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Abstract
An automated intersection control system for platooning AVs is developed by combining an existing AVs platooning model 
and a known intersection control system for AVs. The proposed model remarkably improves traffic and safety measures, 
specifically in extreme volume regimes compared to the regular DSCLS model. This model outperformed the other AV-based 
intersection control systems in traffic measures with a 9% delay reduction and 18% maximum throughput increment. The 
safety and environmental measures were also remarkably improved by the proposed model. 
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1. Introduction 
Most urban highways are facing daily traffic congestion, 
especially during peak hours. Hence, related institutions 
intend to deploy innovative policies to improve roadway 
traffic flow. Referring to the recent development in vehicular 
and infrastructural communication technologies, new ATM 
policies could be considered a potential and affordable solution 
to improve the traffic network performance in the bottleneck 
sections [1]. To avoid potential risks on the budget and time, 
any traffic management policy must be carefully evaluated 
before deploying on the roadways. In conventional intersection 
control systems, an intersection controller such as a traffic light 
dictates the rules to the vehicles. However, the recent advances 
in vehicles’ communication systems demand communication 
from vehicles to controller systems to take full advantage of the 
CAVs’ communication capabilities. Therefore, the CAV-based 
intersection control logic has been a point of interest for the 
last couple of decades. Several approaches such as trajectory 
planning, real-time optimization, and rule-based intersection 

control logic have been developed to establish purposive 
vehicle-to-vehicle or vehicle-to-infrastructure communication at 
the intersections. 

The most critical task in developing an intelligent intersection 
control system is to make the algorithm adjustable with 
stochastic or unprecedented circumstances. Since conventional 
optimization approaches are based on predefined models or 
fixed rules, making them work in a stochastic environment 
requires several adjustments and experiments. Finally, they 
are unlikely to produce a satisfactory outcome in extraordinary 
circumstances. Following DRL's astounding performance in 
playing multi-player video games within the last few years, it 
is considered an outstanding Machine Learning (ML) technique 
for decision-making in stochastic environments. The chain 
impact of taking sequences of random actions in a DRL agent’s 
learning process will expose the agent to enormous different 
circumstances, regardless of how likely they may happen in a 
real-world environment. Pieces of literature exist in using DRL 
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to optimize traffic light phasing and timing or processing aerial 
images to optimize traffic flow at intersections. 

However, at an ultimate automation level, CAVs are expected to 
act as individual robots, and to the best of the author’s knowledge, 
there is no DRL control system developed to control individual 
CAVs and make them accountable for decision-making in 
the traffic networks. A Decentralized Sparse Coordination 
Learning System (DSCLS) based on DRL is proposed in this 
study to control CAVs at the intersections. In this approach, 
vehicles try to reserve their desired cells ahead of time. Based 
on having a shared desired cell with other vehicles, they would 
be in an independent or coordinated state. Individual CAVs 
are set accountable for decision-making in both coordinated 
or independent states at each step. CAVs learn to minimize the 
overall delay and queue length at the intersection in the training 
process. 

CACC is another promising technology that allows CAVs to 
be driven cooperatively. CACC introduces significant benefits 
to traffic flow and safety, and several CACC control systems 
have been developed within the last couple of decades. A 
noticeable portion of studies in this area is focused on the 
dynamic aspect of CACC, such as vehicle mass, tire friction, 
and vehicle powertrain. These aspects are vital in bringing 
CACC to fruition yet provide limited insights into the impacts 
of CACC on the overall traffic network. Alternatively, most of 
the models developed explicitly for traffic assessment of CACC 
have missed several critical aspects of platooning such as the 
platoon evolution process, communication range limitations, or 
interactions between platoons. 

This study applies a classical physics-based model called Spring-
Mass-Damper (SMD) that reflects the most critical dynamic 
aspect of vehicles, the mass, and covers the platoon evolution 
process for platooning CAV. A maximum communication range 
is reflected in the model to make it more compatible with real-
world circumstances. Strings of vehicles are divided into sub-
platoons to avoid lengthy platoons and accommodate potential 
merging vehicles, while the SMD model controls both inter-
platoon and intra-platoon interactions. The model is coded into 
commercial simulation software to facilitate traffic-oriented and 
potential macroscopic or mesoscopic assessments.
Considering platooning capability and automated intersection 
control systems as essential characteristics of CAVs, numerous 
studies have focused on these two areas. However, CACC 
platooning models are mainly developed and tested in 
uninterrupted flow circumstances, and the impact of platooning 
models on interrupted flow has not been examined. Few CAV-
based intersection control systems can deal with platoons 
of vehicles. However, these models still lack a robust logic 
for platooning. This study also develops a platooning CAVs-
based automated intersection control system for CAVs by 
simultaneously deploying the DSCLS and SMD models. 

