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Ensemble Machine Learning Model for Software Defect Prediction 

Abstract
Software defect prediction is a significant activity in every software firm. It helps in producing quality software by reliable defect 
prediction, defect elimination, and prediction of modules that are susceptible to defect. Several researchers have proposed different 
software prediction approaches in the past. However, these conventional software defect predictions are prone to low classification 
accuracy, time-consuming, and tasking. This paper aims to develop a novel multi-model ensemble machine-learning for software 
defect prediction. The ensemble technique can reduce inconsistency among training and test datasets and eliminate bias in the 
training and testing phase of the model, thereby overcoming the downsides that have characterized the existing techniques used 
for the prediction of a software defect. To address these shortcomings, this paper proposes a new ensemble machine-learning 
model for software defect prediction using k Nearest Neighbour (kNN), Generalized Linear Model with Elastic Net Regularization 
(GLMNet), and Linear Discriminant Analysis (LDA) with Random Forest as base learner. Experiments were conducted using the 
proposed model on CM1, JM1, KC3, and PC3 datasets from the NASA PROMISE repository using the RStudio simulation tool. 
The ensemble technique achieved 87.69% for CM1 dataset, 81.11% for JM1 dataset, 90.70% for PC3 dataset, and 94.74% for 
KC3 dataset. The performance of the proposed system was compared with that of other existing techniques in literature in terms of 
AUC. The ensemble technique achieved 87%, which is better than the other seven state-of-the-art techniques under consideration. 
On average, the proposed model achieved an overall prediction accuracy of 88.56% for all datasets used for experiments. The 
results demonstrated that the ensemble model succeeded in effectively predicting the defects in PROMISE datasets that are 
notorious for their noisy features and high dimensions. This shows that ensemble machine learning is promising and the future 
of software defect prediction.
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Introduction
Defective code is a threat to the development of better and high-
quality software products [1]. Predicting defects in the software 
development process is very important in producing usable, 
dependable, efficient, robust, and maintainable software. Software 
defect prediction is the process of ascertaining the section of 
software that is likely to have flaws [2]. This field has attracted 
an enormous research interest with incredible audiences from 
software practitioners in a very little time. According to Zou and 
Hastie [3], Tricentis spent an approximated cost of 1.1 trillion USD 
on testing software in 2016. This shows how important software 
prediction is to software firms. Software quality assurance is 
an important aspect of the software development life cycle that 
decides the activities that will help guarantee the quality of the 
product [4]. 

For a long time, software firms have been using manual testing 
to detect flaws in software products. There is a need for about 
27% human intervention for the entire design and implementation 

of software products using manual software testing [5]. Manual 
software testing has several drawbacks: it is time-consuming 
and inefficient for locating and correcting every error existing 
in the software [5]. Software firms widely adopt models for 
predicting flaws in software to tackle this problem effectively. 
These prediction models offer several advantages: the ability to 
test a software’s ability to function under given environmental 
conditions over a period. They also estimate the effort needed to 
develop the software, identify risks in software, and assist in the 
rapid development of software products [6]. These models enhance 
user’s acceptability of the software and decrease the development 
time and cost of the software at the initial phase of the software 
development lifecycle (SDLC) by reducing the risk involved.

Different scholars and researchers have suggested several 
conventional software defect prediction approaches. However, 
none of these proposals have demonstrated consistency in 
prediction accuracy [4]. These methods include statistical methods, 
machine learning methods, parametric models, and mixed 
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algorithms [4]. Apparently, there is a need for ‘the best prediction 
method for a given prediction problem or, conceivably, conclude 
that fault detection in software is impossible. The dynamic nature 
and complexity of software have motivated machine learning 
algorithms to be viable prediction models for accurate software 
quality prediction. Recently, machine learning has proved to be 
the most effective approach [6]. Many software developers have 
used machine learning (ML) methods to categorize software 
dataset into the defective and non-defective datasets as error 
prediction models. Researchers execute the classification process 
by supplying a machine learning classifier with a software dataset 
as input, whereas the user has foreknowledge of the actual class 
values. At this phase, the user divides the input dataset into training 
and testing sets. The ML classifier trains the training dataset and 
creates a trained model, which it uses for further processing. The 
classifier using the patterns existing in the input dataset creates 
the training model. In the subsequent phase, the test dataset is 
randomly supplied to the classifier and then compared with the 
trained model, which generates the result in the form of software 
defect prediction. 

Before adopting machine learning models for software defect 
prediction, some of the techniques employed to solve this problem 
include requirement-based and object-oriented design [7, 8]. 
These techniques have demonstrated considerable efficiency in 
handling these problems. However, they have not succeeded in 
efficiently handling the issues of low prediction accuracy and 
software complexity. Conventional software defect prediction 
methods are characterised by low prediction accuracy and time 
wastage because of software design sophistication. Therefore, 
machine learning approaches such as Bagging and Boosting, 
Naïve Bayes, Support Vector Machine, J48, deep learning, and 
feature selection techniques were proposed to solve these problems 
[9-17]. These approaches have proved to be highly effective for 
predicting software defects compared to other aforementioned 
methods. Predicting the defects in software requires the extraction 
of features of a specific software product from software metrics. 
Machine learning classifier then analyzes these features. 

