
Advances in Machine Learning & Artificial Intelligence

Adv Mach Lear Art Inte, 2021

Research Article

Emmanuel Gbenga Dada1*, David Opeoluwa Oyewola2, Stephen Bassi Joseph3 and Ali Baba Dauda1

1Department of Mathematical Sciences, University of Maiduguri,
Maiduguri, Nigeria

2Department of Mathematics and Computer Science, Federal
University Kashere, Gombe, Nigeria

3Department of Computer Engineering, University of Maiduguri,
Maiduguri, Nigeria

*Corresponding author
Emmanuel Gbenga Dada, Department of Mathematical Sciences, University of
Maiduguri, Maiduguri, Nigeria

Submitted: 16 July 2021; Accepted: 26 July 2021; Published: 30 July 2021

 Volume 2 | Issue 1 | 11www.opastonline.com

Ensemble Machine Learning Model for Software Defect Prediction

Abstract
Software defect prediction is a significant activity in every software firm. It helps in producing quality software by reliable defect
prediction, defect elimination, and prediction of modules that are susceptible to defect. Several researchers have proposed different
software prediction approaches in the past. However, these conventional software defect predictions are prone to low classification
accuracy, time-consuming, and tasking. This paper aims to develop a novel multi-model ensemble machine-learning for software
defect prediction. The ensemble technique can reduce inconsistency among training and test datasets and eliminate bias in the
training and testing phase of the model, thereby overcoming the downsides that have characterized the existing techniques used
for the prediction of a software defect. To address these shortcomings, this paper proposes a new ensemble machine-learning
model for software defect prediction using k Nearest Neighbour (kNN), Generalized Linear Model with Elastic Net Regularization
(GLMNet), and Linear Discriminant Analysis (LDA) with Random Forest as base learner. Experiments were conducted using the
proposed model on CM1, JM1, KC3, and PC3 datasets from the NASA PROMISE repository using the RStudio simulation tool.
The ensemble technique achieved 87.69% for CM1 dataset, 81.11% for JM1 dataset, 90.70% for PC3 dataset, and 94.74% for
KC3 dataset. The performance of the proposed system was compared with that of other existing techniques in literature in terms of
AUC. The ensemble technique achieved 87%, which is better than the other seven state-of-the-art techniques under consideration.
On average, the proposed model achieved an overall prediction accuracy of 88.56% for all datasets used for experiments. The
results demonstrated that the ensemble model succeeded in effectively predicting the defects in PROMISE datasets that are
notorious for their noisy features and high dimensions. This shows that ensemble machine learning is promising and the future
of software defect prediction.

Citation: Emmanuel Gbenga Dada, David Opeoluwa Oyewola, Stephen Bassi Joseph and Ali Baba Dauda (2021) Ensemble Machine
Learning Model for Software Defect Prediction. Adv Mach Lear Art Inte, 2(1): 11-21.

Keywords: Ensemble learning, Machine learning, Defect prediction, Software defect, Software metrics

Introduction
Defective code is a threat to the development of better and high-
quality software products [1]. Predicting defects in the software
development process is very important in producing usable,
dependable, efficient, robust, and maintainable software. Software
defect prediction is the process of ascertaining the section of
software that is likely to have flaws [2]. This field has attracted
an enormous research interest with incredible audiences from
software practitioners in a very little time. According to Zou and
Hastie [3], Tricentis spent an approximated cost of 1.1 trillion USD
on testing software in 2016. This shows how important software
prediction is to software firms. Software quality assurance is
an important aspect of the software development life cycle that
decides the activities that will help guarantee the quality of the
product [4].

For a long time, software firms have been using manual testing
to detect flaws in software products. There is a need for about
27% human intervention for the entire design and implementation

of software products using manual software testing [5]. Manual
software testing has several drawbacks: it is time-consuming
and inefficient for locating and correcting every error existing
in the software [5]. Software firms widely adopt models for
predicting flaws in software to tackle this problem effectively.
These prediction models offer several advantages: the ability to
test a software’s ability to function under given environmental
conditions over a period. They also estimate the effort needed to
develop the software, identify risks in software, and assist in the
rapid development of software products [6]. These models enhance
user’s acceptability of the software and decrease the development
time and cost of the software at the initial phase of the software
development lifecycle (SDLC) by reducing the risk involved.

Different scholars and researchers have suggested several
conventional software defect prediction approaches. However,
none of these proposals have demonstrated consistency in
prediction accuracy [4]. These methods include statistical methods,
machine learning methods, parametric models, and mixed

Adv Mach Lear Art Inte, 2021 Volume 2 | Issue 1 | 12www.opastonline.com

algorithms [4]. Apparently, there is a need for ‘the best prediction
method for a given prediction problem or, conceivably, conclude
that fault detection in software is impossible. The dynamic nature
and complexity of software have motivated machine learning
algorithms to be viable prediction models for accurate software
quality prediction. Recently, machine learning has proved to be
the most effective approach [6]. Many software developers have
used machine learning (ML) methods to categorize software
dataset into the defective and non-defective datasets as error
prediction models. Researchers execute the classification process
by supplying a machine learning classifier with a software dataset
as input, whereas the user has foreknowledge of the actual class
values. At this phase, the user divides the input dataset into training
and testing sets. The ML classifier trains the training dataset and
creates a trained model, which it uses for further processing. The
classifier using the patterns existing in the input dataset creates
the training model. In the subsequent phase, the test dataset is
randomly supplied to the classifier and then compared with the
trained model, which generates the result in the form of software
defect prediction.

Before adopting machine learning models for software defect
prediction, some of the techniques employed to solve this problem
include requirement-based and object-oriented design [7, 8].
These techniques have demonstrated considerable efficiency in
handling these problems. However, they have not succeeded in
efficiently handling the issues of low prediction accuracy and
software complexity. Conventional software defect prediction
methods are characterised by low prediction accuracy and time
wastage because of software design sophistication. Therefore,
machine learning approaches such as Bagging and Boosting,
Naïve Bayes, Support Vector Machine, J48, deep learning, and
feature selection techniques were proposed to solve these problems
[9-17]. These approaches have proved to be highly effective for
predicting software defects compared to other aforementioned
methods. Predicting the defects in software requires the extraction
of features of a specific software product from software metrics.
Machine learning classifier then analyzes these features.

After reviewing the relevant literature, it was discovered that the
existing literature does not provide any work that uses ensemble
technique to solve the problem of software detect prediction.
Moreover, many of the existing work’s prediction accuracy
is rather low, while some did not use state-of-the-art metrics to
evaluate their work performance. Furthermore, some authors did
not compare their work with high-performing machine-learning
models. Bearing in mind such inadequacy, this work’s novelty
centers on the use of ensemble machine-learning for software
defect prediction. The summary of our contribution is as follows:

1. This paper proposed a multi-model ensemble machine-
learning for software defect prediction. The ensemble
method’s diversity is leveraged. The Ensemble technique
chooses the best model from a collection of options. Moreover,
an ensemble can create lower inconsistency among training
and test datasets. It also lessens bias in the training and testing
phase of the model. The proposed model thereby overcomes
the drawbacks associated with the existing techniques applied
for the prediction of a software defect.

2. The technique employed in this paper makes use of both

primary and auxiliary models. The primary model training
is carried out using RF models. The grid search algorithm
is used to optimize the hyper-parameters of the RF model.
The auxiliary model uses the LDA algorithm for secondary
learning to complete the ensemble of multiple primary models.

3. The multi-model-based ensemble uses kNN to make the final
prediction, and the final prediction results are generated.

4. Average overall prediction accuracy of 88.56% for the
proposed model was attained. The proposed model was
evaluated using different performance metrics, and the results
were compared with other algorithms

5. A recent review of state-of-the-art proposals for defect
prediction in software is presented.

The rest of this paper’s organization is as follows: Section
2 discusses the related works in the field of software defect
prediction. Section 3 explained the proposed methodology used in
this work. The presentation of the results and the discussion of the
results are in section 4, and section 5 is the conclusion of the paper.

Related Works
This section presents a brief discussion on recent researches done
in the field of software defect prediction. Section one explained
that machine-learning algorithms had gained wide acceptance
among data scientists and software engineers for software defect
prediction. This is because of the efficacy of these algorithms in
handling the problems of software defect prediction. Jayanthi and
Florence applied metrics centered on neural network classifiers
to predict software defects [5]. The proposed technique uses
decreasing the dataset attribute using the principal component
analysis (PCA) approach. The introduction of maximum-likelihood
approximation further enhanced the performance of the system. It
decreases the fault in PCA data rebuilding. The application of a
neural network algorithm helps to predict the defect in the software
and generated output. Simulation results demonstrated that their
technique has great potential for software defect prediction and
so can be adopted. Our approach is distinct from the one adopted
by these authors because we used ensemble machine-learning,
resulting in greater effectiveness in detecting defects in software.

Ghosh, Rena, and Kansal proposed a nonlinear manifold detection
technique for software defect prediction [18]. Their method’s
objectives are to remove unwanted and inappropriate attributes of
high-dimensional datasets by decreasing the dimension to achieve
software with higher prediction accuracy and superior quality.
The authors compared the performance of their method with other
existing feature selection methods using different performance
metrics. Results illustrated that the proposed model performance
is satisfactory compared to other techniques. The drawback of this
approach is that the prediction accuracy is low. We distinguished
our work from this one because our proposed method has a higher
prediction accuracy than theirs.

Majd et al., presented a technique used for software defect
prediction [19]. Their method uses a deep-learning model on static
code features. Their technique uses SLDeep to predict software
defects. The base learners used were Long Short-Term Memory
(LSTM) and random forest. The focus of their approach is on
easing the workload of a software developer in locating the flaws in
code. Their approach’s strength lies in helping software developers

Adv Mach Lear Art Inte, 2021 Volume 2 | Issue 1 | 13www.opastonline.com

build quality software with ease in minimum time. However, the
prediction accuracy of 70.2% attained by their technique is still
low. Our paper’s approach addressed the shortcoming of this work
by generating high prediction accuracy on the used datasets.

