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Abstract 
Ambient air monitoring plays a crucial role in the effective implementation of air quality management systems. This practice 
entails systematically and over a long period assessing and quantifying specific pollutants in the outdoor environment. 
However, the high cost of acquiring sufficient equipment for comprehensive air monitoring poses a challenge. Thus, this study 
proposes that spatial classification could be a viable approach to reducing monitoring stations while still obtaining adequate 
air monitoring data. The objective of this study was to examine the predictive performance of artificial neural networks 
(ANNs) in spatial classification to support air quality monitoring. By implementing ANN in this study, the MLP-FF-ANN model 
successfully distinguished air quality samples in the HPC, MPC, and LPC regions. Particularly notable were the positive 
outcomes achieved with a configuration of ten hidden nodes, resulting in an R2 value of 0.7982, as well as the lowest RMSE 
(0.3799) and MR (0.1950). Additionally, the MLP-FF-ANN model demonstrated commendable performance, achieving an 
average correct classification rate of 76.38%. These findings suggest that air quality monitoring based on clustered data can 
effectively maintain data quality.
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1. Introduction
The rapid pace of urbanization and industrialization has significant 
impacts on various aspects, including social, economic, and 
environmental domains. These impacts are evident in increased 
energy and water consumption, elevated pollution levels, and the 
degradation of land and forests, all of which have consequential 
effects on human well-being [1]. Several factors contribute to 
air pollution, including transportation, manufacturing, power 
generation, commerce, urban areas with agricultural economies, 
wood burning, particulate matter, fires, and volcanic eruptions 
[2-4].

In recent years, Malaysia has been grappling with a severe 
crisis of air pollution. Due to its status as a developing economy 
with a robust manufacturing sector and heavy dependence on 
automobiles, the country is particularly vulnerable to this issue 
[5]. Furthermore, Malaysia also contends with significant 
pollution stemming from slash-and-burn practices and forest 
fires in its neighboring country, Indonesia, intensifying the 
predicament [6,7]. The consequent haze has diverse social and 
economic ramifications, especially concerning human health. 
The Ministry of Health Malaysia has reported a significant 
correlation between daily mean levels of air pollutants and 
respiratory fatalities as well as natural deaths. Previous studies 

have demonstrated a robust association between exposure 
to PM10, NO2, and CO and increased hospital admissions for 
respiratory diseases [8,9]. The economic implications of air 
pollution on health are substantial. According to the report 
"The Health and Economic Impacts of Ambient Air Quality in 
Malaysia," the total cost of healthcare for diseases caused by 
air pollution, as well as the loss of productivity due to illness, 
is estimated to be RM303 billion. A study conducted by Li et 
al. (2020) found that air pollution increases the incidence of 
respiratory diseases and worsens overall health, leading to 
higher healthcare expenses [10].

The economic implications of air pollution are significant, 
necessitating the prioritization of measures aimed at 
improving air quality and establishing effective monitoring 
and management protocols. Air quality monitoring plays 
a crucial role in understanding the extent of air pollution 
and its impacts on human health and the environment. This 
involves the measurement of atmospheric pollutants and holds 
substantial importance in global efforts towards environmental 
conservation [11]. In Malaysia, collaborative endeavors 
between the Department of Environment (DOE) and Alam 
Sekitar Malaysia Sdn Bhd (ASMA) are essential for conducting 
monitoring and data collection activities. The primary objective 
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of these initiatives is to provide real-time information to the 
public regarding the concentrations of major pollutants, as 
highlighted by Hawari et al. (2019) and Mohd Shafie et al. 
(2022). A significant milestone was achieved in 1989 with the 
establishment of the Recommended Malaysian Air Quality 
Guidelines (RMAQG). Subsequently, in 1993, the Malaysian 
Air Quality Index (MAQI) was introduced to complement the 
existing regulatory framework. In 2015, an improved guideline 
featuring a three-tier implementation approach was introduced. 
The New Malaysia Ambient Air Quality Standards (NMAAQS) 
form the basis for calculating the Air Pollutant Index (API). The 
API is determined through the monitoring of key air pollutants, 
including CO, NO2,  SO2, PM2.5 and PM10 with its value derived 
from assessing the highest concentration of these pollutants 
detected over a specified timeframe. 