After reviewing the relevant literature, it was discovered that the 
existing literature does not provide any work that uses ensemble 
technique to solve the problem of software detect prediction. 
Moreover, many of the existing work’s prediction accuracy 
is rather low, while some did not use state-of-the-art metrics to 
evaluate their work performance. Furthermore, some authors did 
not compare their work with high-performing machine-learning 
models. Bearing in mind such inadequacy, this work’s novelty 
centers on the use of ensemble machine-learning for software 
defect prediction. The summary of our contribution is as follows:

1. This paper proposed a multi-model ensemble machine-
learning for software defect prediction. The ensemble 
method’s diversity is leveraged. The Ensemble technique 
chooses the best model from a collection of options. Moreover, 
an ensemble can create lower inconsistency among training 
and test datasets. It also lessens bias in the training and testing 
phase of the model. The proposed model thereby overcomes 
the drawbacks associated with the existing techniques applied 
for the prediction of a software defect.

2. The technique employed in this paper makes use of both 

primary and auxiliary models. The primary model training 
is carried out using RF models. The grid search algorithm 
is used to optimize the hyper-parameters of the RF model. 
The auxiliary model uses the LDA algorithm for secondary 
learning to complete the ensemble of multiple primary models.

3. The multi-model-based ensemble uses kNN to make the final 
prediction, and the final prediction results are generated. 

4. Average overall prediction accuracy of 88.56% for the 
proposed model was attained. The proposed model was 
evaluated using different performance metrics, and the results 
were compared with other algorithms 

5. A recent review of state-of-the-art proposals for defect 
prediction in software is presented.

The rest of this paper’s organization is as follows: Section 
2 discusses the related works in the field of software defect 
prediction. Section 3 explained the proposed methodology used in 
this work. The presentation of the results and the discussion of the 
results are in section 4, and section 5 is the conclusion of the paper.

Related Works
This section presents a brief discussion on recent researches done 
in the field of software defect prediction. Section one explained 
that machine-learning algorithms had gained wide acceptance 
among data scientists and software engineers for software defect 
prediction. This is because of the efficacy of these algorithms in 
handling the problems of software defect prediction. Jayanthi and 
Florence applied metrics centered on neural network classifiers 
to predict software defects [5]. The proposed technique uses 
decreasing the dataset attribute using the principal component 
analysis (PCA) approach. The introduction of maximum-likelihood 
approximation further enhanced the performance of the system. It 
decreases the fault in PCA data rebuilding. The application of a 
neural network algorithm helps to predict the defect in the software 
and generated output. Simulation results demonstrated that their 
technique has great potential for software defect prediction and 
so can be adopted. Our approach is distinct from the one adopted 
by these authors because we used ensemble machine-learning, 
resulting in greater effectiveness in detecting defects in software.  

Ghosh, Rena, and Kansal proposed a nonlinear manifold detection 
technique for software defect prediction [18]. Their method’s 
objectives are to remove unwanted and inappropriate attributes of 
high-dimensional datasets by decreasing the dimension to achieve 
software with higher prediction accuracy and superior quality. 
The authors compared the performance of their method with other 
existing feature selection methods using different performance 
metrics. Results illustrated that the proposed model performance 
is satisfactory compared to other techniques. The drawback of this 
approach is that the prediction accuracy is low. We distinguished 
our work from this one because our proposed method has a higher 
prediction accuracy than theirs. 

Majd et al., presented a technique used for software defect 
prediction [19]. Their method uses a deep-learning model on static 
code features. Their technique uses SLDeep to predict software 
defects. The base learners used were Long Short-Term Memory 
(LSTM) and random forest. The focus of their approach is on 
easing the workload of a software developer in locating the flaws in 
code. Their approach’s strength lies in helping software developers 
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build quality software with ease in minimum time. However, the 
prediction accuracy of 70.2% attained by their technique is still 
low. Our paper’s approach addressed the shortcoming of this work 
by generating high prediction accuracy on the used datasets.

Qiao et al. applied deep learning to predict the number of flaws 
in software [20]. Their approach trains a deep learning model to 
predict the number of defects using publicly available datasets. 
Experimental results show that the proposed system performed 
better support vector regression (SVR), fuzzy support vector 
regression (FSVR), and decision tree regression (DTR). The authors 
demonstrated that the proposed system notably lowers the mean 
square error and squared correlation coefficient. The downside 
of their work is that the lack of performance comparison of the 
proposed method with other algorithms using more performance 
metrics to further verifies their system’s effectiveness. Unlike 
their work that failed to compare their model’s performance with 
other high performing machine-learning models, ours compared 
the performance of our proposed system with other state-of-the-art 
models.