Qiao et al. applied deep learning to predict the number of flaws
in software [20]. Their approach trains a deep learning model to
predict the number of defects using publicly available datasets.
Experimental results show that the proposed system performed
better support vector regression (SVR), fuzzy support vector
regression (FSVR), and decision tree regression (DTR). The authors
demonstrated that the proposed system notably lowers the mean
square error and squared correlation coefficient. The downside
of their work is that the lack of performance comparison of the
proposed method with other algorithms using more performance
metrics to further verifies their system’s effectiveness. Unlike
their work that failed to compare their model’s performance with
other high performing machine-learning models, ours compared
the performance of our proposed system with other state-of-the-art
models.

Sun et al. developed a new algorithm for automatically endorsing
appropriate sampling techniques for any data that have a new defect
[21]. The approach works by initially rating current sampling
approaches with past data that have flaws. It then extracts the
data resemblance between past and new flawed data using meta-
features. The system creates a recommendation network using a
combination of information from ranked sampling approaches
and data resemblance. Results demonstrated that the developed
system is practicable and efficient. The system’s drawback is that
the performance is still low, and there is a need to improve on it. In
addition, there is a need to use some popular performance metrics
such as prediction accuracy, root mean square error, and others to
further investigate the performance of the proposed system. Our
work differs from theirs in that the proposed model was evaluated
using several performance metrics.

Wei et al. applied a dimension reduction technique to predict
software defects [22]. The authors used their proposed algorithm
to reduce the dimension of defect data. Their proposed system used
the SVM classifier as the base learner of the prediction model.
Afterward, the system applied a grid search technique to improve the
model’s parameters before execution of ten-fold cross-validation.
Inability to overcome conventional dimensionality reduction
algorithms such as data loss is the downside of this technique.
This method’s strength is that it overcomes the shortcomings of
the, which is triggered by inadequate features of data nonlinearity.
Despite this advantage, their model’s performance is still quite
low with respect to prediction accuracy, precision, recall, and
F-measure. Our proposed method addressed the downside of this
work by proposing a model with high prediction accuracy.

Zhao et al. developed a cost-sensitive Siamese parallel fully
connected neural networks technique to detect software systems’
flaws [23]. The approach merges the strengths of Siamese networks
with that of deep learning into an integrated technique. AdamW
algorithm does the training and location of the optima weight
for the model. Simulated results revealed that their approach
outperformed DSNN, LSTM, DBN, and RNN. The difference
between the technique adopted in their paper and ours is that

our method is based on the ensemble of many machine-learning
models. Moreover, the prediction accuracy of our proposed model
is as good as theirs. The authors only used Mathew Correlation
Coefficient (MCC) and Accuracy to evaluate their model. In
contrast, our proposed model made use of Accuracy, MASE, MSE,
and RMSE to evaluate our model.

Shao et al. proposed a correlation weighted class association
rule mining (CWCAR) for detecting flaws in software [24]. The
system uses a multi-weighted supports-based framework deal
with inequality in class and uses a correlation-based heuristic
method to allocate feature weight. Simulation results indicated
that the proposed system is practicable and efficient for predicting
flaws in software. The difference between this paper and ours is
that these researchers evaluated their model’s performance using
Balance, MCC, and Geometrical mean (Gmean). They also
compared CWCAR with predictors such as Classification Based
on Associations (CBA), Naïve Bayes (NB), Random Forests (RF),
Decision Tree (DT), and Partial Decision Trees (PART) while our
work compared the performance of the ensemble model with RF,
RPART, kNN, GLMNet, and LDA.

The related works discussed above give a brief account of artificial
intelligence (AI) applications, machine learning algorithms, deep
learning techniques, data mining, and feature selection method to
software defect prediction. Literature has proved that machine-
learning algorithms can produce high prediction accuracy for
software defects [cite this statement]. Incorporating future
extraction techniques into machine learning models decreases
complexity and improves the general performance of the model.

Methodology
The previous section contains a concise discussion of different
machine learning models for predicting defects in a software
system. Many of the approaches discussed center on solving the
challenge posed by imbalanced data of software faults. However,
prediction accuracy and general performance continue to pose
a daunting problem to software engineers and academicians. To
overcome these challenges, we present a technique that combines
ensemble machine learning for dimension reduction and feature
reduction for predicting software defects. This section discusses
different machine-learning algorithms and the proposed ensemble
machine-learning model.

Linear Discriminant Analysis (LDA)
The LDA proposed by Fisher is a leading and standard approach
in discriminant analysis for solving classification problems. It
is a classic example of a very famous single-label (multi-class)
feature extraction method. The LDA achieves a good result when
the population is the normal joint distribution, and various classes
have homogenous covariance. LDA can locate an ideal prediction
matrix M by exploiting inter-class scatter measures and reducing
intra-class one simultaneously [25]. The LDA has been widely
used as a supervised feature extraction method in single-label
(multi-class) classification. LDA makes getting the group posterior
Pr (M|X) for the M classification compulsory [26]. Assuming fi(x)
is the class conditioned likelihood of X in class M=i. then let πi be
the likelihood of event before new data is collected in class i, with

The related works discussed above give a brief account of artificial intelligence (AI) applications,

machine learning algorithms, deep learning techniques, data mining, and feature selection method

to software defect prediction. Literature has proved that machine-learning algorithms can produce

high prediction accuracy for software defects [cite this statement]. Incorporating future extraction

techniques into machine learning models decreases complexity and improves the general

performance of the model.

Methodology

The previous section contains a concise discussion of different machine learning models for

predicting defects in a software system. Many of the approaches discussed center on solving the

challenge posed by imbalanced data of software faults. However, prediction accuracy and general

performance continue to pose a daunting problem to software engineers and academicians. To

overcome these challenges, we present a technique that combines ensemble machine learning for

dimension reduction and feature reduction for predicting software defects. This section discusses

different machine-learning algorithms and the proposed ensemble machine-learning model.

Linear Discriminant Analysis (LDA)

The LDA proposed by Fisher is a leading and standard approach in discriminant analysis for

solving classification problems. It is a classic example of a very famous single-label (multi-class)

feature extraction method. The LDA achieves a good result when the population is the normal joint

distribution, and various classes have homogenous covariance. LDA can locate an ideal prediction

matrix M by exploiting inter-class scatter measures and reducing intra-class one simultaneously

[25]. The LDA has been widely used as a supervised feature extraction method in single-label

(multi-class) classification. LDA makes getting the group posterior Pr (M|X) for the M

classification compulsory [26]. Assuming fi(x) is the class conditioned likelihood of X in class

M=i. then let πi be the likelihood of event before new data is collected in class i, with ∑ 𝜋𝜋𝑖𝑖 = 1.𝐼𝐼
𝑖𝑖=1

from

Pr(𝑀𝑀 = 𝑖𝑖|𝑋𝑋 = 𝑥𝑥) = 𝑓𝑓𝑖𝑖(𝑥𝑥)𝜋𝜋𝑖𝑖
∑ 𝜋𝜋𝑖𝑖𝑓𝑓𝑖𝑖𝑖𝑖

𝑖𝑖=1
 (1)

Assuming that:

𝑓𝑓𝑖𝑖(𝑥𝑥) = 1

(2𝜋𝜋)𝑝𝑝
2| ∑ |

1
2𝑖𝑖

 𝐸𝐸𝑋𝑋𝐸𝐸 − 1
2 (𝑥𝑥 − 𝜇𝜇𝑖𝑖)𝑖𝑖 ∑ (𝑥𝑥 − 𝜇𝜇𝑖𝑖)−1

𝑖𝑖 (2)

In LDA, the classes possess mutual covariance matrix ∑i= ∑Ɐi so,
compare two classes j and i, the log-ratio is expressed as:

Linear discriminant function is produced by this function

The drawback of LDA is that it is exceptionally susceptible to
outliers. It is impossible to interconnect dependent variable and
multicollinearity (linear combination of other variables) variables
totally. One more shortcoming of LDA is that occasionally the value
of δi (x) is below 0, and at other times it is greater than 1, which
is unjustifiable. The strengths LDA state in this section makes it a
suitable algorithm for solving software prediction problem.

Recursive Partitioning and Regression Trees (RPART)
The RPART is an advanced implement many concepts explained in
the Classification and Regression Trees (CART) book authored by
Breiman et al. [27]. Recursive partitioning is a statistical technique
that applies multivariable statistics to monitor more than one
outcome variable concurrently [28]. Recursive partitioning helps
create a decision tree that endeavours to accurately categorize
the population’s components by partitioning it into sub-groups
using various bivalent variables that are autonomous. The reason
for calling the process recursive is that it divides any sub-group
successively on an unspecified number of occasions until the
stopping criterion is satisfied and the partitioning process ends.

The first step to building a regression tree is first to use recursive
partitioning to cultivate a big tree on the training dataset. The
process only ends when each leaf node has less than the least
number of observations. Recursive partitioning is a greedy and
top-down algorithm. It reduces the Residual Sum of Squares
(RSS). The disparity between the true and the measured value is
determined by RSS. A linear regression environment also uses
RSS [29].

Some of the strengths of RPART include its ability to estimate
relationships between predictors and outcomes quickly, even
when the relationship is sophisticated. It offers a straightforward
and instinctive technique for classifying objects. It intends to
recognize the interactions of two or more factors when their
collective influence is more than the total influences observed
when each factor alone is used. It is capable of detecting nonlinear
relationships with the final stage of the process. It presents a
simple way of building identical” ongoing process of assigning
patients risk status. It forms part of previous probabilities and
penalties, for instance, of wrongly assigning its variable to another

class during the process of making choices. Lastly, their generated
results are simple to understand. However, RPART has certain
limitations as it does not work well for continuous variables, and
it can result in data overfit. It can also omit other predictive factors
throughout the subsequent phase of the process of picking the right
candidate solution. This can result into the problem of “multiple
testing.” It is likely to intensify the setback of “over-training.”
Finally, it is likely not to represent the entire predictive adeptness
of a continuous factor. The above advantages make RPART a good
algorithm for solving software prediction problem.

k-Nearest Neighbour (kNN)
The kNN is a classic example of promising classification algorithms
used for solving classification problem built on the concept of
nearest learning examples in the feature space. The kNN algorithm
is known as ‘lazy learning’ algorithm because it generalizes the
data after a query is made. Every computation involved in the
classification process takes place after the classification process.
No definite learning or model creation carried out throughout the
training stage, even though there is a need for a training dataset.
The kNN uses the dataset to populate a sample of the search space
with instances of a known class exclusively. This algorithm is
classified as a ‘lazy learning’ algorithm for this reason [30]. The
kNN algorithm being a lazy learner, does not have a training stage;
even when it does, the training stage is within a relatively short
time completed. However, the testing stage is expensive with
respect to time and memory [31].

