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Abstract
Addressing the critical challenge of evacuation, especially in crisis situations where uncontrollable emotions can significantly 
impact decision-making, is of paramount importance. In this article, the Emotional Intelligent Model is presented, a new 
approach that seamlessly integrates dynamic emotion recognition with an adapted intelligent evacuation strategy for crisis 
scenarios. Our methodology harnesses a combination of convolutional neural networks (CNN)   for dynamic emotion sensing 
and long-term memory recurrent neural networks (LSTM) to provide decision support during evacuation. This paper provides 
an in-depth exploration of our system's architecture, encompassing the dynamic emotion recognition and personality profiling 
methods, as well as the adaptive evacuation strategy. 

During the experimental and validation phases, the MESA simulation platform was used. The results achieved confirm the 
effectiveness of the integrated emotional approach, which contributes to safer and smarter evacuation procedures in crisis 
situations. 

Keywords: Facial Emotion Recognition (FER), Artificial Intelligence, Evacuation, Disaster, Deep Learning, Neural Networks, 
LSTM. 

1. Introduction
Among the main challenges of securing human lives, rapid and 
well-organized evacuation of people to safe places remains 
crucial. However, this process can be disrupted by situational 
factors, particularly in emergency situations, such as panic and 
desperation, which can obstruct evacuation efforts or render them 
ineffective. It is therefore essential to consider the emotional 
factors to ensure the success of evacuations, particularly in 
crisis situations. Emotional intelligence represents a change in 
crisis management methods, aimed at improving evacuation 
procedures by recognising emotions and providing decision 
support. In this context, an approach called "Emotio-Intelligent" 
is being introduced. 

This approach seamlessly integrates dynamic sentiment 
recognition with an intelligent evacuation strategy that adapts 
to crisis scenarios such as floods and accidents inside large 
factories. Our methodology uses a combination of convolutional 
neural networks (CNN) for dynamic emotion sensing and 
recurrent neural networks for long-term memory (LSTM) to 
provide decision support during evacuation. 

The MESA simulation platform was used. The results supported 

the effectiveness of the integrated emotional approach, which 
contributed to safer and smarter evacuation procedures in crisis 
situations.  

Existing studies overlook the emotional state of people 
affected by emergency rescue operations, which underlines the 
importance of this paper. This study aims to understand how 
rescue decisions are made considering the emotional state of 
those involved in a rescue operation. The aim of this article is 
twofold. First, the central role of emotion recognition in the 
field of crisis management will be highlighted, elucidating 
how emotions can shape individual and group behavior during 
evacuation procedures. Next, a comprehensive review of the 
intelligent affective approach, which is a synthesis of cutting-
edge techniques that combines the power of convolutional neural 
networks (CNNs) for emotion detection and recurrent neural 
networks for long-term memory (LSTMs), will be presented 
[1.2]. For decision support during evacuations. 

In the following sections, complex modeling of emotions 
and personality traits will be addressed, inspired by the OCC 
(Ortony, Clore, and Collins) and OCEAN (Five-Factor Model) 
models, respectively. In addition, the architecture of the 
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intelligent emotional system will be described in depth, which 
includes four fully integrated and interconnected modules: 
face detection, feature extraction, emotion classification, and 
emotional evacuation decision making [3.4]. 

Preliminary results from training and evaluation of the LSTM 
model will be presented, highlighting the potential impact of 
the proposed approach in intelligent evacuation during crisis 
scenarios. This research is expected to have a critical role in 
improving population safety in emergency situations and will call 
for widespread adoption of the emotionally intelligent approach 
to strategic planning and skilful implementation of situation-
specific evacuation procedures [5.6].  Our main contribution 
to this endeavor is the integration of Emotio-Intelligence 
with emerging technologies, a concerted effort to address the 
challenges inherent in securing evacuations in crisis situations. 
In the following sections, we will provide a concise overview of 
the theoretical underpinnings of the proposed approach, present 
the emotional intelligent model, and discuss the findings of the 
experimental study and model validation.
  
2. Related Work
In recent years, there has been a growing interest in integrating 
emotion assessment into decision support systems for crisis 
scenarios [7]. This involves using facial expressions to aid 
decision-making in emergency context. 

Numerous studies have explored this area, employing traditional 
machine learning techniques like fuzzy logic in conjunction with 
machine learning (ML), as well as current approaches such as 
deep learning, convolutional neural networks (CNNs), transfer 
learning, and Bayesian Networks for emotion detection. 