Sun et al. developed a new algorithm for automatically endorsing 
appropriate sampling techniques for any data that have a new defect 
[21]. The approach works by initially rating current sampling 
approaches with past data that have flaws. It then extracts the 
data resemblance between past and new flawed data using meta-
features. The system creates a recommendation network using a 
combination of information from ranked sampling approaches 
and data resemblance. Results demonstrated that the developed 
system is practicable and efficient. The system’s drawback is that 
the performance is still low, and there is a need to improve on it. In 
addition, there is a need to use some popular performance metrics 
such as prediction accuracy, root mean square error, and others to 
further investigate the performance of the proposed system. Our 
work differs from theirs in that the proposed model was evaluated 
using several performance metrics.

Wei et al. applied a dimension reduction technique to predict 
software defects [22]. The authors used their proposed algorithm 
to reduce the dimension of defect data. Their proposed system used 
the SVM classifier as the base learner of the prediction model. 
Afterward, the system applied a grid search technique to improve the 
model’s parameters before execution of ten-fold cross-validation. 
Inability to overcome conventional dimensionality reduction 
algorithms such as data loss is the downside of this technique. 
This method’s strength is that it overcomes the shortcomings of 
the, which is triggered by inadequate features of data nonlinearity. 
Despite this advantage, their model’s performance is still quite 
low with respect to prediction accuracy, precision, recall, and 
F-measure. Our proposed method addressed the downside of this 
work by proposing a model with high prediction accuracy.

Zhao et al. developed a cost-sensitive Siamese parallel fully 
connected neural networks technique to detect software systems’ 
flaws [23]. The approach merges the strengths of Siamese networks 
with that of deep learning into an integrated technique. AdamW 
algorithm does the training and location of the optima weight 
for the model. Simulated results revealed that their approach 
outperformed DSNN, LSTM, DBN, and RNN. The difference 
between the technique adopted in their paper and ours is that 

our method is based on the ensemble of many machine-learning 
models. Moreover, the prediction accuracy of our proposed model 
is as good as theirs. The authors only used Mathew Correlation 
Coefficient (MCC) and Accuracy to evaluate their model. In 
contrast, our proposed model made use of Accuracy, MASE, MSE, 
and RMSE to evaluate our model.

Shao et al. proposed a correlation weighted class association 
rule mining (CWCAR) for detecting flaws in software [24]. The 
system uses a multi-weighted supports-based framework deal 
with inequality in class and uses a correlation-based heuristic 
method to allocate feature weight. Simulation results indicated 
that the proposed system is practicable and efficient for predicting 
flaws in software. The difference between this paper and ours is 
that these researchers evaluated their model’s performance using 
Balance, MCC, and Geometrical mean (Gmean). They also 
compared CWCAR with predictors such as Classification Based 
on Associations (CBA), Naïve Bayes (NB), Random Forests (RF), 
Decision Tree (DT), and Partial Decision Trees (PART) while our 
work compared the performance of the ensemble model with RF, 
RPART, kNN, GLMNet, and LDA.

The related works discussed above give a brief account of artificial 
intelligence (AI) applications, machine learning algorithms, deep 
learning techniques, data mining, and feature selection method to 
software defect prediction. Literature has proved that machine-
learning algorithms can produce high prediction accuracy for 
software defects [cite this statement]. Incorporating future 
extraction techniques into machine learning models decreases 
complexity and improves the general performance of the model.

Methodology
The previous section contains a concise discussion of different 
machine learning models for predicting defects in a software 
system. Many of the approaches discussed center on solving the 
challenge posed by imbalanced data of software faults. However, 
prediction accuracy and general performance continue to pose 
a daunting problem to software engineers and academicians. To 
overcome these challenges, we present a technique that combines 
ensemble machine learning for dimension reduction and feature 
reduction for predicting software defects. This section discusses 
different machine-learning algorithms and the proposed ensemble 
machine-learning model.

Linear Discriminant Analysis (LDA)
The LDA proposed by Fisher is a leading and standard approach 
in discriminant analysis for solving classification problems. It 
is a classic example of a very famous single-label (multi-class) 
feature extraction method. The LDA achieves a good result when 
the population is the normal joint distribution, and various classes 
have homogenous covariance. LDA can locate an ideal prediction 
matrix M by exploiting inter-class scatter measures and reducing 
intra-class one simultaneously [25]. The LDA has been widely 
used as a supervised feature extraction method in single-label 
(multi-class) classification. LDA makes getting the group posterior 
Pr (M|X) for the M classification compulsory [26]. Assuming fi(x) 
is the class conditioned likelihood of X in class M=i. then let πi be 
the likelihood of event before new data is collected in class i, with 
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In LDA, the classes possess mutual covariance matrix ∑i= ∑Ɐi so, 
compare two classes j and i, the log-ratio is expressed as:

Linear discriminant function is produced by this function

The drawback of LDA is that it is exceptionally susceptible to 
outliers. It is impossible to interconnect dependent variable and 
multicollinearity (linear combination of other variables) variables 
totally. One more shortcoming of LDA is that occasionally the value 
of δi (x) is below 0, and at other times it is greater than 1, which 
is unjustifiable. The strengths LDA state in this section makes it a 
suitable algorithm for solving software prediction problem.