Air quality monitoring systems typically rely on large, stationary 
instruments that are associated with high installation and 
maintenance costs. Consequently, these systems exhibit limited 
coverage, which hampers accurate monitoring and timely 
interventions. As a potential solution, there is a suggestion to 
develop an affordable real-time air quality monitoring system 
[12]. However, instead of pursuing the development of new 
physical instruments, recent attention has been directed towards 
the utilization of artificial intelligence (AI) for the management 
and mitigation of air pollution. AI represents a critical tool in 
environmental protection endeavors, assisting regulatory bodies 
in the identification of effective mitigation strategies aimed at 
minimizing public exposure to air pollutants [13,14]. Moreover, 
AI's capability to navigate complex interactions among various 
air quality parameters enables more precise forecasting of air 
pollutant concentrations [15]. Therefore, the present study 
endeavors to examine the predictive efficacy of artificial neural 

networks (ANNs) in spatial classification, with potential 
implications for enhancing air quality monitoring practices.

2. Materials and Methods
2.1 Study Area and Air Quality Data  
The Department of Environment (DOE) of Malaysia has 
classified eleven continuous air quality monitoring (CAQM) 
stations in the central zone of Peninsular Malaysia. These 
stations are in the central zone, surrounded by a combination of 
residential, industrial, heavy traffic, and rural areas [16,17]. The 
selection of these station locations was based on factors such 
as historical and current monitoring data, representativeness, 
accessibility, availability of support services, security, and 
topography [18]. According to Elias et al., 2023, the central 
zone is an area in Malaysia experiencing rapid development and 
a high-density population [19]. The rapid growth, uncontrolled 
industrial development, biomass, and fossil fuel combustion, 
increasing number of motor vehicles, and human activities such 
as land clearing, road and highway development, and residential 
expansion with a growing population in the central zone are 
responsible for the emissions and release of various types of 
pollutants in the area.

Table 1 presents a comprehensive list of the CAQM stations in 
the central zone. For this study, the Department of Environment 
(DOE) of Malaysia provided secondary air quality data, 
encompassing a five-year period from January 1, 2017, to 
December 31, 2021. The study utilizes daily data on various 
air quality parameters, including carbon monoxide (CO), sulfur 
dioxide (SO2), nitrogen dioxide (NO2), particulate matter (PM10 
and PM2.5), and ozone (O3), as well as daily Air Pollutant Index 
(API) readings.

No. State Location Coordinates Zone Classification
1. Kuala Lumpur Batu Muda 03° 12' 44.78" N, 101° 40' 56.02" E Central Suburban
2. Cheras 03° 06' 22.44" N, 101° 43' 04.50" E Urban
3. Putrajaya Putrajaya 02° 54' 53.33" N, 101° 41' 24.17" E Sub Urban
4. Selangor Kuala Selangor 03° 19' 16.70" N, 101° 15' 22.47" E Rural
5. Petaling Jaya 03° 07' 59.40" N, 101° 36' 28.83" E Suburban
6. Shah Alam 03° 06' 16.98" N, 101° 33' 22.39" E Urban
7. Klang 03° 00' 53.60" N, 101° 24' 47.19" E Suburban
8. Banting 02° 49' 00.08" N, 101° 37' 23.36" E Suburban
9. Negeri Sembilan Nilai 02° 49' 18.09" N, 101° 48' 41.34" E Suburban
10. Seremban 02° 43' 24.17" N, 101° 58' 06.58" E Urban
11. Port Dickson 02° 26' 28.97" N, 101° 52' 00.68" E Suburban

Table 1: CAQM Stations in Central Zone of Peninsular Malaysia

2.2 Statistical Analysis Methods 
2.2.1 Descriptive Analysis 
Univariate statistics were employed to examine the minimum, 
maximum, mean, median, and standard deviation values of each 
air quality parameter. The outcomes of this analysis will provide 

significant insights into the ambient air quality within the study 
area. Subsequently, these findings were assessed against the 
New Malaysia Ambient Air Quality Standards (NMAAQS), as 
depicted in Table 2.
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Pollutants Averaging Time Ambient Air Quality Standard
ppm µg/m3 / *mg/m3