Some of the kNN algorithm’s strengths are that it has proved to
have the capacity to surmount many of the challenges confronting
other existing algorithms. Secondly, only a few parameters (k and
distance metric) need to be fine-tuned to get better classification
accuracy. The effect of noise on the prediction decreases
drastically by choosing large values of k. This, however, makes
borderlines between the classes not to be so discrete. Thirdly, kNN
surmounts the scalability problem that is prevalent among some
existing machine learning algorithms, such as decision trees. This
is because of its ability to handle training data that are too big to
fit into memory effectively. Fourthly, the implementation is easy.
This is because a simple Euclidean distance is used to determine
the sameness between training subset data and the test subset data
when the preceding information about function showing all the
possible data values is nonexistent. These advantages, therefore,
mean that kNN a beneficial algorithm for solving software
prediction problems.

Generalized Linear Model with Elastic Net Regularization
(GLMNet)
Generalized linear models (GLMs) are popular algorithms for
solving regression and classification problems. This algorithm
can easily find global optimum and knows when it reaches one.
In addition, they are simple and economical to fit. GLMs are very
easy to understand. This is due to their clearly outlined noise
distributions and the absence of a direct relationship between an
independent and a dependent variable at every point of a given
set [32].

Friedman et al. proposed GLMNet. The algorithm is a package that
suits a general linear model through penalized highest probability
[33]. It provides a means to circumvent overfitting by penalizing

Adv Mach Lear Art Inte, 2021 Volume 2 | Issue 1 | 14www.opastonline.com

The related works discussed above give a brief account of artificial intelligence (AI) applications,

machine learning algorithms, deep learning techniques, data mining, and feature selection method

to software defect prediction. Literature has proved that machine-learning algorithms can produce

high prediction accuracy for software defects [cite this statement]. Incorporating future extraction

techniques into machine learning models decreases complexity and improves the general

performance of the model.

Methodology

The previous section contains a concise discussion of different machine learning models for

predicting defects in a software system. Many of the approaches discussed center on solving the

challenge posed by imbalanced data of software faults. However, prediction accuracy and general

performance continue to pose a daunting problem to software engineers and academicians. To

overcome these challenges, we present a technique that combines ensemble machine learning for

dimension reduction and feature reduction for predicting software defects. This section discusses

different machine-learning algorithms and the proposed ensemble machine-learning model.

Linear Discriminant Analysis (LDA)

The LDA proposed by Fisher is a leading and standard approach in discriminant analysis for

solving classification problems. It is a classic example of a very famous single-label (multi-class)

feature extraction method. The LDA achieves a good result when the population is the normal joint

distribution, and various classes have homogenous covariance. LDA can locate an ideal prediction

matrix M by exploiting inter-class scatter measures and reducing intra-class one simultaneously

[25]. The LDA has been widely used as a supervised feature extraction method in single-label

(multi-class) classification. LDA makes getting the group posterior Pr (M|X) for the M

classification compulsory [26]. Assuming fi(x) is the class conditioned likelihood of X in class

M=i. then let πi be the likelihood of event before new data is collected in class i, with ∑ 𝜋𝜋𝑖𝑖 = 1.𝐼𝐼
𝑖𝑖=1

from

Pr(𝑀𝑀 = 𝑖𝑖|𝑋𝑋 = 𝑥𝑥) = 𝑓𝑓𝑖𝑖(𝑥𝑥)𝜋𝜋𝑖𝑖
∑ 𝜋𝜋𝑖𝑖𝑓𝑓𝑖𝑖𝑖𝑖

𝑖𝑖=1
 (1)

Assuming that:

𝑓𝑓𝑖𝑖(𝑥𝑥) = 1

(2𝜋𝜋)𝑝𝑝
2| ∑ |

1
2𝑖𝑖

 𝐸𝐸𝑋𝑋𝐸𝐸 − 1
2 (𝑥𝑥 − 𝜇𝜇𝑖𝑖)𝑖𝑖 ∑ (𝑥𝑥 − 𝜇𝜇𝑖𝑖)−1

𝑖𝑖 (2)

The related works discussed above give a brief account of artificial intelligence (AI) applications,

machine learning algorithms, deep learning techniques, data mining, and feature selection method

to software defect prediction. Literature has proved that machine-learning algorithms can produce

high prediction accuracy for software defects [cite this statement]. Incorporating future extraction

techniques into machine learning models decreases complexity and improves the general

performance of the model.

Methodology

The previous section contains a concise discussion of different machine learning models for

predicting defects in a software system. Many of the approaches discussed center on solving the

challenge posed by imbalanced data of software faults. However, prediction accuracy and general

performance continue to pose a daunting problem to software engineers and academicians. To

overcome these challenges, we present a technique that combines ensemble machine learning for

dimension reduction and feature reduction for predicting software defects. This section discusses

different machine-learning algorithms and the proposed ensemble machine-learning model.

Linear Discriminant Analysis (LDA)

The LDA proposed by Fisher is a leading and standard approach in discriminant analysis for

solving classification problems. It is a classic example of a very famous single-label (multi-class)

feature extraction method. The LDA achieves a good result when the population is the normal joint

distribution, and various classes have homogenous covariance. LDA can locate an ideal prediction

matrix M by exploiting inter-class scatter measures and reducing intra-class one simultaneously

[25]. The LDA has been widely used as a supervised feature extraction method in single-label

(multi-class) classification. LDA makes getting the group posterior Pr (M|X) for the M

classification compulsory [26]. Assuming fi(x) is the class conditioned likelihood of X in class

M=i. then let πi be the likelihood of event before new data is collected in class i, with ∑ 𝜋𝜋𝑖𝑖 = 1.𝐼𝐼
𝑖𝑖=1

from

Pr(𝑀𝑀 = 𝑖𝑖|𝑋𝑋 = 𝑥𝑥) = 𝑓𝑓𝑖𝑖(𝑥𝑥)𝜋𝜋𝑖𝑖
∑ 𝜋𝜋𝑖𝑖𝑓𝑓𝑖𝑖𝑖𝑖

𝑖𝑖=1
 (1)

Assuming that:

𝑓𝑓𝑖𝑖(𝑥𝑥) = 1

(2𝜋𝜋)𝑝𝑝
2| ∑ |

1
2𝑖𝑖

 𝐸𝐸𝑋𝑋𝐸𝐸 − 1
2 (𝑥𝑥 − 𝜇𝜇𝑖𝑖)𝑖𝑖 ∑ (𝑥𝑥 − 𝜇𝜇𝑖𝑖)−1

𝑖𝑖 (2)

In LDA, the classes possess mutual covariance matrix ∑ = ∑ ∀𝑖𝑖𝑖𝑖 so, compare two classes j and i,

the log-ratio is expressed as:

 𝑙𝑙𝑙𝑙𝑙𝑙 Pr (𝑀𝑀=𝑖𝑖|𝑋𝑋=𝑥𝑥)
Pr (𝑀𝑀=𝑖𝑖|𝑋𝑋=𝑥𝑥) = 𝑙𝑙𝑙𝑙𝑙𝑙 𝜋𝜋𝑖𝑖

𝜋𝜋𝑗𝑗
− 1

2 (𝜇𝜇𝑖𝑖−𝜇𝜇𝑗𝑗) ∑ (𝜇𝜇𝑖𝑖−𝜇𝜇𝑗𝑗)−1 + 𝑥𝑥𝑇𝑇 ∑ (𝜇𝜇𝑖𝑖−𝜇𝜇𝑗𝑗)−1
 (3)

Linear discriminant function is produced by this function

𝛿𝛿𝑖𝑖(𝑥𝑥) = 𝑥𝑥𝑇𝑇 ∑ 𝜇𝜇𝑖𝑖−
1
2 𝜇𝜇𝑖𝑖

𝑇𝑇−1 ∑ 𝜇𝜇𝑖𝑖
−1 + 𝑙𝑙𝑙𝑙𝑙𝑙𝜋𝜋𝑖𝑖 (4)

The drawback of LDA is that it is exceptionally susceptible to outliers. It is impossible to

interconnect dependent variable and multicollinearity (linear combination of other variables)

variables totally. One more shortcoming of LDA is that occasionally the value of 𝛿𝛿𝑖𝑖(𝑥𝑥) is below

0, and at other times it is greater than 1, which is unjustifiable. The strengths LDA state in this

section makes it a suitable algorithm for solving software prediction problem.

Recursive Partitioning and Regression Trees (RPART)

The RPART is an advanced implement many concepts explained in the Classification and

Regression Trees (CART) book authored by Breiman et al. [27]. Recursive partitioning is a

statistical technique that applies multivariable statistics to monitor more than one outcome variable

concurrently [28]. Recursive partitioning helps create a decision tree that endeavours to accurately

categorize the population's components by partitioning it into sub-groups using various bivalent

variables that are autonomous. The reason for calling the process recursive is that it divides any

sub-group successively on an unspecified number of occasions until the stopping criterion is

satisfied and the partitioning process ends.

The first step to building a regression tree is first to use recursive partitioning to cultivate a big tree

on the training dataset. The process only ends when each leaf node has less than the least number

of observations. Recursive partitioning is a greedy and top-down algorithm. It reduces the Residual

Sum of Squares (RSS). The disparity between the true and the measured value is determined by

RSS. A linear regression environment also uses RSS [29].