Recursive Partitioning and Regression Trees (RPART)
The RPART is an advanced implement many concepts explained in 
the Classification and Regression Trees (CART) book authored by 
Breiman et al. [27]. Recursive partitioning is a statistical technique 
that applies multivariable statistics to monitor more than one 
outcome variable concurrently [28]. Recursive partitioning helps 
create a decision tree that endeavours to accurately categorize 
the population’s components by partitioning it into sub-groups 
using various bivalent variables that are autonomous. The reason 
for calling the process recursive is that it divides any sub-group 
successively on an unspecified number of occasions until the 
stopping criterion is satisfied and the partitioning process ends.

The first step to building a regression tree is first to use recursive 
partitioning to cultivate a big tree on the training dataset. The 
process only ends when each leaf node has less than the least 
number of observations. Recursive partitioning is a greedy and 
top-down algorithm. It reduces the Residual Sum of Squares 
(RSS). The disparity between the true and the measured value is 
determined by RSS. A linear regression environment also uses 
RSS [29].  

Some of the strengths of RPART include its ability to estimate 
relationships between predictors and outcomes quickly, even 
when the relationship is sophisticated. It offers a straightforward 
and instinctive technique for classifying objects. It intends to 
recognize the interactions of two or more factors when their 
collective influence is more than the total influences observed 
when each factor alone is used. It is capable of detecting nonlinear 
relationships with the final stage of the process. It presents a 
simple way of building identical” ongoing process of assigning 
patients risk status. It forms part of previous probabilities and 
penalties, for instance, of wrongly assigning its variable to another 

class during the process of making choices. Lastly, their generated 
results are simple to understand. However, RPART has certain 
limitations as it does not work well for continuous variables, and 
it can result in data overfit. It can also omit other predictive factors 
throughout the subsequent phase of the process of picking the right 
candidate solution. This can result into the problem of “multiple 
testing.” It is likely to intensify the setback of “over-training.” 
Finally, it is likely not to represent the entire predictive adeptness 
of a continuous factor. The above advantages make RPART a good 
algorithm for solving software prediction problem.

k-Nearest Neighbour (kNN)
The kNN is a classic example of promising classification algorithms 
used for solving classification problem built on the concept of 
nearest learning examples in the feature space. The kNN algorithm 
is known as ‘lazy learning’ algorithm because it generalizes the 
data after a query is made. Every computation involved in the 
classification process takes place after the classification process. 
No definite learning or model creation carried out throughout the 
training stage, even though there is a need for a training dataset. 
The kNN uses the dataset to populate a sample of the search space 
with instances of a known class exclusively. This algorithm is 
classified as a ‘lazy learning’ algorithm for this reason [30]. The 
kNN algorithm being a lazy learner, does not have a training stage; 
even when it does, the training stage is within a relatively short 
time completed. However, the testing stage is expensive with 
respect to time and memory [31]. 

Some of the kNN algorithm’s strengths are that it has proved to 
have the capacity to surmount many of the challenges confronting 
other existing algorithms. Secondly, only a few parameters (k and 
distance metric) need to be fine-tuned to get better classification 
accuracy. The effect of noise on the prediction decreases 
drastically by choosing large values of k. This, however, makes 
borderlines between the classes not to be so discrete. Thirdly, kNN 
surmounts the scalability problem that is prevalent among some 
existing machine learning algorithms, such as decision trees. This 
is because of its ability to handle training data that are too big to 
fit into memory effectively. Fourthly, the implementation is easy. 
This is because a simple Euclidean distance is used to determine 
the sameness between training subset data and the test subset data 
when the preceding information about function showing all the 
possible data values is nonexistent. These advantages, therefore, 
mean that kNN a beneficial algorithm for solving software 
prediction problems.

Generalized Linear Model with Elastic Net Regularization 
(GLMNet)
Generalized linear models (GLMs) are popular algorithms for 
solving regression and classification problems. This algorithm 
can easily find global optimum and knows when it reaches one. 
In addition, they are simple and economical to fit. GLMs are very 
easy to understand. This is due to their clearly outlined noise 
distributions and the absence of a direct relationship between an 
independent and a dependent variable at every point of a given 
set [32]. 