In this context, Sirine Lasfar and Dalel Kanzari introduce an S-S-
LSTM method to identify dominant sentiments within influential 
social communities in crisis periods [8]. Chamola et al. in used 
“Machine learning” for predicting disasters and assisting in 
disaster management tasks, such as determining crowdevacuation 
routes, analyzing social media posts, and handling post-disaster 
situations. As well, the authors in used “Bayesian Networks” 
for explain how people make rational decisions using noisy and 
vague sensory feedback. Ibtissem Daoudi and al [9-12]. used 
“Data Mining” to Explain Improving Learner Assessment and 
Evaluation in Serious Crisis Management Games [13]. 

The authors in used “Big Data” To explain human behaviors 
in evacuation crowd dynamics: from modeling to “big data” 
toward crisis management. In this work, a newly renamed 
balanced FER2013 dataset is presented [14]. A balanced CNN-
LSTM is designed and trained [15]. A new deep neural network 
architecture for recognizing the face sign expression, using the 
pretrained MobileNetv2 model images weights and the modified 

balanced version of the FER2013 dataset is designed and 
implemented [16]. 
 
3. Theoretical Foundations
Emotional modeling plays an essential role in the development 
of our Emotio-Intelligent approach, and at the heart of our 
strategy is the renowned OCC model by Ortony, Clore and 
Collins. Recent research in this field, such as studies published 
in leading journals , underline the importance of this model, 
which provides a comprehensive framework for understanding 
the dynamics of emotional responses [17-19]. 

The OCC model has been shown to be both simple and resilient 
in categorising emotions according to their underlying meaning. 
In the present study, particular attention was paid to identifying 
and examining key emotions in emergency scenarios, in 
particular fear, anger, sadness, and complacency. These emotions 
have distinct characteristics and elicit specific reactions, which 
have been sought to be characterized and interpreted in order to 
improve decision-making processes during evacuation scenarios. 

Drawing on recent research findings, our Emotio-Intelligent 
approach strives to better understand human behavior by 
recognizing emotions in constrained situations such as crisis 
evacuation. In this approach, the significant influence of 
individual personality traits is also taken into account in the 
decision-making process in crisis situations. In this regard, the 
OCEAN model, also known as the Five-Factor Model (FFM), 
has been incorporated to characterize personality. This widely 
accepted model divides personality into five broad dimensions: 
openness, conscientiousness, extraversion, agreeableness, and 
neuroticism. 

Personality traits have a considerable influence on how 
individuals react to highly stressful situations such as evacuations. 
For example, an extraverted person may be more inclined to ask 
for help and cooperate with others during an evacuation, while 
a more neurotic person may experience heightened anxiety and 
negative emotions. By integrating these personality dimensions 
into our Emotio-Intelligent framework, this work aims to better 
understand individuals' behavior and adapt evacuation strategies 
to their psychological tendencies. 

LSTM neural networks for emotion detection
Within the scope of the present Emotio-Intelligent research 
project, long-term memory neural networks (LSTMs) are 
emerging as key components for emotion recognition and 
analysis. LSTMs represent a specialized iteration of recurrent 
neural networks (RNNs),particularly adept at capturing and 
retaining information over long  sequences of data, a capability 
precisely suited to the nuanced and evolving emotional states 
encountered in crisis scenarios [20,21]. 
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Figure 1: global LSTM architecture[22] 

Mathematically, the LSTM structure can be formulated as follows: 

-Forget Gate:  
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Where  𝑾𝑾𝒙𝒙𝒙𝒙 , 𝑾𝑾𝒙𝒙𝒙𝒙 , 𝑾𝑾𝒙𝒙𝒙𝒙  , 𝑾𝑾𝒉𝒉𝒙𝒙 , 𝑾𝑾𝒉𝒉𝒙𝒙 , 𝑾𝑾𝒉𝒉𝒙𝒙   are weight parameters and 𝒃𝒃𝒙𝒙 , 𝒃𝒃𝒙𝒙 , 𝒃𝒃𝒙𝒙 are bias 
parameters . 

Input Node:  

𝒕𝒕= tanh (𝑋𝑋𝑡𝑡𝑊𝑊𝑥𝑥𝑥𝑥  +  𝐻𝐻𝑡𝑡−1𝑊𝑊ℎ𝑥𝑥 + 𝑏𝑏𝑥𝑥 )   (4) 

where  𝑾𝑾𝒙𝒙𝒙𝒙 and 𝑾𝑾𝒉𝒉𝒙𝒙   are weight parameters and  𝒃𝒃𝒙𝒙 is a bias parameter. 

