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Introduction
The electromagnetoelastic actuator for nanodisplacement on the 
piezoelectric, piezomagnetic, electrostriction, magnetostriction 
effects is used in the electromechanics systems for the nanobiomedical 
research in the scanning sensing microscopy [1-8]. 

When designing the nanotechnology equipment, the static and 
dynamic characteristics, the mathematical model, the structural 
diagram and transfer functions of the electromagnetoelastic actuator 
are calculated [9-18].

The mathematical model, the structural diagram and transfer 
functions the electromagnetoelastic actuator based on the 
electromagnetoelasticity make it possible to describe the dynamic 
and static properties of the electromagnetoelastic actuator for the 
nanomedicine research with regard to its physical parameters and 
external load [19-22].

Structural Diagram of Electromagnetoelastic Actuator
Let us consider the structural diagram of the electromagnetoelastic 
actuator for the nanobiomedical research in contrast Cady and 
Mason electrical equivalent circuits. The method of mathematical 
physics is applied for the solution the wave equation and for the 
determination the structural diagram of the electromagnetoelastic 
actuator for nanomedicine research [1-18]. 

For the electromagnetoelastic actuator let us consider the generalized 
equation of the electromagnetoelasticity in the form [8,11,18]

                                                                                              (1)

where                    is the relative displacement along axis i of the 
cross section of the piezoactuator or the piezoplate, Ψm= {Em, Dm, 
Hm  is the control parameter, Em is the electric field strength for 

the voltage control along axis m, Dm is the electric induction for 
the current control along axis m, Hm for magnetic field strength 
control along axis m, Tj is the mechanical stress along axis j, vmi is 
the electromagnetoelastic coefficient or the electromagnetoelastic 
module, for example, the piezoelectric module, sij

Ψ is the elastic 
compliance for the control parameter Ψ=const, and the indexes i= 
1, 2, … , 6;  j = 1, 2, … , 6; m = 1, 2, 3.

The main size of the electromagnetoelastic actuator is determined us 
the working length l={δ,h,b for the actuator or for the piezoactuator 
in following form the thickness, the height and the width for the 
longitudinal, transverse and shift piezoeffect.

The mathematical model and the generalized structural diagram 
of the electromagnetoelastic actuator on Figure 1 are determined, 
using method of the mathematical physics for the solution of the 
wave equation, the boundary conditions and the equation of the 
electromagnetoelasticity, in the following form [7,14]

                                                                                                (2)
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vmi is the electromagnetoelastic coefficient, Ψm ={Em, Dm, Hm is the 
control parameter, Em is the electric field strength for the voltage 
control along axis m, Dm is the electric induction for the current 
control along axis m, Hm for magnetic field strength control along 
axis m, sij

Ψ is the elastic compliance, dmi is the piezomodule at the 
voltage-controlled piezoactuator or the magnetostrictive coefficient 
for the magnetostrictive actuator, gmi is the piezomodule at the 
current-controlled pΨiezoactuator, S0 is the cross section area, M1, 
M2 are the mass on the faces of the actuator, Ξ1 (p), Ξ2 (p) and F1(p), 
F2(p) are the Laplace transforms of the appropriate displacements 
and the forces on the faces 1, 2.

Figure 1: Generalized structural diagram of electromagnetoelastic 
actuator for the nanobiomedical research

The structural diagrams of the voltage-controlled or current-
controlled piezoactuator are determined from the mathematical 
model of the electromagnetoelastic actuator.

Matrix Transfer Function of Electromagnetoelastic Actuator
The matrix transfer function of the actuator is deduced from its 
mathematical model (4) in the following form [8,14,18]

                                                                                                (3)

where (Ξ1 (p)) is the column-matrix of the Laplace transforms of the 
displacements for the faces of the electromagnetoelastic actuator,   
(W (p)) is the matrix transfer function, (P (p)) is the column-matrix 
of the Laplace transforms of the control parameter and the forces.

Conclusion
The characteristics, the mathematical model, the structural diagram 
and transfer functions of the electromagnetoelastic actuator for the 
nanobiomedical research are obtained. 

The generalized structural diagram, the transfer functions of the 
electromagnetoelastic actuator make it possible to describe the 

dynamic and static properties of the actuator with regard to its 
physical parameters, external load.
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