Some of the strengths of RPART include its ability to estimate relationships between predictors

and outcomes quickly, even when the relationship is sophisticated. It offers a straightforward and

instinctive technique for classifying objects. It intends to recognize the interactions of two or more

In LDA, the classes possess mutual covariance matrix ∑ = ∑ ∀𝑖𝑖𝑖𝑖 so, compare two classes j and i,

the log-ratio is expressed as:

 𝑙𝑙𝑙𝑙𝑙𝑙 Pr (𝑀𝑀=𝑖𝑖|𝑋𝑋=𝑥𝑥)
Pr (𝑀𝑀=𝑖𝑖|𝑋𝑋=𝑥𝑥) = 𝑙𝑙𝑙𝑙𝑙𝑙 𝜋𝜋𝑖𝑖

𝜋𝜋𝑗𝑗
− 1

2 (𝜇𝜇𝑖𝑖−𝜇𝜇𝑗𝑗) ∑ (𝜇𝜇𝑖𝑖−𝜇𝜇𝑗𝑗)−1 + 𝑥𝑥𝑇𝑇 ∑ (𝜇𝜇𝑖𝑖−𝜇𝜇𝑗𝑗)−1
 (3)

Linear discriminant function is produced by this function

𝛿𝛿𝑖𝑖(𝑥𝑥) = 𝑥𝑥𝑇𝑇 ∑ 𝜇𝜇𝑖𝑖−
1
2 𝜇𝜇𝑖𝑖

𝑇𝑇−1 ∑ 𝜇𝜇𝑖𝑖
−1 + 𝑙𝑙𝑙𝑙𝑙𝑙𝜋𝜋𝑖𝑖 (4)

The drawback of LDA is that it is exceptionally susceptible to outliers. It is impossible to

interconnect dependent variable and multicollinearity (linear combination of other variables)

variables totally. One more shortcoming of LDA is that occasionally the value of 𝛿𝛿𝑖𝑖(𝑥𝑥) is below

0, and at other times it is greater than 1, which is unjustifiable. The strengths LDA state in this

section makes it a suitable algorithm for solving software prediction problem.

Recursive Partitioning and Regression Trees (RPART)

The RPART is an advanced implement many concepts explained in the Classification and

Regression Trees (CART) book authored by Breiman et al. [27]. Recursive partitioning is a

statistical technique that applies multivariable statistics to monitor more than one outcome variable

concurrently [28]. Recursive partitioning helps create a decision tree that endeavours to accurately

categorize the population's components by partitioning it into sub-groups using various bivalent

variables that are autonomous. The reason for calling the process recursive is that it divides any

sub-group successively on an unspecified number of occasions until the stopping criterion is

satisfied and the partitioning process ends.

The first step to building a regression tree is first to use recursive partitioning to cultivate a big tree

on the training dataset. The process only ends when each leaf node has less than the least number

of observations. Recursive partitioning is a greedy and top-down algorithm. It reduces the Residual

Sum of Squares (RSS). The disparity between the true and the measured value is determined by

RSS. A linear regression environment also uses RSS [29].

Some of the strengths of RPART include its ability to estimate relationships between predictors

and outcomes quickly, even when the relationship is sophisticated. It offers a straightforward and

instinctive technique for classifying objects. It intends to recognize the interactions of two or more

In LDA, the classes possess mutual covariance matrix ∑ = ∑ ∀𝑖𝑖𝑖𝑖 so, compare two classes j and i,

the log-ratio is expressed as:

 𝑙𝑙𝑙𝑙𝑙𝑙 Pr (𝑀𝑀=𝑖𝑖|𝑋𝑋=𝑥𝑥)
Pr (𝑀𝑀=𝑖𝑖|𝑋𝑋=𝑥𝑥) = 𝑙𝑙𝑙𝑙𝑙𝑙 𝜋𝜋𝑖𝑖

𝜋𝜋𝑗𝑗
− 1

2 (𝜇𝜇𝑖𝑖−𝜇𝜇𝑗𝑗) ∑ (𝜇𝜇𝑖𝑖−𝜇𝜇𝑗𝑗)−1 + 𝑥𝑥𝑇𝑇 ∑ (𝜇𝜇𝑖𝑖−𝜇𝜇𝑗𝑗)−1
 (3)

Linear discriminant function is produced by this function

𝛿𝛿𝑖𝑖(𝑥𝑥) = 𝑥𝑥𝑇𝑇 ∑ 𝜇𝜇𝑖𝑖−
1
2 𝜇𝜇𝑖𝑖

𝑇𝑇−1 ∑ 𝜇𝜇𝑖𝑖
−1 + 𝑙𝑙𝑙𝑙𝑙𝑙𝜋𝜋𝑖𝑖 (4)

The drawback of LDA is that it is exceptionally susceptible to outliers. It is impossible to

interconnect dependent variable and multicollinearity (linear combination of other variables)

variables totally. One more shortcoming of LDA is that occasionally the value of 𝛿𝛿𝑖𝑖(𝑥𝑥) is below

0, and at other times it is greater than 1, which is unjustifiable. The strengths LDA state in this

section makes it a suitable algorithm for solving software prediction problem.

Recursive Partitioning and Regression Trees (RPART)

The RPART is an advanced implement many concepts explained in the Classification and

Regression Trees (CART) book authored by Breiman et al. [27]. Recursive partitioning is a

statistical technique that applies multivariable statistics to monitor more than one outcome variable

concurrently [28]. Recursive partitioning helps create a decision tree that endeavours to accurately

categorize the population's components by partitioning it into sub-groups using various bivalent

variables that are autonomous. The reason for calling the process recursive is that it divides any

sub-group successively on an unspecified number of occasions until the stopping criterion is

satisfied and the partitioning process ends.

The first step to building a regression tree is first to use recursive partitioning to cultivate a big tree

on the training dataset. The process only ends when each leaf node has less than the least number

of observations. Recursive partitioning is a greedy and top-down algorithm. It reduces the Residual

Sum of Squares (RSS). The disparity between the true and the measured value is determined by

RSS. A linear regression environment also uses RSS [29].

Some of the strengths of RPART include its ability to estimate relationships between predictors

and outcomes quickly, even when the relationship is sophisticated. It offers a straightforward and

instinctive technique for classifying objects. It intends to recognize the interactions of two or more

In LDA, the classes possess mutual covariance matrix ∑ = ∑ ∀𝑖𝑖𝑖𝑖 so, compare two classes j and i,

the log-ratio is expressed as:

 𝑙𝑙𝑙𝑙𝑙𝑙 Pr (𝑀𝑀=𝑖𝑖|𝑋𝑋=𝑥𝑥)
Pr (𝑀𝑀=𝑖𝑖|𝑋𝑋=𝑥𝑥) = 𝑙𝑙𝑙𝑙𝑙𝑙 𝜋𝜋𝑖𝑖

𝜋𝜋𝑗𝑗
− 1

2 (𝜇𝜇𝑖𝑖−𝜇𝜇𝑗𝑗) ∑ (𝜇𝜇𝑖𝑖−𝜇𝜇𝑗𝑗)−1 + 𝑥𝑥𝑇𝑇 ∑ (𝜇𝜇𝑖𝑖−𝜇𝜇𝑗𝑗)−1
 (3)

Linear discriminant function is produced by this function

𝛿𝛿𝑖𝑖(𝑥𝑥) = 𝑥𝑥𝑇𝑇 ∑ 𝜇𝜇𝑖𝑖−
1
2 𝜇𝜇𝑖𝑖

𝑇𝑇−1 ∑ 𝜇𝜇𝑖𝑖
−1 + 𝑙𝑙𝑙𝑙𝑙𝑙𝜋𝜋𝑖𝑖 (4)

The drawback of LDA is that it is exceptionally susceptible to outliers. It is impossible to

interconnect dependent variable and multicollinearity (linear combination of other variables)

variables totally. One more shortcoming of LDA is that occasionally the value of 𝛿𝛿𝑖𝑖(𝑥𝑥) is below

0, and at other times it is greater than 1, which is unjustifiable. The strengths LDA state in this

section makes it a suitable algorithm for solving software prediction problem.

Recursive Partitioning and Regression Trees (RPART)

The RPART is an advanced implement many concepts explained in the Classification and

Regression Trees (CART) book authored by Breiman et al. [27]. Recursive partitioning is a

statistical technique that applies multivariable statistics to monitor more than one outcome variable

concurrently [28]. Recursive partitioning helps create a decision tree that endeavours to accurately

categorize the population's components by partitioning it into sub-groups using various bivalent

variables that are autonomous. The reason for calling the process recursive is that it divides any

sub-group successively on an unspecified number of occasions until the stopping criterion is

satisfied and the partitioning process ends.

The first step to building a regression tree is first to use recursive partitioning to cultivate a big tree

on the training dataset. The process only ends when each leaf node has less than the least number

of observations. Recursive partitioning is a greedy and top-down algorithm. It reduces the Residual

Sum of Squares (RSS). The disparity between the true and the measured value is determined by

RSS. A linear regression environment also uses RSS [29].

Some of the strengths of RPART include its ability to estimate relationships between predictors

and outcomes quickly, even when the relationship is sophisticated. It offers a straightforward and

instinctive technique for classifying objects. It intends to recognize the interactions of two or more

Adv Mach Lear Art Inte, 2021 Volume 2 | Issue 1 | 15www.opastonline.com

high-valued regression coefficients for the regularization parameter
lambda. Some of the strengths of the algorithm include high speed
and the ability to use thinly scattered data in the input matrix
efficiently [33]. The GLMNet algorithms episodically iterate
through the directions, one at a time, reducing the objective function
with regard to each coordinate direction at a time. It consecutively
improves the objective function over each parameter with others
stationary, and cycles are continually pending when it has a close to
the local or global minimum. The algorithm also applies powerful
rules to restrain the active set effectively. GLMNet has extremely
effective updates and methods that leverage prior computation
to dramatically reduce the time required to train a model (warm
starts) and active-set convergence. GLMNet can use formal rules
to compute how to do predicting quickly. It can effectively solve
problems where most of the elements in the input-matrix are zero,
in addition to solving coefficients that specified that the value must
be between two given values [33, 34]. The combined strengths of
GLMNet algorithm makes it an alternative solution for solving
software defect prediction problem.