-Memory Cell Internal State: 

𝑪𝑪𝒕𝒕 = 𝐹𝐹𝑡𝑡 ⊙ 𝑡𝑡−1  +  𝐼𝐼𝑡𝑡  ⊙  𝒕𝒕                 (5) 

Hidden State: 

𝑯𝑯𝒕𝒕 = 𝑂𝑂𝑡𝑡 ⊙ tanh (𝐶𝐶𝑡𝑡 )   [22]                   (6) 

This ensures that the values of 𝐇𝐇𝐭𝐭  are always in the interval [-1, 1]. 

Using LSTMs allows us to learn from sequential data, such as image sequences that capture 

individuals' facial expressions over time. This dynamic approach enables us to understand the 

fluid nature of emotions, identifying critical moments when individuals may switch to emotions 

such as fear, anger or other important emotional states during evacuations. This temporal 
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-Forget Gate: 

This ensures that the values of 𝐇 are always in the interval [-1, 
1]. 

Using LSTMs allows us to learn from sequential data, such as 
image sequences that capture individuals' facial expressions 
over time. This dynamic approach enables us to understand the 
fluid nature of emotions, identifying critical moments when 
individuals may switch to emotions such as fear, anger or other 
important emotional states during evacuations. This temporal 
awareness aligns perfectly with the core principles of our 
Emotio-Intelligent project, where the rise and fall of emotions 
play a central role in driving emotional decision-making during 
evacuations. 

The integration of emotion and personality modeling with LSTM 
neural networks is the foundation of the Emotio-Intelligent 

approach. This interaction provides valuable perspective on the 
development of smarter, emotion-driven evacuation strategies 
suited to individual needs in crisis situations. 

4. Proposed Approach 
The Emotio-Intelligent approach proposes a multidisciplinary 
strategy for improving crisis management, with a particular 
focus on evacuations. It is based on three fundamental elements, 
each of which be crucial in improving the overall effectiveness of 
our system. These fundamental elements are emotion modelling, 
personality modelling and the architecture of the evacuation 
support system. 

4.1 Emotions Modeling 
The proposed approach emphasises the importance of factoring 
emotions into crisis scenarios. It uses the OCC model (Ortony, 
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Clore and Collins) to provide a comprehensive understanding of 
the emotional process of individuals in crisis situations. Critical 
emotions for evacuation, such as fear, subjective anger, sadness, 
and complacency, were identified by linking them to specific 
responses to emergency situations. Through this modeling, 
the proposed system can detect, understand and respond to 
individuals' emotions in real time during the evacuation process. 

4.2 Personality Modeling
In addition to modeling emotions, individuals' personalities are 
integrated into the emotional model. To do this, the OCEAN 
model is used (Five-Factor Model - FFM), which identifies 
five major personality traits: openness, conscientiousness, 
extraversion, agreeableness, and neuroticism. These traits 
profoundly influence individuals' behaviors in crisis situations, 
especially during evacuations. By taking into account each 
individual's personality, our system is able to propose evacuation 
strategies tailored to their preferences and specific emotional 
reactions. 
 
4.3 Evacuation system architecture
To validate and test the proposed approach: "Emotion-
Intelligent" a simulation platform was developed using the 
MESA framework. This platform provides the possibility of 
creating a realistic and personal virtual environment where 
the behavior of individuals can be monitored during simulated 
evacuation situations. 

The Mesa platform provides advanced features for modeling 
autonomous agents, such as emotional characters and eviction 
experts. Through this platform, the influence of emotions and 
personality on the evacuation process can be deeply investigated, 
as well as the effectiveness of the proposed emotional intelligent 
approach in a safer and more personalized evacuation process. 

The proposed Emotio-Intelligent approach integrates emotional 
and personality modeling, based on LSTM neural networks, 
the OCC model, and the OCEAN model to design an improved 
emotion-driven evacuation system. The Mesa simulation 
platform provides a suitable framework for assessing and 
refining our approach, allowing the development of advanced 
solutions to improve the safety and efficiency of evacuations 
during crises. [22,23]. 

4.4 Architecture of Emotio-Intelligent 
Most existing emotion recognition solutions follow a common 
architectural pattern, consisting of three main modules that 
function independently. These three key modules are as follows: 

1- Face detection Module. 
2- Feature extraction Module. 
3- Classification Module.  