Ozone, O3 1-Hour 0.090 180
8-Hour 0.050 100

Carbon Monoxide, CO 1-Hour 26.2 30*
8-Hour 8.75 10*

Nitrogen Dioxide, NO2 1-Hour 0.150 280
24-Hour 0.037 70

Sulfur Dioxide, SO2 1-Hour 0.095 250

24-Hour 0.030 80
Particulate Matter, PM10 24-Hour 100

1-Year 40
Particulate Matter, PM2.5 24-Hour 35

1-Year 15

Table 2: New Malaysia Ambient Air Quality Standards (DOE, 2020)
2.2.2 Hierarchical Agglomerative Cluster Analysis (HACA)
Hierarchical Agglomerative Cluster Analysis (HACA) is 
extensively employed for identifying air pollution characteristics 
in air quality monitoring stations based on their location. 
Previous research conducted by Lu et al. (2011), Austin et al. 
(2013), Azid et al. (2015), Isiyaka & Azid (2015), Song et al. 
(2016), and Liu et al. (2018) has demonstrated the effectiveness 
of HACA in categorizing air pollution characteristics using air 
quality monitoring stations [20-25]. This clustering analysis 
technique is commonly used in data mining to establish a 
hierarchical structure of clusters, which is typically depicted 
in a dendrogram, a tree diagram [26,27]. It identifies similarity 
patterns within the dataset and presents them as homogeneous 
subsets to reveal relationships between observations [27-29].

In this study, HACA was employed to analyze the air pollutant 
index (API) data from each monitoring station as a variable for 
classifying spatial air quality into clusters with high homogeneity 
within the class and high heterogeneity between classes. Ward's 
method utilizes squared Euclidean distance as a dissimilarity 
measure between individuals (Strauss & von Maltitz, 2017). The 
Euclidean distance in this study is calculated using the following 
equation (Eq.1):

(Dlink / Dmax) x 100 ………………                                     (Eq.1)

where Dlink represents the linkage distance and Dmax denotes 
the maximal distance. The quotient is multiplied by 100 to 
standardize the linkage distance depicted on the y-axis [30-33].

The results of the hierarchical clustering are presented in the 
dendrogram, which provides a visual summary of the clustering 
process. The dendrogram serves as an image of the groups and 
their proximity [31,34,35].

2.2.3 Artificial Neural Network for Spatial Classification 
Artificial neural networks (ANNs) have emerged as powerful 
problem-solving tools, attracting considerable attention across 

diverse fields, including social media analysis, medical diagnosis, 
aerospace, defense, route optimization, robotics, stock market 
prediction, weather forecasting, and air quality assessment. 
Structured through interconnected layers of inputs, hidden units, 
and outputs, ANNs form complex networks capable of learning 
patterns and making predictions [36,37]. Both supervised 
and unsupervised classification methods extensively employ 
ANNs, leveraging their capacity for data-driven learning and 
modeling [38]. This study focuses on utilizing a multi-layer 
perceptron feed-forward artificial neural network (MLP-FF-
ANN) for spatial classification, implemented using JMP10 
software. Optimization of the network architecture, including 
the determination of the optimal number of hidden nodes and 
neurons within each layer, was accomplished through iterative 
experimentation [39]. Furthermore, a backpropagation algorithm 
was employed to minimize prediction errors during training 
[35,39]. The accuracy of the predictive model in classification 
will be evaluated based on performance metrics such as the 
coefficient of determination (R²) and root mean square error 
(RMSE) [40]. A higher R² value and a lower RMSE indicate 
improved predictive capabilities of the model, demonstrating its 
efficacy in spatial classification tasks.

3. Results and Discussion
3.1 Descriptive Analysis
Based on the results shown in Table 3, the highest maximum 
concentrations of PM10, PM2.5, SO2, NO2, O3, and CO are 
recorded as 181.50 µg/m3, 157.70 µg/m3, 0.01 ppm, 0.05 ppm, 
0.06 ppm, and 2.24 ppm, respectively. Both PM10 and PM2.5 
exhibit maximum values that exceed the National Ambient Air 
Quality Standards (NMAAQS) approved levels, whereas the 
concentrations of other pollutants are lower than the approved 
values. The Air Pollutant Index (API) reading reached its highest 
level of 227 within a five-year span, indicating a very unhealthy 
air quality status (API: 201-300). The mean values for all six air 
quality parameters at all stations did not exceed the approved 
concentration limits for air pollutants based on NMAAQS. 
Figure 1 (i)-(vii) illustrates the distribution of the collected data.
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Statistic PM10 (µg/m3) PM2.5 (µg/m3) SO2 (ppm) NO2 (ppm) O3 (ppm) CO (ppm) API
Minimum 5.50 3.68 0.00 0.00 0.00 0.11 21.00
Maximum 181.50 157.70 0.01 0.05 0.06 2.24 227.00
1st Quartile 20.19 13.76 0.00 0.01 0.01 0.53 55.00
Median 26.61 18.64 0.00 0.01 0.02 0.67 61.00
3rd Quartile 34.53 24.82 0.00 0.02 0.02 0.87 67.00
Mean 29.13 20.87 0.00 0.01 0.02 0.71 62.70
Variance (n-1) 202.90 144.18 0.00 0.00 0.00 0.07 218.46
Std dev. (n-1) 14.24 12.01 0.00 0.01 0.01 0.26 14.78
Averaging Period 
NMAAQS