Random Forest (RF)
Breiman and Cutler [35] first developed the RF. RF is a meta
estimator that fits many classifying decision trees on several
sub-samples of the dataset and employs averaging to enhance
its predictive accuracy and regulate over-fitting [36]. It is a
supervised learning algorithm. RF is simple, diversified, and can
be implemented easily. It does not need a considerable amount
of resources like time, processing power, or memory before
producing optimal solutions to any problem. RF has proven to
perform excellently in solving several real-world problems [36,
37]. It is a good example of ensemble machine learning and
regression method suitable for finding solutions to classification
and prediction jobs [38]. RF can produce optimal results most
of the time, even without tuning any value of the used parameter
during the learning process.

The benefits of using Random forests include minimized prediction
error and improved f-scores compared to a number of other
machines learning algorithms. Besides, its overall performance
is better than that of Naïve Bayes and SVMs. Unlike SVM and
Neural Networks, RF has a shorter training time. RF has a higher
classification accuracy than many of the popular machine learning
techniques. RFs can efficiently process unlabeled data, thereby
making it a very suitable method for finding cohesion between
data elements that are otherwise unlabeled and unclassified. RF
is easy, and it uses the small number of parameters compared to
the number of observations. RF allows the user to grow the trees
they want very fast [38]. The RF discussed strengths make it a
very suitable algorithm for proffering solution to software defect
prediction problem.

Proposed Method
The ability to predict defects in software accurately is very
critical in the software engineering discipline. Section 2 of this
paper discussed the applications of machine learning techniques
to software defect prediction. Conversely, these approaches
attempted to solve issues related to software faults. Despite
these efforts, attaining high prediction accuracy and improved
performance of the entire system still poses an uphill task for
software engineers and scientists. To solve this problem, this paper

proposed an ensemble machine learning technique for predicting
software defects. Stacking is a method to ensemble various
learning algorithms, where a meta-level algorithm is trained
to make a final prediction utilizing the outputs of based-level
algorithms as features. It is a non-generative ensemble algorithm.
In this research, three (3) machine-learning classifiers discussed
in the previous sub-section (LDA, kNN, and GLMNet) were
used as base learners, and Random Forest (RF) serves as the top
layer of our proposed model. Because of software architecture’s
complexity, we combine all the optimal results produced by
LDA, kNN, and GLMNet after they were trained using RF. The
algorithms have two-layered architecture. All algorithms at the
base layer, which include LDA, KNN, and GLMNet, were trained
on the given training set, and after that, a combiner algorithm at
the top layer such as RF is trained to utilize predictions of the first
level as inputs. This technique helps in improving the accuracy of
the learners. The combiner algorithm is named as Meta learner.
Rather than the output from the base classifier, the probability
predictions is passed as input to the Meta layer. Figure 1 depicts
the structural design of the ensemble machine learning technique.

Figure 1: Architecture of proposed Ensemble Machine Learning
Model

Presented in Figure 1 is the architecture of the proposed machine
learning software defect prediction. The diagram shows that the
proposed technique comprises of two steps: the training phase and
the prediction phase using the trained model.
a. Preprocessing phase - Here, the NASA Metrics Data Program

(MDP) for NASA PROMISE datasets containing software
metrics was used for our experiments. The preprocessing
operations such as data normalization and data transformation
take place prior to training the ensemble machine-learning
model. Preprocessing operation involves correcting missing
values and outliers and selecting the input model’s appropriate
feature variables. Afterwards, the training of the proposed
model to predict the flaws in software takes place.

b. Training phase - LDA, kNN, and GLMNet prediction models
were trained, and each distinct prediction result and the actual
result were accepted as a new training data set for secondary
learning.

c. Ensemble phase – As represented in Figure 1, the set of
models are trained in parallel, and their results are merged
subsequently to produce the final output. Since the key

Adv Mach Lear Art Inte, 2021 Volume 2 | Issue 1 | 16www.opastonline.com

causes of error in learning models are a result of noise, bias,
and variance. The ensemble phase is very important due to
its ability to improve the prediction accuracy of learners. It
consists of two-layered architecture, such as the base layer
and top layer. The base layer consists of LDA, KNN, and
GLMNet, while the top layer is RF. The base layer was trained
on the given training set and after that, a combined algorithm
at the top layer is trained utilizing the top layer’s prediction.
The output of all the models used for the ensemble learning is
fused.

d. Prediction and Evaluation phase - In this phase, preprocessing
operation is conducted to obtain the prediction stage’s software
metrics. The modeled data serves as input to the trained
ensemble machine-learning model to predict the software’s
defects. The output is the aggregated classification result of
all the machine-learning models (LDA, kNN, and GLMNet)
used for the final prediction. Evaluation of prediction results
happens at this stage also.

Depicted in Figure 2 is the flowchart of the ensemble model.

Figure 2: Flowchart of proposed Ensemble Machine Learning
Model
This paper implements an ensemble model approach. The
algorithm of the multi-model ensemble prediction model are as
stated below:

 Algorithm 1: Ensemble Prediction Model
Step 1:Divide the training dataset into train_train and train_valid

using the technique of 5-fold cross-validation [37].
Step 2:The primary model, train five RF models with the train_

train, use the grid search method to optimize the RF model’s
hyper-parameters and predict the train_valid and test data
sets respectively to obtain the train_valid_pred and test_pred
results. The five train_valid_preds produced by the 5-fold
cross-validation are concatenated into rf_train_pred, and the

five tests_preds are averaged to generate rf_test_pred.
Step 3:Repeat step 2 using LDA, GLMNet, and kNN to obtain

lda_train_pred, lda_test_pred, glm_train_pred, glm_test_
pred, knn_train_pred, and knn_test_pred produced by LDA,
GLMNet, and kNN models.

Step 4:The auxiliary model, The LDA algorithm, was chosen
for secondary learning to complete the ensemble of multiple
primary models. The prediction values rf_train_pred, lda_
train_pred, glm_train_pred, and knn_train_pred generated
by each of the prediction models are used as input the
corresponding actual value training_y is used as an output
training kNN model.

Step 5:The rf_test_pred, lda_test_pred, glm_test_pred, and knn_
test_pred produced by the primary model are employed as
input features. Using the ensemble model based on kNN to
predict them, the ultimate prediction results are attained.

Results and Discussion
This section presents the results of our experiments using the
proposed model on PROMISE datasets. The work is implemented
and analyzed using RStudio Version 1.2.5033 simulation tool.

Dataset Description
The Metrics Data Program (MDP) dataset used for the experiments
was obtained from NASA PROMISE open-source datasets
repository. Four datasets from the PROMISE repository named
CM1, JM1, PC3, and KC3 with different attributes were used in
this work. Table 1 contains different parameter descriptions of the
datasets under consideration where several instances, number of
defective modules, percentage defect, and number of metrics are
represented

Table 1: PROMISE software defect prediction dataset details

Name of
Dataset

Number
of
Instances

Defect Defect
(%)

Number
of Metrics

CM1 344 42 12.21 37
JM1 9593 1759 18.34 21
PC3 1125 140 12.44 37
KC3 200 36 18.00 39

Table 2 contains the metrics and descriptions of the datasets
used for our experiments. We evaluated the performance of our
technique through these datasets and compared the performance
with other machine learning techniques.

Table 2: Description of metrics in NASA PROMISE software defect datasets

Metrics Description
LOC Sum of line in the module
iv(g) Design complexity of each module
ev(g) Essential complexity of each module
N Sum of operators and operands existing in the module
v(g) Cyclomatic complexity of each module
D Difficulties in each module
B Effort approximation
L Program size for each module
V Volume of each module
I Intelligence content
E Error approximation
Locomment Line of comments in each module
Loblank Sum of blank lines in each module
uniq_op Sum of unique operators
uniq_opnd Sum of unique operand
T Time determinist
Branchcount Sum of branch in the software module
total_op Sum of operators
total_opnd Sum of operators
Locodeandcomment Sum of line of code and comments
Defects Details on whether there is existence of defect or not

Experimental Setup
Datasets used for many software projects are usually made
available to the public so that researchers can make use of them
for experimental and research purposes. One of the factors that
can likely influence the prediction accuracy of a model is the
ability of a particular dataset to perform an intended purpose. The
design process that precedes the creation of a model and choices
made influences a model’s ability to predict defective parts. The
potency of the predictive outcomes might not be the same at all
times. This is because the performance evaluation measures
used usually have diverse fundamental hypothetical basics. This
explains why various models are likely to have a distinct score
from various measurement standards. Some measurable qualities
can change during a scientific experiment. These qualities are
critical numerical quantities that must be considered in the overall
strategy for experiments.

Performance Metrics
The proposed model was evaluated using the following
performance metrics Mean Squared Error (MSE), Root Mean
Square Error (RMSE), and Mean Absolute Scaled Error (MASE).

Root Mean Square Error (RMSE)
RMSE is the standard deviation of prediction errors in a test. The
mathematical formula for RMSE is:

Mean Squared Error (MSE)
MSE is the average squared difference between the estimated
values and the actual value in the test. The mathematical formula
for MSE is:

Where N represents the number of data points, yt is the value
returned by the model, and ŷ is the actual value for data point t.

Mean Absolute Scaled Error (MASE)
MASE is a measure of the accuracy of predictions. MASE is a
scale-free error metric that gives each error as a percentage in
comparison to a standard mean error. MASE is defined as follows:

Where yt
n is the target value, yt

n is predicted values and m is the
seasonal period of yt

n

Simulation
In this section, we present the results of our simulations. The
proposed model was used to classify and predict the number of

change during a scientific experiment. These qualities are critical numerical quantities that must

be considered in the overall strategy for experiments.

Performance Metrics

The proposed model was evaluated using the following performance metrics Mean Squared Error

(MSE), Root Mean Square Error (RMSE), and Mean Absolute Scaled Error (MASE).

