
compute knowledge entropy and probability sets, as well as 
conducting empirical studies to gain a better understanding of how 
knowledge affects the performance of organizations.

In, the subject of assessing recognition knowledge—specifically, 
categorization knowledge—and its evolution was covered [13]. 
In the given context, the discussion is based on three principles. 
A model was proposed to understand how knowledge affects 
uncertainty, leading to the creation of two formulas for evaluating 
recognition knowledge levels in different scenarios. Additionally, 
the concept of knowledge entropy was introduced, and its formula 
was derived by examining how ignorance changes when there is 
uncertainty. We examined how it differed from Shannon's entropy 
and how similar it was to Boltzmann's entropy. A mathematical 
analysis revealed evidence to support the following conclusions:

•	 As a result of learning, knowledge entropy decreases.
•	 As knowledge entropy decreases, the people's rating order 

becomes more distinctive.
•	 The total knowledge level of a group's members does not 

always equal the group's collective knowledge level.
•	 A person's knowledge entropy will never rise if their thirst for 

information never grows.

Personalization and codification are the two-knowledge transfer 
(KT) strategies that are most frequently employed in companies 
and organisational networks [1]. A theoretical model of Knowledge 
transfer (KT) has been presented by to assess how organisations 
(KT) convey tacit knowledge, or knowledge gained without going 
through the experience, and the associated information content 
[13]. In the context of knowledge transfer strategies, Shannon's 
entropy from information theory is used to explain the concepts of 
tacitness (implicit knowledge) and information content, and how 
they influence the selection of knowledge transfer approaches. 
This utilization of Shannon's entropy helps in understanding and 
making informed decisions about the most suitable methods for 
conveying tacit knowledge within organizations. Specifically, [13] 
has helped with:

•	 Making predictions about the KT mechanism selection based 
on information content.

•	 The creation of a tacitness expression and an intuitive 
justification for the tacit-explicit continuum.

•	 Creating a theoretical KT model that may be used to predict 
which KT mechanisms will be used in real-world situations 
and characterizing the information content of different product 
varieties.

•	 The KT model, which combines personalization and 
codification techniques, is shown in figure 5 [18]. It is evident 
that tacitness and information content volume are two crucial 
characteristics that influence the KT process. When individuals 
and businesses operate across longer distances, individualized 
interactions become more expensive, and standardization 
approaches become the norm. However, there are three main 
barriers that could prevent individualization from being 
applied. Standardization tactics take hold when individuals 
and organizations operate in larger geographic regions and 
individualized interactions become more expensive. 
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On a different note, KT refers to the process of exchanging 
knowledge within an organization [14]. It is crucial for improving 
the organization's knowledge stock and competence. The capacity 
of knowledge senders to effectively disseminate knowledge and the 
absorptive capacity of knowledge recipients significantly impact 
the success of knowledge transfer. Additionally, individuals' social 
benefits, such as status and respect, play a role in stimulating 
knowledge senders and recipients, ultimately enhancing the 
dissemination of knowledge, and accelerating the transfer process 
within the organization.

The authors constructed a KT conceptual model, which considers 
the relationships between knowledge senders, knowledge 
recipients, their disseminative capacity, absorptive capacity, and 
benefits [14]. This model aims to understand how knowledge 
is exchanged within an organization and how factors like 
disseminative capacity, absorptive capacity, and benefits influence 
this process [14]. The model provides a framework for analysing 
and improving knowledge transfer within organizations. Figure 6 
provides a schematic for this model (c.f., [14]).

 
Figure 6: Organizational KT model. 

 

In the given conceptual model of KT, individuals within an organization can act as both 

knowledge senders and recipients [14]. The knowledge disseminative capacity (D) represents 

the ability of a sender to articulate and teach knowledge, while the knowledge absorptive 

capacity (A) refers to the recipient's ability to identify, learn, and apply knowledge from 

senders [14]. Additionally, the model considers the influence of social benefits, such as status 

and respect, which can motivate senders to transfer knowledge and recipients to absorb and 

become senders themselves, leading to a continuous knowledge spiral process that enhances 

the overall knowledge level of the organization [14]. 
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This paper discusses the applications of entropy in artificial intelligence and knowledge 

transfer. Entropy, a concept used in various AI tasks like reinforcement learning, data 
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paper emphasizes the significance of entropy as a powerful tool to advance AI and covers the 
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complexity of knowledge distribution and presents a knowledge transfer model based on 
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In the given conceptual model of KT, individuals within an 
organization can act as both knowledge senders and recipients [14]. 
The knowledge disseminative capacity (D) represents the ability of 
a sender to articulate and teach knowledge, while the knowledge 
absorptive capacity (A) refers to the recipient's ability to identify, 
learn, and apply knowledge from senders [14]. Additionally, the 
model considers the influence of social benefits, such as status and 
respect, which can motivate senders to transfer knowledge and 
recipients to absorb and become senders themselves, leading to 
a continuous knowledge spiral process that enhances the overall 
knowledge level of the organization [14].

3. Closing Remarks, Open Problems, and Next Phase of 
Research
This paper discusses the applications of entropy in artificial 
intelligence and knowledge transfer. Entropy, a concept used in 
various AI tasks like reinforcement learning, data compression, 
and decision-making, helps quantify uncertainty and information 
content. The paper emphasizes the significance of entropy 
as a powerful tool to advance AI and covers the importance of 
knowledge transfer, particularly intergenerational knowledge 
transfer, in knowledge management. It introduces the notion 
of knowledge entropy to assess the complexity of knowledge 
distribution and presents a knowledge transfer model based on 
tacitness and information content. 

Some new, unresolved issues are suggested in the current paper:
•	 Can we overcome the three main obstacles that could prevent 

personalization from being implemented by using Ismail's 
entropies in place of Shannonian entropic formulas (c.f., [15-
18])?

•	 If the p_i's (c.f., Equation (2)) are dependent on time, how 
would this affect the investigation's level of complexity? It's 
still up for debate.

•	 The next phase of research includes investigations to solve 
the proposed open problem as well as widening the search for 
more entropic applications in multi-interdisciplinary fields of 
human knowledge [19-23].
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