These three modules interact to create a comprehensive system 
for emotion recognition. 
In the proposed approach, a fourth additional module designed 
for decision support is integrated:  

• Face Detection: This module is designed to recognize and 
locate faces in input images or video streams. It plays an essential 
role in ensuring that only relevant regions containing faces are 
further processed. 

• Decision Support : This module analyses recognized emotions 
and offers guidance and recommendations for appropriate 
actions in evacuation scenarios. It factors in aspects like emotion 
intensity, crowd dynamics, and safety protocols to facilitate 
wellinformed decisions.

• Feature Extraction: The feature extraction module 
concentrates on extracting significant facial attributes from 
the identified facial regions. These attributes may encompass 
geometric measurements, textural information, or facial 
landmarks that encapsulate distinct characteristics related to 
various emotions. 

• Classification: Employing machine learning algorithms such 
as CNN or LSTM, the classification module categorizes the 
extracted features and predicts the corresponding emotion. It 
undergoes training on a labelled dataset of emotions to grasp the 
patterns and relationships between the features and emotional 
states. 

The system's overall capabilities. It transcends simple emotion 
recognition and provides valuable information and support 
in critical moments, safeguarding the well-being of people in 
emergency situations. These modules are shown in detail in 
Figures 2 and 3 
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Face Detection Module: This module identifies and locates 
faces in images or videos, constituting the essential first step in 
emotion recognition. 

Feature Extraction Module: This module extracts relevant 
features from the detected faces, such as facial expressions, 
muscle movements, or other visual cues, to provide actionable 
data for emotional analysis. 

Classification Module: This module classifies the extracted 
features to identify and categorize emotions, enabling the system 
to recognize and understand individuals' emotional states. 

Emotion identification: refers to the process of recognizing and 
categorizing human emotions based on various cues, such as 
facial expressions, vocal tone, body language, or physiological 
responses. This involves the ability to accurately discern and 
label emotions like happiness, sadness, anger, fear, and others. 

Decision module: is a critical component where the system 

makes choices and takes action based on the emotional state of 
the agent. The system's decision-making process is influenced 
by the agent's emotional state, and it follows a specific set of 
rules to determine the appropriate course of action. 

For instance, if the system detects that the agent is experiencing 
fear, it may opt to guide the agent with the assistance of an expert. 
This expert guidance could involve providing personalized 
instructions, reassurance, or support tailored to alleviate the 
agent's fear and ensure their safety during the evacuation. 
 
On the other hand, if the system determines that the agent's 
emotional state does not indicate fear, it may choose a different 
approach. In this case, it might send a message to the agent, which 
contains information about the shortest and safest evacuation 
path. This decision is made with the goal of facilitating a swift 
and secure evacuation process, taking into account the agent's 
emotional state as a factor in the decision-making process. 
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The general scheme of the system for emotion recognition and 
decision support in an evacuation situation consists of three key 
phases: 

Prediction Phase: In this initial phase, the system predicts 
and assesses the emotional state of the agent. This is achieved 
through the analysis of various emotional cues, such as facial 
expressions, vocal tone, or physiological responses. If the 
agent's emotion is identified as fear, the system proceeds to the 
next phase where an expert will provide guidance and support 
to the panicked agent. However, if the agent's emotion does not 
indicate fear, the system prepares for the decision-making phase. 

Learning Phase: This phase involves the accumulation of 
knowledge and data about the evacuation scenario and the 
emotional responses of agents. The system learns from past 
experiences and refines its ability to recognize emotions 
accurately. This learning phase is essential for the system to 
continuously improve its emotional recognition capabilities. 

Decision-Making Phase: In the final phase, the system makes 
decisions based on the agent's emotional state. If the agent is 
identified as experiencing fear during an evacuation, the system 

engages an expert who guides and assists the panicked agent. 
On the other hand, if the agent's emotion does not signify fear, 
the system initiates a different action by sending a message to 
the agent. This message typically contains information about the 
shortest and safest evacuation path, with the aim of ensuring a 
secure and efficient evacuation process while considering the 
emotional state of the agent. 

These three phases work together to create a comprehensive 
system that recognizes and responds to the emotions of 
individuals during evacuation, ensuring that appropriate support 
and guidance are provided to enhance safety and effectiveness. 

5. Simulation and Implementation  
To validate and test the proposed emotional intelligent approach, 
a simulation platform was developed using the Mesa framework 
[24]. This platform allows the creation of a realistic and personal 
virtual environment, where the behavior of individuals can be 
monitored during simulated evacuation situations. 