Friedman et al. proposed GLMNet. The algorithm is a package that 
suits a general linear model through penalized highest probability 
[33]. It provides a means to circumvent overfitting by penalizing 
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high-valued regression coefficients for the regularization parameter 
lambda. Some of the strengths of the algorithm include high speed 
and the ability to use thinly scattered data in the input matrix 
efficiently [33]. The GLMNet algorithms episodically iterate 
through the directions, one at a time, reducing the objective function 
with regard to each coordinate direction at a time. It consecutively 
improves the objective function over each parameter with others 
stationary, and cycles are continually pending when it has a close to 
the local or global minimum. The algorithm also applies powerful 
rules to restrain the active set effectively. GLMNet has extremely 
effective updates and methods that leverage prior computation 
to dramatically reduce the time required to train a model (warm 
starts) and active-set convergence. GLMNet can use formal rules 
to compute how to do predicting quickly. It can effectively solve 
problems where most of the elements in the input-matrix are zero, 
in addition to solving coefficients that specified that the value must 
be between two given values [33, 34]. The combined strengths of 
GLMNet algorithm makes it an alternative solution for solving 
software defect prediction problem.

Random Forest (RF)
Breiman and Cutler [35] first developed the RF. RF is a meta 
estimator that fits many classifying decision trees on several 
sub-samples of the dataset and employs averaging to enhance 
its predictive accuracy and regulate over-fitting [36]. It is a 
supervised learning algorithm. RF is simple, diversified, and can 
be implemented easily. It does not need a considerable amount 
of resources like time, processing power, or memory before 
producing optimal solutions to any problem. RF has proven to 
perform excellently in solving several real-world problems [36, 
37]. It is a good example of ensemble machine learning and 
regression method suitable for finding solutions to classification 
and prediction jobs [38]. RF can produce optimal results most 
of the time, even without tuning any value of the used parameter 
during the learning process. 

The benefits of using Random forests include minimized prediction 
error and improved f-scores compared to a number of other 
machines learning algorithms. Besides, its overall performance 
is better than that of Naïve Bayes and SVMs. Unlike SVM and 
Neural Networks, RF has a shorter training time. RF has a higher 
classification accuracy than many of the popular machine learning 
techniques. RFs can efficiently process unlabeled data, thereby 
making it a very suitable method for finding cohesion between 
data elements that are otherwise unlabeled and unclassified. RF 
is easy, and it uses the small number of parameters compared to 
the number of observations. RF allows the user to grow the trees 
they want very fast [38]. The RF discussed strengths make it a 
very suitable algorithm for proffering solution to software defect 
prediction problem.

Proposed Method
The ability to predict defects in software accurately is very 
critical in the software engineering discipline. Section 2 of this 
paper discussed the applications of machine learning techniques 
to software defect prediction. Conversely, these approaches 
attempted to solve issues related to software faults. Despite 
these efforts, attaining high prediction accuracy and improved 
performance of the entire system still poses an uphill task for 
software engineers and scientists. To solve this problem, this paper 

proposed an ensemble machine learning technique for predicting 
software defects. Stacking is a method to ensemble various 
learning algorithms, where a meta-level algorithm is trained 
to make a final prediction utilizing the outputs of based-level 
algorithms as features. It is a non-generative ensemble algorithm. 
In this research, three (3) machine-learning classifiers discussed 
in the previous sub-section (LDA, kNN, and GLMNet) were 
used as base learners, and Random Forest (RF) serves as the top 
layer of our proposed model. Because of software architecture’s 
complexity, we combine all the optimal results produced by 
LDA, kNN, and GLMNet after they were trained using RF. The 
algorithms have two-layered architecture. All algorithms at the 
base layer, which include LDA, KNN, and GLMNet, were trained 
on the given training set, and after that, a combiner algorithm at 
the top layer such as RF is trained to utilize predictions of the first 
level as inputs. This technique helps in improving the accuracy of 
the learners. The combiner algorithm is named as Meta learner. 
Rather than the output from the base classifier, the probability 
predictions is passed as input to the Meta layer. Figure 1 depicts 
the structural design of the ensemble machine learning technique.

Figure 1: Architecture of proposed Ensemble Machine Learning 
Model

Presented in Figure 1 is the architecture of the proposed machine 
learning software defect prediction. The diagram shows that the 
proposed technique comprises of two steps: the training phase and 
the prediction phase using the trained model.
a. Preprocessing phase - Here, the NASA Metrics Data Program 

(MDP) for NASA PROMISE datasets containing software 
metrics was used for our experiments. The preprocessing 
operations such as data normalization and data transformation 
take place prior to training the ensemble machine-learning 
model. Preprocessing operation involves correcting missing 
values and outliers and selecting the input model’s appropriate 
feature variables. Afterwards, the training of the proposed 
model to predict the flaws in software takes place.

b. Training phase - LDA, kNN, and GLMNet prediction models 
were trained, and each distinct prediction result and the actual 
result were accepted as a new training data set for secondary 
learning. 

c. Ensemble phase – As represented in Figure 1, the set of 
models are trained in parallel, and their results are merged 
subsequently to produce the final output.  Since the key 
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causes of error in learning models are a result of noise, bias, 
and variance. The ensemble phase is very important due to 
its ability to improve the prediction accuracy of learners. It 
consists of two-layered architecture, such as the base layer 
and top layer. The base layer consists of LDA, KNN, and 
GLMNet, while the top layer is RF. The base layer was trained 
on the given training set and after that, a combined algorithm 
at the top layer is trained utilizing the top layer’s prediction. 
The output of all the models used for the ensemble learning is 
fused. 

d. Prediction and Evaluation phase - In this phase, preprocessing 
operation is conducted to obtain the prediction stage’s software 
metrics. The modeled data serves as input to the trained 
ensemble machine-learning model to predict the software’s 
defects. The output is the aggregated classification result of 
all the machine-learning models (LDA, kNN, and GLMNet) 
used for the final prediction. Evaluation of prediction results 
happens at this stage also.

