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Abstract 
As a key mediator of chronic pain, neurotrophin nerve growth factor (NGF) binds to two neurotrophin receptors: p75 
neurotrophin receptor (p75NTR) and tyrosine kinase receptor A (TrkA). The formation of the p75NTR-NGF-TrkA complex 
is implicated in the potentiation of chronic pain signals, making it an attractive target for therapeutic explorations. NGF 
analogues and monoclonal antibodies (mAbs) targeting NGF represent two distinct approaches in modulating the intricate 
signaling pathways involved in pain transduction mediated by the p75NTR-NGF-TrkA complex. While NGF analogues 
offer the advantage of tailored design to fine-tune neurotrophic responses, monoclonal antibodies provide a more systemic 
and comprehensive blockade of NGF, inhibiting its interactions with both p75NTR and TrkA receptors. However, the use of 
mAbs may pose challenges related to potential side effects and interference with the physiological functions of NGF. As a 
result, balancing the benefits and drawbacks of the two approaches is critical for advancing therapeutic strategies towards 
the alleviation of p75NTR-NGF-TrkA-mediated pain. In this study, therefore, a novel structural and biophysical approach 
was employed for the design of NGF analogues to suppress p75NTR-NGF-TrkA-related chronic pain signaling. Employing 
high-throughput structural modeling and biophysics-based intermolecular binding affinity calculations, this article for the 
first time puts forward a set of NGF analogues, including in particular NGF analogues with four site-specific mutations, for 
whose dimerizations the Kd at 37 ◦C were reduced by three orders of magnitude (from 10-9 M to 10-6 M) compared to the 
Kd at 37 ◦C for the dimerization of native NGFs. Overall, the integration of structural and biophysical perspectives enhances 
our understanding of the rational design of NGF analogues as promising candidates for the development of NGF-targeted 
analgesic therapies, which balances the benefits and drawbacks of anti-NGF antibodies and NGF analogues for advancing 
therapeutic strategies towards the alleviation of p75NTR-NGF-TrkA-mediated pain.
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1. Introduction
Chronic pain imposes a substantial burden on global healthcare 
systems, affecting millions of individuals and severely 
compromising their quality of life [1–4]. Unraveling the intricate 
mechanisms underlying pain signal transduction is essential 
for developing targeted and effective therapeutic interventions 
[5–7]. The p75 neurotrophin receptor (p75NTR)-nerve growth 
factor (NGF)-tyrosine kinase receptor A (TrkA) complex has 
emerged as a critical nexus in the modulation of nociceptive 
signaling, presenting a promising target for innovative analgesic 
strategies [8–11].

Historically, nerve growth factor (NGF) was first discovered 
approximately 60 years ago by Rita Levi-Montalcini as a 

protein that induces the growth of nerves [12–15]. It is now 
known that NGF is also associated with Alzheimer’s disease 
and intractable pain, and hence, it, along with its high-affinity 
receptor, tropomyosin receptor kinase (Trk) A, is considered to 
be 1 of the new targets for therapies being developed to treat 
these diseases [16–22]. Anti-NGF antibody and TrkA inhibitors 
are known drugs that suppress NGF/TrkA signalling, and many 
drugs of these classes have been developed thus far. Interestingly, 
local anaesthetics also possess TrkA inhibitory effects. This 
manuscript describes the development of an analgesic that 
suppresses NGF/TrkA signalling, which is anticipated to be one 
of the new methods to treat intractable pain [23–28].

While the implication of NGF and its receptors, TrkA and 
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p75NTR (referred to as the NGF system) in CNS autoimmune 
neuroinflammation is not fully elucidated, the necessity of 
designing nerve growth factor (NGF) analogues to suppress 
pain signal transduction mediated by the p75NTR-NGF-TrkA 
complex arises from the intricate and multifaceted nature of the 
neurotrophic signalling pathways involved in CNS autoimmune 
neuroinflammation [29–34]. Since native NGF plays a pivotal 
role in both promoting neuronal survival and contributing to 
pain sensitization through its interactions with the p75NTR and 
TrkA receptors, the delicate balance between these contrasting 
effects underscores the need for targeted interventions that 
selectively modulate the signalling cascade to alleviate pain 

without compromising essential neurotrophic functions [35–38]. 
Therefore, in this article, designing NGF analogues provides a 
strategic approach to fine-tune the molecular interactions within 
the p75NTR-NGF-TrkA complex, aiming to attenuate the 
nociceptive signals while preserving the beneficial aspects of 
NGF-mediated neurotrophic support [39–46].

2. Materials and Methods
According to a structure search of the Protein Data Bank 
(PDB) [47], as of March 28, 2024, there are a total of sixteen 
experimentally determined NGF-related structures deposited 
into the PDB, as listed in Table 1.
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receptor, tropomyosin receptor kinase (Trk) A, is considered to be 1 of the new targets for therapies
being developed to treat these diseases [16–22]. Anti-NGF antibody and TrkA inhibitors are known
drugs that suppress NGF/TrkA signaling, and many drugs of these classes have been developed thus
far. Interestingly, local anesthetics also possess TrkA inhibitory effects. This manuscript describes the
development of an analgesic that suppresses NGF/TrkA signaling, which is anticipated to be one of
the new methods to treat intractable pain [23–28].