Root Mean Square Error (RMSE)

RMSE is the standard deviation of prediction errors in a test. The mathematical formula for RMSE

is:

 √1
𝑛𝑛

∑ (𝑦𝑦𝑡𝑡
𝑛𝑛 − �̂�𝑦𝑡𝑡

𝑛𝑛)2𝑛𝑛
𝑛𝑛=1 (5)

Mean Squared Error (MSE)

MSE is the average squared difference between the estimated values and the actual value in the

test. The mathematical formula for MSE is:
1
𝑛𝑛

∑ (𝑦𝑦𝑡𝑡
𝑛𝑛 − �̂�𝑦𝑡𝑡

𝑛𝑛)2𝑛𝑛
𝑛𝑛=1 (6)

Where N represents the number of data points, 𝑦𝑦𝑡𝑡 is the value returned by the model, and ŷ is the

actual value for data point t.

Mean Absolute Scaled Error (MASE)

MASE is a measure of the accuracy of predictions. MASE is a scale-free error metric that gives

each error as a percentage in comparison to a standard mean error. MASE is defined as follows:

 1
𝑛𝑛

∑ |𝑦𝑦𝑡𝑡
𝑛𝑛−�̂�𝑦𝑡𝑡

𝑛𝑛|
1

𝑛𝑛−𝑚𝑚 ∑ |𝑦𝑦𝑡𝑡
𝑛𝑛−𝑦𝑦𝑡𝑡−𝑚𝑚

𝑛𝑛 |𝑛𝑛
𝑛𝑛=𝑚𝑚+1

𝑛𝑛
𝑛𝑛=1 (7)

Where 𝑦𝑦𝑡𝑡
𝑛𝑛 is the target value, �̂�𝑦𝑡𝑡

𝑛𝑛 is predicted values and 𝑚𝑚 is the seasonal period of 𝑦𝑦𝑡𝑡
𝑛𝑛

Simulation

In this section, we present the results of our simulations. The proposed model was used to classify

and predict the number of software defects in the dataset. The dataset used for the work was divided

change during a scientific experiment. These qualities are critical numerical quantities that must

be considered in the overall strategy for experiments.

Performance Metrics

The proposed model was evaluated using the following performance metrics Mean Squared Error

(MSE), Root Mean Square Error (RMSE), and Mean Absolute Scaled Error (MASE).

Root Mean Square Error (RMSE)

RMSE is the standard deviation of prediction errors in a test. The mathematical formula for RMSE

is:

 √1
𝑛𝑛

∑ (𝑦𝑦𝑡𝑡
𝑛𝑛 − �̂�𝑦𝑡𝑡

𝑛𝑛)2𝑛𝑛
𝑛𝑛=1 (5)

Mean Squared Error (MSE)

MSE is the average squared difference between the estimated values and the actual value in the

test. The mathematical formula for MSE is:
1
𝑛𝑛

∑ (𝑦𝑦𝑡𝑡
𝑛𝑛 − �̂�𝑦𝑡𝑡

𝑛𝑛)2𝑛𝑛
𝑛𝑛=1 (6)

Where N represents the number of data points, 𝑦𝑦𝑡𝑡 is the value returned by the model, and ŷ is the

actual value for data point t.

Mean Absolute Scaled Error (MASE)

MASE is a measure of the accuracy of predictions. MASE is a scale-free error metric that gives

each error as a percentage in comparison to a standard mean error. MASE is defined as follows:

 1
𝑛𝑛

∑ |𝑦𝑦𝑡𝑡
𝑛𝑛−�̂�𝑦𝑡𝑡

𝑛𝑛|
1

𝑛𝑛−𝑚𝑚 ∑ |𝑦𝑦𝑡𝑡
𝑛𝑛−𝑦𝑦𝑡𝑡−𝑚𝑚

𝑛𝑛 |𝑛𝑛
𝑛𝑛=𝑚𝑚+1

𝑛𝑛
𝑛𝑛=1 (7)

Where 𝑦𝑦𝑡𝑡
𝑛𝑛 is the target value, �̂�𝑦𝑡𝑡

𝑛𝑛 is predicted values and 𝑚𝑚 is the seasonal period of 𝑦𝑦𝑡𝑡
𝑛𝑛

Simulation

In this section, we present the results of our simulations. The proposed model was used to classify

and predict the number of software defects in the dataset. The dataset used for the work was divided

change during a scientific experiment. These qualities are critical numerical quantities that must

be considered in the overall strategy for experiments.

Performance Metrics

The proposed model was evaluated using the following performance metrics Mean Squared Error

(MSE), Root Mean Square Error (RMSE), and Mean Absolute Scaled Error (MASE).

Root Mean Square Error (RMSE)

RMSE is the standard deviation of prediction errors in a test. The mathematical formula for RMSE

is:

 √1
𝑛𝑛

∑ (𝑦𝑦𝑡𝑡
𝑛𝑛 − �̂�𝑦𝑡𝑡

𝑛𝑛)2𝑛𝑛
𝑛𝑛=1 (5)

Mean Squared Error (MSE)

MSE is the average squared difference between the estimated values and the actual value in the

test. The mathematical formula for MSE is:
1
𝑛𝑛

∑ (𝑦𝑦𝑡𝑡
𝑛𝑛 − �̂�𝑦𝑡𝑡

𝑛𝑛)2𝑛𝑛
𝑛𝑛=1 (6)

Where N represents the number of data points, 𝑦𝑦𝑡𝑡 is the value returned by the model, and ŷ is the

actual value for data point t.

Mean Absolute Scaled Error (MASE)

MASE is a measure of the accuracy of predictions. MASE is a scale-free error metric that gives

each error as a percentage in comparison to a standard mean error. MASE is defined as follows:

 1
𝑛𝑛

∑ |𝑦𝑦𝑡𝑡
𝑛𝑛−�̂�𝑦𝑡𝑡

𝑛𝑛|
1

𝑛𝑛−𝑚𝑚 ∑ |𝑦𝑦𝑡𝑡
𝑛𝑛−𝑦𝑦𝑡𝑡−𝑚𝑚

𝑛𝑛 |𝑛𝑛
𝑛𝑛=𝑚𝑚+1

𝑛𝑛
𝑛𝑛=1 (7)

Where 𝑦𝑦𝑡𝑡
𝑛𝑛 is the target value, �̂�𝑦𝑡𝑡

𝑛𝑛 is predicted values and 𝑚𝑚 is the seasonal period of 𝑦𝑦𝑡𝑡
𝑛𝑛

Simulation

In this section, we present the results of our simulations. The proposed model was used to classify

and predict the number of software defects in the dataset. The dataset used for the work was divided

change during a scientific experiment. These qualities are critical numerical quantities that must

be considered in the overall strategy for experiments.

Performance Metrics

The proposed model was evaluated using the following performance metrics Mean Squared Error

(MSE), Root Mean Square Error (RMSE), and Mean Absolute Scaled Error (MASE).

Root Mean Square Error (RMSE)

RMSE is the standard deviation of prediction errors in a test. The mathematical formula for RMSE

is:

 √1
𝑛𝑛

∑ (𝑦𝑦𝑡𝑡
𝑛𝑛 − �̂�𝑦𝑡𝑡

𝑛𝑛)2𝑛𝑛
𝑛𝑛=1 (5)

Mean Squared Error (MSE)

MSE is the average squared difference between the estimated values and the actual value in the

test. The mathematical formula for MSE is:
1
𝑛𝑛

∑ (𝑦𝑦𝑡𝑡
𝑛𝑛 − �̂�𝑦𝑡𝑡

𝑛𝑛)2𝑛𝑛
𝑛𝑛=1 (6)

Where N represents the number of data points, 𝑦𝑦𝑡𝑡 is the value returned by the model, and ŷ is the

actual value for data point t.

Mean Absolute Scaled Error (MASE)

MASE is a measure of the accuracy of predictions. MASE is a scale-free error metric that gives

each error as a percentage in comparison to a standard mean error. MASE is defined as follows:

 1
𝑛𝑛

∑ |𝑦𝑦𝑡𝑡
𝑛𝑛−�̂�𝑦𝑡𝑡

𝑛𝑛|
1

𝑛𝑛−𝑚𝑚 ∑ |𝑦𝑦𝑡𝑡
𝑛𝑛−𝑦𝑦𝑡𝑡−𝑚𝑚

𝑛𝑛 |𝑛𝑛
𝑛𝑛=𝑚𝑚+1

𝑛𝑛
𝑛𝑛=1 (7)

Where 𝑦𝑦𝑡𝑡
𝑛𝑛 is the target value, �̂�𝑦𝑡𝑡

𝑛𝑛 is predicted values and 𝑚𝑚 is the seasonal period of 𝑦𝑦𝑡𝑡
𝑛𝑛

Simulation

In this section, we present the results of our simulations. The proposed model was used to classify

and predict the number of software defects in the dataset. The dataset used for the work was divided

change during a scientific experiment. These qualities are critical numerical quantities that must

be considered in the overall strategy for experiments.

Performance Metrics

The proposed model was evaluated using the following performance metrics Mean Squared Error

(MSE), Root Mean Square Error (RMSE), and Mean Absolute Scaled Error (MASE).

Root Mean Square Error (RMSE)

RMSE is the standard deviation of prediction errors in a test. The mathematical formula for RMSE

is:

 √1
𝑛𝑛

∑ (𝑦𝑦𝑡𝑡
𝑛𝑛 − �̂�𝑦𝑡𝑡

𝑛𝑛)2𝑛𝑛
𝑛𝑛=1 (5)

Mean Squared Error (MSE)

MSE is the average squared difference between the estimated values and the actual value in the

test. The mathematical formula for MSE is:
1
𝑛𝑛

∑ (𝑦𝑦𝑡𝑡
𝑛𝑛 − �̂�𝑦𝑡𝑡

𝑛𝑛)2𝑛𝑛
𝑛𝑛=1 (6)

Where N represents the number of data points, 𝑦𝑦𝑡𝑡 is the value returned by the model, and ŷ is the

actual value for data point t.