2. Literature Review 
This chapter reviews selected studies in two critical CAV-related 
research areas, including 1) CAV-based intersection control 
systems and 2) Cooperative Adaptive Cruise Controls (CACC).
Based on the existing literature, CAV-based intersection control 

systems are clustered into three main groups, including 1) 
rule-based algorithms, 2) optimization-based algorithms, and 
3) Machine Learning (ML)-based algorithms. Several studies 
in each group are reviewed, and it is clarified if any proposed 
intersection control logic can consider platoons of AVs instead 
of single vehicles. It should be noted that several studies have 
proposed a combination of the mentioned methodologies. In that 
case, they are included in the most related group. 

Regarding the CACC systems, a brief history of vehicles’ 
longitudinal control systems’ evolution from basic Cruise 
Control (CC) systems to Cooperative Adaptive Cruise Control 
(CACC) is presented in this chapter. Several proposed CACC 
models and their impact on traffic flow measures are reviewed, 
and a brief background on the Spring-Mass-Damper (SMD) 
model is provided. It also explains how previous studies have 
used the SMD model to reflect the impact of several variables 
such as driver aggressiveness, vehicle mass, and vehicle stability 
on CAVs' platooning behavior. 

A combination of Transportation Engineering-based policies 
with conceptual deep reinforcement learning has been used by 
Mirbakhsh et al to optimize ambulance dispatch in a pandemic 
or natural disaster circumstances [2]. Dresner et al divided the 
intersection area into an n×n grid of reservation tiles. Each 
approaching vehicle at the intersection attempts to reserve 
a time-space block at the intersection area by transmitting a 
reservation request to the intersection manager. The reservation 
request includes information such as speed and arrival time. 
According to the intersection control policy, the intersection 
manager decides whether to approve the request, provide more 
passing restrictions to the driver agent, or reject the reservation 
request. Dresner et al. adopted the First Come First Serve (FCFS) 
control policy, in which the passing priority is assigned to the 
vehicle with the earliest arrival time, and other vehicles have to 
yield to it. In a following study by Dresner et al. in 2008, several 
complimentary regulations were added to FCFC policy to make it 
work more reliably, safely, and efficiently [3]. Simulation results 
revealed that FCFS policy noticeably reduces the intersection 
delay compared to traffic light and stop sign control systems. 
The reservation-based approach can be combined with various 
control policies and has been deployed by several researchers 
since 2008.

Zhang et al. proposed a state-action control logic based on a 
Priority First in First Out (PriorFIFO) [4]. This control model 
assumes autonomous motion with spatial-temporal and kinetic 
parameters based on a centralized scheduling mechanism. The 
target was to reduce control delay for vehicles with higher 
priority. The simulation results with a combination of high, 
average, and low-priority vehicles showed that the algorithm 
works well for vehicles with higher priority. Meanwhile, causing 
some extra delay for regular vehicles compared to those with 
lower priority. 

Carlin et al. developed an auction-based intersection control logic 
based on Clarke Groves tax mechanism and pixel reservation [5]. 
If commonly reserved tiles exist between vehicles, an auction is 
held between the involved vehicles. All vehicles in each direction 
contribute to their leading vehicle to win the auction, and the 
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control logic decides which leading vehicles receive a pass 
order first. The bid's winner and its contributors (followers) have 
to pay the runner-up bid amount with a proportional payment 
(based on their contribution value in the bid). A "system wallet" 
component was added to auction-based intersection control to 
ensure low-budget vehicles or emergency vehicles would not be 
over-delayed. A comparison of simulation results showed that 
the auction-based control logic outperforms the FIFO logic.