Depicted in Figure 2 is the flowchart of the ensemble model.

Figure 2: Flowchart of proposed Ensemble Machine Learning 
Model
This paper implements an ensemble model approach. The 
algorithm of the multi-model ensemble prediction model are as 
stated below:

 Algorithm 1: Ensemble Prediction Model
Step 1:Divide the training dataset into train_train and train_valid 

using the technique of 5-fold cross-validation [37].
Step 2:The primary model, train five RF models with the train_

train, use the grid search method to optimize the RF model’s 
hyper-parameters and predict the train_valid and test data 
sets respectively to obtain the train_valid_pred and test_pred 
results. The five train_valid_preds produced by the 5-fold 
cross-validation are concatenated into rf_train_pred, and the 

five tests_preds are averaged to generate rf_test_pred.
Step 3:Repeat step 2 using LDA, GLMNet, and kNN to obtain 

lda_train_pred, lda_test_pred, glm_train_pred, glm_test_
pred, knn_train_pred, and knn_test_pred produced by LDA, 
GLMNet, and kNN models.

Step 4:The auxiliary model, The LDA algorithm, was chosen 
for secondary learning to complete the ensemble of multiple 
primary models. The prediction values rf_train_pred, lda_
train_pred, glm_train_pred, and knn_train_pred generated 
by each of the prediction models are used as input the 
corresponding actual value training_y is used as an output 
training kNN model.

Step 5:The rf_test_pred, lda_test_pred, glm_test_pred, and knn_
test_pred produced by the primary model are employed as 
input features. Using the ensemble model based on kNN to 
predict them, the ultimate prediction results are attained.

Results and Discussion
This section presents the results of our experiments using the 
proposed model on PROMISE datasets. The work is implemented 
and analyzed using RStudio Version 1.2.5033 simulation tool.

Dataset Description
The Metrics Data Program (MDP) dataset used for the experiments 
was obtained from NASA PROMISE open-source datasets 
repository. Four datasets from the PROMISE repository named 
CM1, JM1, PC3, and KC3 with different attributes were used in 
this work. Table 1 contains different parameter descriptions of the 
datasets under consideration where several instances, number of 
defective modules, percentage defect, and number of metrics are 
represented

Table 1: PROMISE software defect prediction dataset details

Name of 
Dataset

Number 
of 
Instances

Defect Defect 
(%)

Number 
of Metrics

CM1 344 42 12.21 37
JM1 9593 1759 18.34 21
PC3 1125 140 12.44 37
KC3 200 36 18.00 39

 
Table 2 contains the metrics and descriptions of the datasets 
used for our experiments. We evaluated the performance of our 
technique through these datasets and compared the performance 
with other machine learning techniques.



Table 2: Description of metrics in NASA PROMISE software defect datasets

Metrics Description
LOC Sum of line in the module
iv(g) Design complexity of each module
ev(g) Essential complexity of each module
N Sum of operators and operands existing in the module
v(g) Cyclomatic complexity of each module
D Difficulties in each module
B Effort approximation
L Program size for each module
V Volume of each module
I Intelligence content
E Error approximation
Locomment Line of comments in each module
Loblank Sum of blank lines in each module
uniq_op Sum of unique operators
uniq_opnd Sum of unique operand
T Time determinist
Branchcount Sum of branch in the software module
total_op Sum of operators
total_opnd Sum of operators
Locodeandcomment Sum of line of code and comments
Defects Details on whether there is existence of defect or not

Experimental Setup
Datasets used for many software projects are usually made 
available to the public so that researchers can make use of them 
for experimental and research purposes. One of the factors that 
can likely influence the prediction accuracy of a model is the 
ability of a particular dataset to perform an intended purpose. The 
design process that precedes the creation of a model and choices 
made influences a model’s ability to predict defective parts. The 
potency of the predictive outcomes might not be the same at all 
times. This is because the performance evaluation measures 
used usually have diverse fundamental hypothetical basics. This 
explains why various models are likely to have a distinct score 
from various measurement standards. Some measurable qualities 
can change during a scientific experiment. These qualities are 
critical numerical quantities that must be considered in the overall 
strategy for experiments. 

Performance Metrics
The proposed model was evaluated using the following 
performance metrics Mean Squared Error (MSE), Root Mean 
Square Error (RMSE), and Mean Absolute Scaled Error (MASE). 