Mean Absolute Scaled Error (MASE)

MASE is a measure of the accuracy of predictions. MASE is a scale-free error metric that gives

each error as a percentage in comparison to a standard mean error. MASE is defined as follows:

 1
𝑛𝑛

∑ |𝑦𝑦𝑡𝑡
𝑛𝑛−�̂�𝑦𝑡𝑡

𝑛𝑛|
1

𝑛𝑛−𝑚𝑚 ∑ |𝑦𝑦𝑡𝑡
𝑛𝑛−𝑦𝑦𝑡𝑡−𝑚𝑚

𝑛𝑛 |𝑛𝑛
𝑛𝑛=𝑚𝑚+1

𝑛𝑛
𝑛𝑛=1 (7)

Where 𝑦𝑦𝑡𝑡
𝑛𝑛 is the target value, �̂�𝑦𝑡𝑡

𝑛𝑛 is predicted values and 𝑚𝑚 is the seasonal period of 𝑦𝑦𝑡𝑡
𝑛𝑛

Simulation

In this section, we present the results of our simulations. The proposed model was used to classify

and predict the number of software defects in the dataset. The dataset used for the work was divided

change during a scientific experiment. These qualities are critical numerical quantities that must

be considered in the overall strategy for experiments.

Performance Metrics

The proposed model was evaluated using the following performance metrics Mean Squared Error

(MSE), Root Mean Square Error (RMSE), and Mean Absolute Scaled Error (MASE).

Root Mean Square Error (RMSE)

RMSE is the standard deviation of prediction errors in a test. The mathematical formula for RMSE

is:

 √1
𝑛𝑛

∑ (𝑦𝑦𝑡𝑡
𝑛𝑛 − �̂�𝑦𝑡𝑡

𝑛𝑛)2𝑛𝑛
𝑛𝑛=1 (5)

Mean Squared Error (MSE)

MSE is the average squared difference between the estimated values and the actual value in the

test. The mathematical formula for MSE is:
1
𝑛𝑛

∑ (𝑦𝑦𝑡𝑡
𝑛𝑛 − �̂�𝑦𝑡𝑡

𝑛𝑛)2𝑛𝑛
𝑛𝑛=1 (6)

Where N represents the number of data points, 𝑦𝑦𝑡𝑡 is the value returned by the model, and ŷ is the

actual value for data point t.

Mean Absolute Scaled Error (MASE)

MASE is a measure of the accuracy of predictions. MASE is a scale-free error metric that gives

each error as a percentage in comparison to a standard mean error. MASE is defined as follows:

 1
𝑛𝑛

∑ |𝑦𝑦𝑡𝑡
𝑛𝑛−�̂�𝑦𝑡𝑡

𝑛𝑛|
1

𝑛𝑛−𝑚𝑚 ∑ |𝑦𝑦𝑡𝑡
𝑛𝑛−𝑦𝑦𝑡𝑡−𝑚𝑚

𝑛𝑛 |𝑛𝑛
𝑛𝑛=𝑚𝑚+1

𝑛𝑛
𝑛𝑛=1 (7)

Where 𝑦𝑦𝑡𝑡
𝑛𝑛 is the target value, �̂�𝑦𝑡𝑡

𝑛𝑛 is predicted values and 𝑚𝑚 is the seasonal period of 𝑦𝑦𝑡𝑡
𝑛𝑛

Simulation

In this section, we present the results of our simulations. The proposed model was used to classify

and predict the number of software defects in the dataset. The dataset used for the work was divided

^

Adv Mach Lear Art Inte, 2021 Volume 2 | Issue 1 | 17www.opastonline.com

software defects in the dataset. The dataset used for the work was
divided into a training set (80%) and test set (20%), respectively.
The dataset was trained using an RF classifier. Different test cases
for each of the datasets were used to conduct the experiments.

Table 3: Performance evaluation of proposed ensemble model
using CM1 dataset

Model MSE RMSE MASE Accuracy
RF 0.1384615 0.3721042 1.107692 0.8615
RPART 0.200000 0.4472136 0.762500 0.8000
kNN 0.1230769 0.3508232 0.4692308 0.8769
GLMNet 0.1230769 0.3508232 0.4692308 0.8769
LDA 0.1692308 0.4113767 0.6451923 0.8308
Ensemble 0.1230769 0.3508232 0.4692308 0.8769

Experimental results illustrated that the performance of our
technique is as good as that of kNN and GLMNet. The three
techniques produced an accuracy of 87.69% for the CM1 dataset.
The RPART, with accuracy of 80.00% is the worst-performing
model among all the methods compared. The three of them
also have the lowest MSE, RMSE, and MASE. The ROC curve
analysis for the dataset was presented to authenticate the proposed
model’s performance for CM1 dataset. This analysis is depicted
in Figure 3. It represents the ROC curve for true positive rate and
false-positive rate.

Figure 3: ROC curve analysis for CM1 dataset

A bar chart, which compares the proposed model with other
existing models, is presented in Figure 4.

Figure 4: Performance Comparison of Models for CM1 dataset

Test Case 2: JM1 dataset
The JM1 dataset has 9535 instances, 1759 defects, while the
percentage of defective modules is 18.35%. Experiments
were performed on the JM1 dataset under the same simulation
environment as that of CM1. The comparative study was carried
out as depicted in table 4 and in figures 5 and 6.

Table 4: Performance evaluation using JM1 dataset

Algorithm MSE RMSE MASE Accuracy
RF 0.1947301 0.4412823 0.6105476 0.8053
RPART 0.2037275 0.4513618 0.6387578 0.7963
KNN 0.2107969 0.4591263 0.6609229 0.7892
GLMNet 0.1960154 0.4427363 0.6145777 0.8040
LDA 0.1960154 0.4427363 0.6145777 0.8040
Ensemble 0.188946 0.4346792 0.5924126 0.8111

Simulation results indicated that the Ensemble technique’s
performance is superior to that of the other techniques under
consideration. The Ensemble method produced an accuracy of
81.11% for JM1 dataset. The kNN algorithm produced the worst
performance among all the methods compared with the accuracy
of 78.92%, MSE value of 0.2107969, RMSE (0.4591263), and
MASE (0.6609229). The ROC curve for the true positive rate and
the false positive rate is presented in figure 5.

Figure 5: ROC curve analysis for JM1 dataset

Adv Mach Lear Art Inte, 2021 Volume 2 | Issue 1 | 18www.opastonline.com

Figure 6 depicts a comparison of the proposed model with other
models.

Figure 6: Performance Comparison of Models for JM1 dataset

Test Case 3: PC3 dataset
The PC3 dataset was used for our experiment in this case. The
dataset contains 1125 instances, 140 defects, and a percentage
defect of 37%. The simulation was carried out using the PC3 dataset
under the same experimental condition. Table 5 and Figures 7 and
8 illustrate the novel model’s performance evaluation against other
techniques.

Table 5: Performance evaluation using PC3 dataset

Algorithm MSE RMSE MASE Accuracy
RF 0.09767442 0.3125291 0.5888372 0.9023
RPART 0.1116279 0.3341076 0.5193124 0.8884
KNN 0.1069767 0.327073 0.6449169 0.8930
GLMNet 0.1255814 0.3543747 0.7570764 0.8744
LDA 0.1348837 0.3672652 0.8131561 0.8651
Ensemble 0.09302326 0.3049971 0.5607973 0.9070

For the PC3 dataset, simulation results indicated that the Ensemble
technique outperformed other methods under consideration. The
Ensemble method generated an accuracy of 90.70% for the PC3
dataset. RF closely follows this with an accuracy of 90.23%. The
LDA algorithm produced the worst performance among all the
methods compared with an accuracy of 86.51%. The ROC curve
for the true positive rate and the false positive rate is presented in
Figure 7.

Figure 7: ROC curve analysis for PC3 dataset

Depicted in figure 8 is a comparison of the proposed model with
other models.

Figure 8: Performance Comparison of Models for PC3 dataset

Test Case 4: KC3 dataset
The KC3 dataset was used for our experiment this time around.
There are 200 instances in the dataset having 18.00% defect. The
experiment was conducted under the same condition as the previous
tests. Simulation results of our experiments are represented in table
6 and Figures 9 and 10.

Table 6: Performance evaluation using KC3 dataset

Algorithm MSE RMSE MASE Accuracy
RF 0.1315789 0.3627381 1.491228 0.8684
RPART 0.07894737 0.2809757 0.8947368 0.9211
KNN 0.2105263 0.4588315 2.385965 0.7895
GLMNet 0.1052632 0.3244428 1.192982 0.8947
LDA 0.1578947 0.3973597 1.789474 0.8421
Ensemble 0.05263158 0.2294157 0.5964912 0.9474

For the KC3 dataset, results indicate that the novel Ensemble
technique outperformed other approaches considered in this paper.
The Ensemble method produced an accuracy of 94.74% for the
KC3 dataset. This is a significant increase compared to that of
other techniques compared. This is followed by RPART that has
an accuracy of 92.11%. The worst performance was produced by
the kNN algorithm with an accuracy of 78.95%. The ROC curve
for the true positive rate and the false positive rate is depicted in
Figure 9.

Figure 9: ROC curve analysis for KC3 dataset

Adv Mach Lear Art Inte, 2021 Volume 2 | Issue 1 | 19www.opastonline.com

Presented in Figure 10 is a comparison of the proposed Ensemble
model with other models.

Figure 10: Performance Comparison of Models for KC3 dataset

The overall accuracy of the models used in this work is presented
in table 7.

Table 7: Average Overall Prediction Accuracy of the Models
on each Dataset

Data Set RF RPART KNN GLM
Net

LDA ENSE
MBLE

CM1 0.8615 0.8000 0.8769 0.8769 0.8308 0.8769
JM1 0.8053 0.7963 0.7892 0.8040 0.8041 0.8111
PC3 0.9023 0.8884 0.8930 0.8744 0.8651 0.9070
KC3 0.8684 0.9211 0.7895 0.8947 0.8421 0.9474
Overall
Accuracy

0.8594 0.8515 0.8372 0.8625 0.8355 0.8856

Our findings show that the Ensemble approach increases defect
prediction accuracy using fewer attributes. This is unlike the other
existing techniques. The proposed model gives equal and, in some
cases, better prediction accuracy even when very few attributes
are used. The performance of the proposed model was tested on
CM1, JM1, PC3, and KC3 datasets. Comparative analysis of Area
Under Curve (AUC) of the proposed model with previous work is
presented in table 8 [39-44].