24hrs 
100

24hrs 
35

1hr 
0.095

1hr 
0.150

1hr 
0.090

1hr 
26.2

Table 3: Summary of Descriptive Analysis for Eleven CAQM Stations
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Figure 1 (i)-(ii). Summary of data distributions for five years sampling from eleven CAQM 
stations. 
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Putrajaya, and Shah Alam. The highest recorded API readings in these stations over the past 
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Banting and Cheras stations were classified as unhealthy, while the remaining stations were 
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3.2 Spatial Classification Based on Air Pollutant Index (API) 
by HACA 
Eleven CAQM stations in the central zone of Peninsular 
Malaysia have been categorized into three distinct clusters using 
the HACA method. As shown in Figure 4.1, the dendrogram 
illustrates three separate clusters of monitoring stations, each 
exhibiting similar characteristics within their respective cluster. 
These clusters are referred to as the Low Pollution Cluster (LPC), 
Moderate Pollution Cluster (MPC), and High Pollution Cluster 
(HPC). According to Table 4, the LPC includes the Batu Muda, 
Kuala Selangor, Port Dickson, and Seremban stations, with the 
highest recorded API readings in each station being 203, 198, 
213, and 178, respectively. Batu Muda and Port Dickson stations 
were classified as having a very unhealthy status, while the others 
were categorized as unhealthy. The average API for the LPC was 

found to be 59.04, indicating a moderate air quality status over the 
course of five years. The MPC consists of six stations: Banting, 
Cheras, Nilai, Petaling Jaya, Putrajaya, and Shah Alam. The 
highest recorded API readings in these stations over the past five 
years were 195, 189, 212, 209, 205, and 221, respectively, with 
an average of 65.09. Banting and Cheras stations were classified 
as unhealthy, while the remaining stations were categorized as 
very unhealthy. Overall, the MPC cluster indicates a moderate 
air quality status. Klang station was the sole station classified 
as HPC, with the highest recorded API of 227, signifying a very 
unhealthy status. The average API for Klang station was 69.62, 
and it also experienced a moderate air quality status over the past 
five years. Figure 3 presents a comparison of the average API 
values within the three significant clusters.
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Table 4. List of CAQM stations based on cluster performed by HACA. 
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Figure 2: Classification of CAQM in Central Zone

Cluster LPC MPC HPC
Average API 59.04 65.09 69.62
Number of stations by cluster 4 6 1
 Batu Muda Banting Klang

Kuala Selangor Cheras
Port Dickson Nilai
Seremban Petaling Jaya

Putrajaya
Shah Alam

Table 4: List of CAQM Stations Based on Cluster Performed by HACA
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3.2.3 Spatial distribution of air quality parameters using MLP-FF-ANN Model 