Root Mean Square Error (RMSE)
RMSE is the standard deviation of prediction errors in a test. The 
mathematical formula for RMSE is:

Mean Squared Error (MSE)
MSE is the average squared difference between the estimated 
values and the actual value in the test. The mathematical formula 
for MSE is:

Where N represents the number of data points, yt is the value 
returned by the model, and ŷ is the actual value for data point t. 

Mean Absolute Scaled Error (MASE)
MASE is a measure of the accuracy of predictions. MASE is a 
scale-free error metric that gives each error as a percentage in 
comparison to a standard mean error. MASE is defined as follows:

Where yt
n is the target value, yt

n is predicted values and m is the 
seasonal period of yt

n

Simulation
In this section, we present the results of our simulations. The 
proposed model was used to classify and predict the number of 
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software defects in the dataset. The dataset used for the work was 
divided into a training set (80%) and test set (20%), respectively. 
The dataset was trained using an RF classifier. Different test cases 
for each of the datasets were used to conduct the experiments.

Table 3: Performance evaluation of proposed ensemble model 
using CM1 dataset

Model MSE RMSE MASE Accuracy
RF 0.1384615 0.3721042 1.107692 0.8615
RPART 0.200000 0.4472136 0.762500 0.8000
kNN 0.1230769 0.3508232 0.4692308 0.8769
GLMNet 0.1230769 0.3508232 0.4692308 0.8769
LDA 0.1692308 0.4113767 0.6451923 0.8308
Ensemble 0.1230769 0.3508232 0.4692308 0.8769

Experimental results illustrated that the performance of our 
technique is as good as that of kNN and GLMNet. The three 
techniques produced an accuracy of 87.69% for the CM1 dataset. 
The RPART, with accuracy of 80.00% is the worst-performing 
model among all the methods compared. The three of them 
also have the lowest MSE, RMSE, and MASE. The ROC curve 
analysis for the dataset was presented to authenticate the proposed 
model’s performance for CM1 dataset. This analysis is depicted 
in Figure 3. It represents the ROC curve for true positive rate and 
false-positive rate.

Figure 3: ROC curve analysis for CM1 dataset

A bar chart, which compares the proposed model with other 
existing models, is presented in Figure 4.

Figure 4: Performance Comparison of Models for CM1 dataset

Test Case 2: JM1 dataset
The JM1 dataset has 9535 instances, 1759 defects, while the 
percentage of defective modules is 18.35%. Experiments 
were performed on the JM1 dataset under the same simulation 
environment as that of CM1. The comparative study was carried 
out as depicted in table 4 and in figures 5 and 6.

Table 4: Performance evaluation using JM1 dataset

Algorithm MSE RMSE MASE Accuracy
RF 0.1947301 0.4412823 0.6105476 0.8053
RPART 0.2037275 0.4513618 0.6387578 0.7963
KNN 0.2107969 0.4591263 0.6609229 0.7892
GLMNet 0.1960154 0.4427363 0.6145777 0.8040
LDA 0.1960154 0.4427363 0.6145777 0.8040
Ensemble 0.188946 0.4346792 0.5924126 0.8111

Simulation results indicated that the Ensemble technique’s 
performance is superior to that of the other techniques under 
consideration. The Ensemble method produced an accuracy of 
81.11% for JM1 dataset. The kNN algorithm produced the worst 
performance among all the methods compared with the accuracy 
of 78.92%, MSE value of 0.2107969, RMSE (0.4591263), and 
MASE (0.6609229). The ROC curve for the true positive rate and 
the false positive rate is presented in figure 5.

Figure 5: ROC curve analysis for JM1 dataset
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Figure 6 depicts a comparison of the proposed model with other 
models.

Figure 6: Performance Comparison of Models for JM1 dataset

Test Case 3: PC3 dataset
The PC3 dataset was used for our experiment in this case. The 
dataset contains 1125 instances, 140 defects, and a percentage 
defect of 37%. The simulation was carried out using the PC3 dataset 
under the same experimental condition. Table 5 and Figures 7 and 
8 illustrate the novel model’s performance evaluation against other 
techniques.

Table 5: Performance evaluation using PC3 dataset

Algorithm MSE RMSE MASE Accuracy
RF 0.09767442 0.3125291 0.5888372 0.9023
RPART 0.1116279 0.3341076 0.5193124 0.8884
KNN 0.1069767 0.327073 0.6449169 0.8930
GLMNet 0.1255814 0.3543747 0.7570764 0.8744
LDA 0.1348837 0.3672652 0.8131561 0.8651
Ensemble 0.09302326 0.3049971 0.5607973 0.9070

For the PC3 dataset, simulation results indicated that the Ensemble 
technique outperformed other methods under consideration. The 
Ensemble method generated an accuracy of 90.70% for the PC3 
dataset. RF closely follows this with an accuracy of 90.23%. The 
LDA algorithm produced the worst performance among all the 
methods compared with an accuracy of 86.51%. The ROC curve 
for the true positive rate and the false positive rate is presented in 
Figure 7.