The Mesa platform provides advanced features for modeling 
independent agents, such as emotional personas and eviction 
experts. Thanks to this platform, the extent to which emotions 
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and personality influence the evacuation process can be studied 
in depth, as well as the effectiveness of the proposed emotional-
intelligent approach for a safer and more adaptive evacuation 
process. 

The Mesa simulation platform provides an appropriate 
framework for evaluating and optimising the approach, enabling 
us to develop advanced solutions for improving the safety and 
efficiency of evacuations in crisis situations [25]. 

5.1 Data Preparation
The proposed methodology was trained and tested using the open-

source FER2013 dataset, which is created for an ongoing project 
by Pierre-Luc Carrier and Aaron Courville from university of 
Montreal, then shared publicly for a Kaggle competition, shortly 
before ICML 2013[19]. The dataset consists of 35.887 labelled 
48x48 grayscale human facial expressions. These are afraid 
(11.42%), angry (11.13%), disgusted (1.21%), happy (20.1%), 
neutral (13.84%), sad (13.46%) and surprised (8.84%). To train 
and test the performance of the proposed classification model, 
80% of the group was selected for training and the rest for 
testing. Figure 4 shows some sample images from the FER2013 
dataset. 
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5.2 CNN-LSTM Fusion 
To capture the temporal dynamics of facial expressions, the 
capabilities of convolutional neural networks (CNNs) and long-
term memory neural networks (LSTMs) have been leveraged. 
Our approach uses convolutional neural networks to extract 
salient features from facial images, while long-term memory 
neural networks systematically analyze these features to track 
the evolution of emotions as the crisis scenario unfolds. This 
combined framework enables our model to accurately identify 
critical emotions such as fear, anger and sadness, while deftly 
capturing emotional transitions in the evolving crisis context.

5.3 LSTM Model Training And Evaluation
The proposed LSTM-based model underwent rigorous training 
on a custom training dataset, using a backpropagation technique 
to optimize the network weights. The categorical entropy loss 
function was used as a measure of quantification the disparity 
between model predictions and actual emotional states derived 
from facial images.  

After training, the model was subjected to evaluation using a 
test dataset, which yielded exceptional accuracy in emotion 
recognition, confirming the effectiveness of the proposed CNN-
LSTM approach in emotion modeling. 

5.4 Evacuation Simulation with Emotio-Intelligent
The proposed intelligent emotional model has been seamlessly 
integrated into a simulation platform developed using the Mesa 
framework [26].  This platform facilitates the creation of realistic 
evacuation scenarios and the real-time monitoring of individual 
behaviors.During simulations, emotionally aware agents 
equipped with our Emotio-Intelligent model demonstrated 
greater decision-making acuity during evacuations. By taking 
into account the emotional attributes and personality of each 
individual, our system skilfully proposed tailormade evacuation 
strategies, resulting in safer and more rational evacuations, 
characterized by reduced delays and increased overall safety.In 
summary, the implementation of our EmotioIntelligent approach 
has yielded promising results in terms of emotion . 

5.5 Plate Form : MESA 
Mesa is an open-source agent-based modeling (ABM) 
framework written in Python [27]. It provides a platform for 
creating simulations that involve multiple agents interacting in a 
complex system [28,29].
  
In this analysis, leveraging the Mesa platform was chosen as 
the basis for the proposed emotional intelligence approach. 
By leveraging MESA's capabilities, a dynamic simulation 
environment can be created where emotional agents interact 
and make decisions based on their emotional states. This 
allows studying the influence of emotions on crisis situations 
and evaluating the effectiveness of proposed evacuation and 
decision-making strategies. 

In the following sections, the details of how Mesa is integrated 
into the implementation will be delved into and the specific 
features and functionality it offers to support the proposed 
emotional intelligence approach will be discussed. 

6. Results and Discussion  
Now some possible scenarios from the completed simulation 
will be presented and analyzed: 

• Scenario 1: In case of several agents who do not know the 
safest path. 
• Scenario 2: In case of several agents knowing the safest path.  
• Scenario 3:  During evacuation, a large number of agents 
experience a shift in their emotional state towards fear. 
• Scenario 4: During the evacuation, the emotional state of a 
number of Agents shifts towards a feeling of joy or happiness. 