Vasirani et al. approached the intelligent intersection management 
problem on a mesoscopic scale and designed a competitive 
computational market to control a set of intersections in urban 
roadway networks [6]. In this algorithm, buyers are driver 
agents, the suppliers are the intersection managers, and the traded 
resource is the intersection capacity. Each vehicle communicates 
with the intersection manager and provides its desired route. The 
intersection manager adjusts the prices based on demand and 
supply values. Vehicles can reroute if the offered price is not 
desired, and the transactions are made as the equilibrium price 
is obtained. Mesoscopic simulation runs for a roadway network 
consisting of several intersections showed that deployment 
of the algorithm leads to travel time reduction for CAVs and 
density reduction at the network's critical sections. 
 
Chen et al. developed the win-fit intersection control logic. In 
this algorithm, the “win” logic scores clusters of approaching 
vehicles to the intersection by the value of delay imposed on 
all other yielding clusters [7]. The cluster with the lowest delay 

impact on other clusters obtains the passing priority. The control 
algorithm's “fit” function assigns idle time slots (resulting from 
turning movements) to the vehicles in lower priority groups. 
Unlike the previously reviewed control system, the win-fit 
control logic could consider a cluster of vehicles instead of a 
single vehicle at each decision-making step. However, holding 
on to the platoon was not a priority. So, the vehicles could leave 
their platoon to pass the intersection. A simulation run in SUMO 
revealed that the average delay at the intersection was improved 
compared to both FIFO and actuated traffic lights. 

Mirbakhsh, et al. proposed an SMD-based platooning logic to 
control AVs car following behavior. The proposed model was 
tested in a commercial microsimulation software and the results 
showed that the model gains gained noticeable improvements in 
traffic measures, safety. pollution, and emission [8]. 

3. Methodology
One of the main goals of this study is to develop a platooning 
CAV-based intersection control system, which includes the 
simultaneous deployment of SMD platooning logic and an 
automated machine learning-based intersection control system 
for Avs developed by Mirbakhsh et al. [9]. It also requires 
adjusting the models to be compatible. A general layout of 
platooning CAV-based intersection control system based on the 
SMD model and DSCLS is shown in Figure 1. This model is 
called DSLCS&SMD.
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lane intersection, and the corridor of four intersections comply 
in the aspect of gains or losses of the proposed model. The 
simulation testbed in this experiment is the same as the proof-
of-concept test experiment presented. The proposed model is 
compared with four other intersection control systems, including 
fixed traffic light, actuated traffic light, LQF, and DSCLS, in three 
different volume regimes. The simulation settings are set the 
same as proof-of-concept test experiments, and the simulation 
results are presented in the following sections.

4. Analysis Results 
According to the delay results comparison shown in Figure 2, 
the DSCLS&SMD model noticeably improves the delay in the 
extreme volume regime with a 31% delay reduction compared to 
the DSCLS. A delay reduction of 10% is observed in moderate 
and high-volume regimes. Since fewer platoons are formed in 
the moderate and high-volume regimes due to lower occupancy, 
the model is less effective in delay reduction than in the extreme 
volume regime. The delay results confirm that clustering vehicles 
into platoons can improve DSCLS decision-making efficiency. 
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According to the maximum throughput results in Figure 4, the DSCLS&SMD noticeably outperforms the DSCLS by an 18% 
increment in the maximum throughput.
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4.1. Other Measures Comparison 
The average fuel consumption results appear in Figure 5. The 
DSCL&SMD increases the fuel consumption by 21%, 25%, 
and 31% compared to the DSCLS model in moderate, high, 
and extreme volume regimes. The fuel consumption increments 

result from the SMD model pushing all vehicles to strictly follow 
the leading vehicle, which is controlled by DSCLS with limited 
acceleration and deceleration rates. However, the DSCLS&SMD 
still has almost equal or better performance in fuel consumption 
compared to the conventional control systems and the LQF. 
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The comparison of PET, shown in Figure 7, reveals that 
the platooning CAVs have a safer crossing maneuver at the 
intersections. The PET value is improved by 1%, 6%, and 10% 
in moderate, high, and extreme volume regimes. The reason 

is that instead of single vehicles being involved in a crossing 
maneuver, platoons of vehicles are involved, reducing the 
number of conflicts and the chance of side collisions.

Figure 7: Average PET Comparison, Including DSCLS & SMD

The TTC measure comparison appears in Figure 8. The platooning CAVs have a better performance than the DSCLS in the TTC 
measure, with around a 45% increment in all volume regimes. The reason is that in DSCLS&SMD, all vehicles in the network are 
controlled by the SDM model, catching up with the leading vehicle’s acceleration and deceleration smoothly.
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