Figure 7: ROC curve analysis for PC3 dataset

Depicted in figure 8 is a comparison of the proposed model with 
other models.

Figure 8: Performance Comparison of Models for PC3 dataset

Test Case 4: KC3 dataset
The KC3 dataset was used for our experiment this time around. 
There are 200 instances in the dataset having 18.00% defect. The 
experiment was conducted under the same condition as the previous 
tests. Simulation results of our experiments are represented in table 
6 and Figures 9 and 10.

Table 6: Performance evaluation using KC3 dataset

Algorithm MSE RMSE MASE Accuracy
RF 0.1315789 0.3627381 1.491228 0.8684
RPART 0.07894737 0.2809757 0.8947368 0.9211
KNN 0.2105263 0.4588315 2.385965 0.7895
GLMNet 0.1052632 0.3244428 1.192982 0.8947
LDA 0.1578947 0.3973597 1.789474 0.8421
Ensemble 0.05263158 0.2294157 0.5964912 0.9474

 
For the KC3 dataset, results indicate that the novel Ensemble 
technique outperformed other approaches considered in this paper. 
The Ensemble method produced an accuracy of 94.74% for the 
KC3 dataset. This is a significant increase compared to that of 
other techniques compared. This is followed by RPART that has 
an accuracy of 92.11%. The worst performance was produced by 
the kNN algorithm with an accuracy of 78.95%. The ROC curve 
for the true positive rate and the false positive rate is depicted in 
Figure 9.

Figure 9: ROC curve analysis for KC3 dataset
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Presented in Figure 10 is a comparison of the proposed Ensemble 
model with other models.

Figure 10: Performance Comparison of Models for KC3 dataset

The overall accuracy of the models used in this work is presented 
in table 7.

Table 7: Average Overall Prediction Accuracy of the Models 
on each Dataset

Data Set RF RPART KNN GLM
Net

LDA ENSE
MBLE

CM1 0.8615 0.8000 0.8769 0.8769 0.8308 0.8769
JM1 0.8053 0.7963 0.7892 0.8040 0.8041 0.8111
PC3 0.9023 0.8884 0.8930 0.8744 0.8651 0.9070
KC3 0.8684 0.9211 0.7895 0.8947 0.8421 0.9474
Overall
Accuracy

0.8594 0.8515 0.8372 0.8625 0.8355 0.8856

Our findings show that the Ensemble approach increases defect 
prediction accuracy using fewer attributes. This is unlike the other 
existing techniques. The proposed model gives equal and, in some 
cases, better prediction accuracy even when very few attributes 
are used. The performance of the proposed model was tested on 
CM1, JM1, PC3, and KC3 datasets. Comparative analysis of Area 
Under Curve (AUC) of the proposed model with previous work is 
presented in table 8 [39-44].

Table 8: Comparative analysis AUC of the proposed model 
with other work

Algorithm PC3 JM1 CM1 KC3
NN [5] 0.89 0.81 0.79 0.79
KNN [38] 0.77 0.69 0.72 0.70
NB [38] 0.81 0.69 0.75 0.76
SVM [39] 0.77 0.72 0.75 0.76
L-SVM [40] 0.84 0.73 0.75 0.76
LS-SVM [41] 0.83 0.74 0.77 0.77
LDA [42] 0.82 0.73 0.77 0.78
Ensemble 0.95 0.89 0.84 0.87

Conclusion 
A novel multi-model Ensemble machine-learning model has 
been proposed in this paper. The results show that the model 
can handle PROMISE datasets that are known for their noisy 
attributes and high dimensions effectively. The proposed model’s 
performance was compared with that of seven other machine-
learning models in terms of Area under the curve (AUC). The 
Ensemble model’s experimental results show promising results in 
predicting defects in a software system for the four datasets used. 
The advantage of the proposed ensemble model apart from high 
classification accuracy, is that it decreases the model’s time cost in 
parameter optimization. Future research work will be focused on 
benchmarking this proposed model with ensemble deep learning. 
Finally, it is expected that this paper has contributed and impacted 
more knowledge in the field of software defect prediction. It is 
hoped that this will aid software developers to detect flaws in 
software systems easily and with higher accuracy. This has the 
ability to enhance the development of a high-quality software 
package. According to the generated results, some thought-
provoking observations can be deduced from this work which are 
listed below:
1. The most pragmatic upshot of this study was that the Ensemble 

machine-learning technique has better prediction accuracy for 
software defect prediction. 

2. Elimination of the occurrence of high intercorrelations among 
two or more independent variables in a multiple regression 
model enhances the machine-learning model’s performance.

3. Feature extraction has significantly enhanced the prediction 
accuracy of the performance of the prediction model.

4. The MSE of the proposed model is significantly reduced 
compared to other models because the Ensemble technique 
effectively handles error in the learning model caused by 
noise, bias, and variance.
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