1- Scenario 1: In Case of Several Agents Who Do Not Know 
the Safest Path
In case of high danger, the level of fear increases and distress 
begins to appear "Distress" while the agent begins to lose the 
level of self-satisfaction. The dominant character in this case is 
fear, so the situation will be more complicated, which prevents 
the agent from trying again to find the emergency exit. Figure 5 
illustrates the simulation of this scenario. 
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Figure 5 also shows the fluctuation of the emotional state 
from one person to another during the evacuation process. For 
example, the number of terrified people ranges between 40 and 
50 people, as shown in the figure. Here the role of the proposed 

approach is highlighted, which is to determine the emotional 
state of people, which will help in making the appropriate rescue 
decision. 
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Figure 5 : Scenario 1 

In this scenario, several experts are relied upon to guide frightened agents. 

Figure 6 explains more the result of this scenario. 

 
14 

 

to determine the emotional state of people, which will help in making the appropriate rescue 

decision. 

 

 

 

 
Figure 5 : Scenario 1 

In this scenario, several experts are relied upon to guide frightened agents. 

Figure 6 explains more the result of this scenario. 

 

Figure 5: Scenario 1

In this scenario, several experts are relied upon to guide frightened agents. 
Figure 6 explains more the result of this scenario. 

Figure 6: Expert-Led Panic Agents

Figure 6 also shows that at the beginning of the evacuation 
process, the number of people feeling panic increased. The 
number approached 90 people feeling panic, then it began to 
decrease as a result of the intervention of experts to guide them 
during the evacuation process. 

2- Scenario 2: If There Are Multiple Agents Who Know The 
Safest Path
In this case, the dominant emotion is trust (happy customers) 
because the agent knows the safest route and will follow the path 
indicated by the proposed evacuation system Emoti-Intelligent.
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3- Scenario 3 : During the evacuation process, a large number of agents in some cases 

experience a shift in their emotional state towards fear: this necessitates the involvement of a 

greater number of experts and is one of the goals of the proposed "Emotio-Intelligent" 

evacuation system to maintain the safety of people. Figure 8 shows a simulation of this scenario. 
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3- Scenario 3: During the evacuation process, a large number 
of agents in some cases experience a shift in their emotional 
state towards fear: this necessitates the involvement of a greater 

number of experts and is one of the goals of the proposed 
"Emotio-Intelligent" evacuation system to maintain the safety of 
people. Figure 8 shows a simulation of this scenario.

Figure 8: Scenario 3

In this particular case, a large number of experts are used to 
provide guidance to agents suffering from fear. In this context, 
the need for expert intervention steadily grows as the condition 
of the agents evolves. 

4- Scenario 4: During the evacuation process, the emotional 

state of a number of agents changes towards a feeling of joy or 
happiness, which facilitates the evacuation process and limits 
the intervention of experts. Here the importance of the proposed 
system becomes clear, as in such a case it sends a message 
to every person containing the safe path. Figure 9 shows a 
simulation of this scenario.
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In this situation, the need for expert intervention decreases gradually as the agent's emotional 

state improves, transitioning towards feelings of happiness. 
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Figure 9: Scenario 4

In this situation, the need for expert intervention decreases 
gradually as the agent's emotional state improves, transitioning 
towards feelings of happiness. 

7. Conclusion 
In this article, a proposed emotional intelligence approach 
to improve crisis evacuations is presented. By combining 
emotion and personality modeling with LSTM neural networks, 
the proposed system offers a new perspective for handling 
evacuation scenarios in a more intelligent and empathetic way. 

It has been shown that modeling emotions according to the OCC 
model and personality according to the OCEAN model (FFM) 
can allow a better understanding of the emotional reactions 
of individuals during a crisis situation. Using LSTM neural 
networks, it has been possible to capture and track individuals' 
emotions over time, which has proven to be essential for making 
informed decisions during an evacuation. 

The potential impact of the proposed approach in crisis situations 
is significant. By providing evacuation strategies tailored to each 
individual's emotions and personality, risks and panic situations 
can be reduced, helping to prevent serious accidents and saving 
lives. 

Therefore, the intelligent emotional approach can be adopted in 
designing evacuation systems. By incorporating this approach into 
simulations and actual evacuation scenarios, the safety of people 
during emergencies can be improved. This approach provides 
new opportunities for safer, more efficient and compassionate 
evacuations, helping to protect residents and save precious lives.  
In conclusion, this article highlights an approach that combines 
emotional aspects and decisionmaking in the context of crisis 
evacuations. Adopting an emotional intelligence approach could 
change the way emergency situations are managed, putting the 
safety of individuals at the heart of the proposed approach. This 
research can encourage the scientific community, practitioners, 
and policy makers to further explore the application of emotional 
intelligence in the fields of security and evacuations, thus paving 
the way for significant progress in crisis management. 
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