The objective of this analysis was to identify spatial variables related to air quality by 
utilizing fifteen (15) hidden nodes to generate fifteen (15) network structures ranging from 1 
to 15. Six air quality parameters were included in this analysis using raw data. The 
summarized findings can be found in Table 5. Based on these findings, the ML-FF-ANN 
model successfully differentiated between air quality samples in the HPC, MPC, and LPC 
regions. In this analysis, ten hidden nodes were determined to be optimal since increasing the 
number of hidden nodes beyond this point resulted in a decline in prediction performance, as 
shown in Figure 4 (i)-(iii). The model produced the most favourable results with the 
configuration of ten hidden nodes, with an R2 value of 0.7982, as well as the lowest RMSE 
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The MLP-FF-ANN model effectively differentiated between each group, achieving an 
average correct classification rate of 76.38%, as shown in Table 6. The performance of the 
receiver operating characteristic (ROC) is depicted in Figure 5, based on the area under the 
ROC curve (AUC). The spatial distribution model displayed a normal distribution with area 
values of 0.9151, 0.8862, and 0.9812 for HPC, MPC, and LPC, respectively. According to 
Deary & Griffiths (2021) and Bekkar et al. (2013), a value higher than 0.9 signifies 
excellence, while the range of 0.8 – 0.9 is considered very good. Consequently, the MLP-FF-
ANN model demonstrated excellence as a classifier parameter, with an average value 
surpassing 0.9 across all clusters.  
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3.2.3 Spatial Distribution of Air Quality Parameters Using 
MLP-FF-ANN Model
The objective of this analysis was to identify spatial variables 
related to air quality by utilizing fifteen (15) hidden nodes to 
generate fifteen (15) network structures ranging from 1 to 15. 
Six air quality parameters were included in this analysis using 
raw data. The summarized findings can be found in Table 5. 
Based on these findings, the ML-FF-ANN model successfully 
differentiated between air quality samples in the HPC, MPC, and 
LPC regions. In this analysis, ten hidden nodes were determined 
to be optimal since increasing the number of hidden nodes 
beyond this point resulted in a decline in prediction performance, 
as shown in Figure 4 (i)-(iii). The model produced the most 
favourable results with the configuration of ten hidden nodes, 
with an R2 value of 0.7982, as well as the lowest RMSE (0.3799) 

and MR (0.1950) compared to other configurations. 

The MLP-FF-ANN model effectively differentiated between 
each group, achieving an average correct classification rate of 
76.38%, as shown in Table 6. The performance of the receiver 
operating characteristic (ROC) is depicted in Figure 5, based on 
the area under the ROC curve (AUC). The spatial distribution 
model displayed a normal distribution with area values of 0.9151, 
0.8862, and 0.9812 for HPC, MPC, and LPC, respectively. 
According to Deary & Griffiths (2021) and Bekkar et al. (2013), 
a value higher than 0.9 signifies excellence, while the range of 
0.8 – 0.9 is considered very good. Consequently, the MLP-FF-
ANN model demonstrated excellence as a classifier parameter, 
with an average value surpassing 0.9 across all clusters. 

No. of Hidden Nodes R2 RMSE Misclassification Rate
[10,1,1] 0.7870 0.3878 0.2010
[10,2,1] 0.7908 0.3853 0.2000
[10,3,1] 0.7867 0.3881 0.2022
[10,4,1] 0.7936 0.3830 0.1990
[10,5,1] 0.7964 0.3807 0.1964
[10,6,1] 0.7966 0.3809 0.1963
[10,7,1] 0.7963 0.3815 0.1954
[10,8,1] 0.7971 0.3806 0.1951
[10,9,1] 0.7955 0.3819 0.1954
[10,10,1] 0.7982 0.3799 0.1950
[10,11,1] 0.7977 0.3804 0.1966
[10,12,1] 0.7971 0.3805 0.1962
[10,13,1] 0.7966 0.3810 0.1966
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[10,14,1] 0.7976 0.3802 0.1953
[10,15,1] 0.7965 0.3810 0.1960

Table 5: The Prediction Performance of Spatial Classification (HPC, MPC and LPC).
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Figure 4 (i)-(iii). The performance of the MLP-FF-ANN model obtained using (i) R2 value, 
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HPC LPC MPC
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Table 6: Classification Matrix for the MLP-FF-ANN Model Depicting Spatial Variation Across the Three Clusters
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4. Conclusion
In conclusion, this study presents a comprehensive examination 
of the efficacy of artificial neural networks in generating reliable 
models for spatial classification. The ML-FF-ANN model 
effectively differentiated air quality samples in the HPC, MPC, 
and LPC regions. Particularly notable were the impressive 
outcomes achieved using a configuration of ten hidden nodes, 
resulting in a significantly high R2 value of 0.7982, as well as the 
lowest RMSE (0.3799) and MR (0.1950). Additionally, the MLP-
FF-ANN model displayed commendable performance, attaining 
an average correct classification rate of 76.38%. The exceptional 
performance as a classifier parameter is further underscored 
by an average value surpassing 0.9 across all clusters. These 
findings highlight the potential of artificial neural networks in 
spatial classification tasks and emphasize their applicability in 
addressing complex environmental challenges. By facilitating 
spatial classification, this technology could assist the authorized 
agency in effectively managing air monitoring while minimizing 
costs and time.
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