Table 8: Comparative analysis AUC of the proposed model
with other work

Algorithm PC3 JM1 CM1 KC3
NN [5] 0.89 0.81 0.79 0.79
KNN [38] 0.77 0.69 0.72 0.70
NB [38] 0.81 0.69 0.75 0.76
SVM [39] 0.77 0.72 0.75 0.76
L-SVM [40] 0.84 0.73 0.75 0.76
LS-SVM [41] 0.83 0.74 0.77 0.77
LDA [42] 0.82 0.73 0.77 0.78
Ensemble 0.95 0.89 0.84 0.87

Conclusion
A novel multi-model Ensemble machine-learning model has
been proposed in this paper. The results show that the model
can handle PROMISE datasets that are known for their noisy
attributes and high dimensions effectively. The proposed model’s
performance was compared with that of seven other machine-
learning models in terms of Area under the curve (AUC). The
Ensemble model’s experimental results show promising results in
predicting defects in a software system for the four datasets used.
The advantage of the proposed ensemble model apart from high
classification accuracy, is that it decreases the model’s time cost in
parameter optimization. Future research work will be focused on
benchmarking this proposed model with ensemble deep learning.
Finally, it is expected that this paper has contributed and impacted
more knowledge in the field of software defect prediction. It is
hoped that this will aid software developers to detect flaws in
software systems easily and with higher accuracy. This has the
ability to enhance the development of a high-quality software
package. According to the generated results, some thought-
provoking observations can be deduced from this work which are
listed below:
1. The most pragmatic upshot of this study was that the Ensemble

machine-learning technique has better prediction accuracy for
software defect prediction.

2. Elimination of the occurrence of high intercorrelations among
two or more independent variables in a multiple regression
model enhances the machine-learning model’s performance.

3. Feature extraction has significantly enhanced the prediction
accuracy of the performance of the prediction model.

4. The MSE of the proposed model is significantly reduced
compared to other models because the Ensemble technique
effectively handles error in the learning model caused by
noise, bias, and variance.

References
1. Li L, Lessmann S, Baesens B (2019) Evaluating software

defect prediction performance: an updated benchmarking
study, ArXiv preprint arXiv: 1901.01726.

2. Kitchenham B, Charters S (2007) Guidelines for Performing
Systematic Literature Review in Software Engineering,
Technical Report. EBSE-2007-001, Keele University and
Durham University: Staffordshire, UK.

3. Zou H, Hastie T, Tibshirani R (2006) Sparse principal
component analysis, Journal of computational and graphical
statistics 15: 265-286.

4. Shepperd M, Song Q, Sun Z, Mair C (2013) Data quality:
Some comments on the nasa software defect datasets. IEEE
Transactions on Software Engineering 39: 1208-1215.

5. Jayanthi R, Florence L (2019) Software defect prediction
techniques using metrics based on neural network classifier.
Cluster Computing 22: 77-88.

6. Chauhan NS, Saxena A (2013) A green software development
life cycle for cloud computing. IT Professional 15: 28-34.

7. Sandhu PS, Goel R, Brar AS, Kaur J, Anand S (2010) A model
for early prediction of faults in software systems. In 2010 the
2nd International Conference on Computer and Automation
Engineering (ICCAE), IEEE 4: 281-285.

8. El Emam K, Melo W, Machado JC (2001) The prediction of
faulty classes using object-oriented design metrics. Journal of
systems and software 56: 63-75.

Adv Mach Lear Art Inte, 2021 Volume 2 | Issue 1 | 20www.opastonline.com

9. Kuncheva LI, Skurichina M, Duin RP (2002) An experimental
study on diversity for bagging and boosting with linear
classifiers. Information fusion 3: 245-258.

10. Aljamaan HI, Elish MO (2009) An empirical study of
bagging and boosting ensembles for identifying faulty classes
in object-oriented software. In 2009 IEEE Symposium on
Computational Intelligence and Data Mining, IEEE 2009:
187-194.

11. Okutan A, Yıldız OT (2014) Software defect prediction using
Bayesian networks. Empirical Software Engineering 19: 154-
181.

12. Shan C, Chen B, Hu C, Xue J, Li N (2014) Software defect
prediction model based on LLE and SVM. In: Proceedings
of the Communications Security Conference (CSC ‘14) 2014:
1-5.

13. Koru AG, Liu H (2005) Building effective defect-prediction
models in practice. IEEE software 22: 23-29.

14. Fu W, Menzies T (2017) Easy over hard: A case study on deep
learning. In Proceedings of the 2017 11th joint meeting on
foundations of software engineering 2017: 49-60.

15. Menzies T, Majumder S, Balaji N, Brey K, Fu W (2018)
500+ Times Faster than Deep Learning:(A Case Study
Exploring Faster Methods for Text Mining StackOverflow).
In2018 IEEE/ACM 15th International Conference on Mining
Software Repositories (MSR) 2018: 554-563 IEEE.

16. Hoque N, Singh M, Bhattacharyya DK (2018) EFS-MI:
An Ensemble feature selection method for classification.
Complex & Intelligent Systems 4: 105-118.

17. Jiarpakdee J, Tantithamthavorn C, Treude C (2018)
Autospearman: Automatically mitigating correlated metrics for
interpreting defect models. arXiv preprint arXiv:1806.09791.

18. Ghosh S, Rana A, Kansal V (2018) A nonlinear manifold
detection-based model for software defect prediction.
Procedia computer science 132: 581-594.

19. Majd A, Vahidi-Asl M, Khalilian A, Poorsarvi-Tehrani P,
Haghighi H (2020) SLDeep: Statement-level software defect
prediction using deep-learning model on static code features.
Expert Systems with Applications. 147: 113156.

20. Qiao L, Li X, Umer Q, Guo P (2020) Deep learning-based
software defect prediction. Neurocomputing 385: 100-110.

21. Sun Z, Zhang J, Sun H, Zhu X (2020) Collaborative filtering-
based recommendation of sampling methods for software
defect prediction. Applied Soft Computing 90: 106163.

22. Wei H, Hu C, Chen S, Xue Y, Zhang Q (2019) Establishing
a software defect prediction model via effective dimension
reduction. Information Sciences 477: 399-409.

23. Zhao L, Shang Z, Zhao L, Zhang T, Tang YY (2019) Software
defect prediction via cost-sensitive Siamese parallel fully-
connected neural networks. Neurocomputing. 352: 64-74.

24. Shao Y, Liu B, Wang S, Li G (2020) Software defect prediction
based on correlation weighted class association rule mining.
Knowledge-Based Systems. 105742.

25. Duda RO, Hart PE, Stork DG (2001) Pattern classification
2nd ed. John Willey & Sons Inc.

26. Discriminant Analysis (2021) STAT 508 Applied Data Mining

and Statistical Learning. PennState Eberly College of Science
Available at https://online.stat.psu.edu/stat508/lesson/9/9.2

27. Breiman L, Friedman J, Olshen R, Stone C (2017)
Classification and regression trees. Wadsworth Int. Group 37:
237-251.

28. Breiman L, Friedman J, Stone CJ, Olshen RA (1984)
Classification and regression trees. CRC press 1984.

29. James L (2018) Decision Trees in R. Retrieved on May 15th
2020 from https://www.datacamp.com/community/tutorials/
decision-trees-R

30. Saini I, Singh D, Khosla A (2013) QRS detection using
K-Nearest Neighbor algorithm (KNN) and evaluation on
standard ECG databases. Journal of advanced research 4: 331-
344.

31. Thirumuruganathan S (2010) A detailed introduction to
K-nearest neighbor (KNN) algorithm.

32. Jas M, Achakulvisut T, Idrizović A, Acuna D, Antalek M,
et al. (2020) Pyglmnet: Python implementation of elastic-
net regularized generalized linear models. Journal of Open-
Source Software 5: 47. https://doi.org/10.21105/joss.01959

33. Hastie T, Tibshirani R, Friedman J (2009) The elements of
statistical learning: data mining, inference, and prediction.
Springer Science & Business Media.

34. Benjamin AS, Fernandes HL, Tomlinson T, Ramkumar P,
VerSteeg C, et al. (2017) Modern machine learning outperforms
GLMs at predicting spikes. BioRxiv 2017: 111450.

35. Dada EG, Joseph SB (2018) Random Forests Machine
Learning Technique for Email Spam Filtering. Faculty’s
Seminar Series, University of Maiduguri, Nigeria 9: 29-36.

36. Dada EG, Bassi JS, Chiroma H, Abdulhamid SM, Adetunmbi
AO, et al. (2019) Machine learning for email spam filtering:
review, approaches and open research problems. Heliyon 5:
01802.

37. Breiman L, Cutler A (2007) Random forests-classification
description, Department of Statistics Homepage. http://www.
stat.berkeley.edu/~breiman/RandomForests/cchome.htm.

38. Donges N (2020) A complete guide to the random forest
algorithm. Retrieved from https://builtin.com/data-science/
random-forest-algorithm.

39. Yongdong F (2013) A review of cross validation methods in
model selection [D]. Shanxi University.

40. Andersson C (2007) A replicated empirical study of a selection
method for software reliability growth models. Empir. Softw.
Eng 12:161-182.

41. Andersson C, Runeson P (2007) A replicated quantitative
analysis of fault distributions in complex software systems.
IEEETrans. Softw. Eng 33: 273-286.

42. Mangasarian OL, Musicant DR (2001) Lagrangian support
vector machines. J. Mach. Learn. Res 1: 161-177.

43. Suykens JAK, Vandewalle J (1999) Least squares support
vector machine classifiers. Neural Process. Lett 9: 293-300.

44. Lessmann S, Baesens B, Mues C, Pietsch S (2008)
Benchmarking classification models for software defect
prediction: a proposed framework and novel findings.
IEEETrans. Softw. En 34: 485-496.

Copyright: ©2021 Emmanuel Gbenga Dada, at al. This is an open-access
article distributed under the terms of the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in
any medium, provided the original author and source are credited.

Adv Mach Lear Art Inte, 2021 Volume 2 | Issue 1 | 21www.opastonline.com