While the implication of NGF and its receptors, TrkA and p75NTR (referred to as the NGF system)
in CNS autoimmune neuroinflammation is not fully elucidated, the necessity of designing nerve growth
factor (NGF) analogues to suppress pain signal transduction mediated by the p75NTR-NGF-TrkA
complex arises from the intricate and multifaceted nature of the neurotrophic signaling pathways
involved in CNS autoimmune neuroinflammation [29–34]. Since native NGF plays a pivotal role in
both promoting neuronal survival and contributing to pain sensitization through its interactions with
the p75NTR and TrkA receptors, the delicate balance between these contrasting effects underscores
the need for targeted interventions that selectively modulate the signaling cascade to alleviate pain
without compromising essential neurotrophic functions [35–38]. Therefore, in this article, designing
NGF analogues provides a strategic approach to fine-tune the molecular interactions within the
p75NTR-NGF-TrkA complex, aiming to attenuate the nociceptive signals while preserving the
beneficial aspects of NGF-mediated neurotrophic support [39–46].

2. Materials and Methods

According to a structure search of the Protein Data Bank (PDB) [47], as of March 28, 2024, there
are a total of sixteen experimentally determined NGF-related structures deposited into the PDB, as
listed in Table 1.

PDB ID Structure Title (release date from newest to oldest)
8DWN Crystal structure of bis-phosphorylated insulin receptor kinase domain
6PL1 TRK-A IN COMPLEX WITH LIGAND 1B
6NPT TRK-A IN COMPLEX WITH LIGAND 1
6NSP TRK-A IN COMPLEX WITH LIGAND 9
6NSS TRK-A IN COMPLEX WITH LIGAND 6
5WR7 Crystal structure of Trk-A complexed with a selective inhibitor CH7057288
4XPJ Crystal structure of Nerve growth factor in complex with lysophosphatidylinositol
4NWT Crystal structure of the anti-human NGF Fab APE1531
4NWU Crystal structure of APE1551, an anti-human NGF Fab with a nine amino acid insertion in CDR H1
2LPN Solution Structure of N-Terminal domain of human Conserved Dopamine Neurotrophic Factor (CDNF)
4EFV Crystal structure of OIF from Llama seminal plasma
2IFG Structure of the extracellular segment of human TRKA in complex with nerve growth factor
1SG1 Crystal Structure of the Receptor-Ligand Complex between Nerve Growth Factor and the Common

Neurotrophin Receptor p75
1HE7 Human Nerve growth factor receptor TrkA
1WWW NGF IN COMPLEX WITH DOMAIN 5 OF THE TRKA RECEPTOR
1BTG CRYSTAL STRUCTURE OF BETA NERVE GROWTH FACTOR AT 2.5 A RESOLUTION IN C2 SPACE

GROUP WITH ZN IONS BOUND
Table 1. Experimentally determined NGF-related structures (released newest from
oldest) in the Protein Data Bank (PDB [47]) as of March 28, 2024, QUERY code:
Additional Structure Keywords HAS EXACT PHRASE "NERVE, GROWTH FACTOR".

Among the sixteen, PDB ID 2IFG [48] is the only experimental structure of the extracellular
segment of human TRKA in complex with nerve growth factor, as shown by Figure 1. Therefore, in
this article, PDB ID 2IFG [48] is chosen here as a structural template for the design of NGF analogues
to suppress pain signal transduction mediated by the p75NTR-NGF-TrkA complex.

Table 1: Experimentally Determined NGF-Related Structures (released newest from oldest) in the Protein Data Bank (PDB 
[47]) as of March 28, 2024, QUERY code: Additional Structure Keywords HAS EXACT PHRASE "NERVE, GROWTH 
FACTOR".

Among the sixteen, PDB ID 2IFG [48] is the only experimental 
structure of the extracellular segment of human TRKA in 
complex with nerve growth factor, as shown by Figure 1. 
Therefore, in this article, PDB ID 2IFG is chosen here as a 

structural template for the design of NGF analogues to suppress 
pain signal transduction mediated by the p75NTR-NGF-TrkA 
complex [48].
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Figure 1. A overview of the experimental structure of the extracellular segment of human TRKA in
complex with nerve growth factor (PDB ID 2IFG [48]). This figure is prepared by PyMol [49].

Specifically, of the structure of the extracellular segment of human TRKA in complex with nerve
growth factor with PDB ID 2IFG [48], a set of relevant amino acid sequences are listed in italics in fasta
format as below,

>TRKAchainA
CPDACCPHGSSGLRCTRDGALDSLHHLPGAENLTELYIENQQHLQHLELRDLRGLGELRNLTIV

KSGLRFVAPDAFHFTPRLSRLNLSFNALESLSWKTVQGLSLQELVLSGNPLHCSCALRWLQRWEEEGL
GGVPEQKLQCHGQGPLAHMPNASCGVPTLKVQVPNASVDVGDDVLLRCQVEGRGLEQAGWILTE
LEQSATVMKSGGLPSLGLTLANVTSDLNRKNVTCWAENDVGRAEVSVQVNVSFPASVQLHTAVEM
HHWCIPFSVDGQPAPSLRWLFNGSVLNETSFIFTEFLEPAANETVRHGCLRLNQPTHVNNGNYTLLA
ANPFGQASASIMAAFMDNP

>TRKAchainB
CPDACCPHGSSGLRCTRDGALDSLHHLPGAENLTELYIENQQHLQHLELRDLRGLGELRNLTIV

KSGLRFVAPDAFHFTPRLSRLNLSFNALESLSWKTVQGLSLQELVLSGNPLHCSCALRWLQRWEEEGL
GGVPEQKLQCHGQGPLAHMPNASCGVPTLKVQVPNASVDVGDDVLLRCQVEGRGLEQAGWILTE
LEQSATVMKSGGLPSLGLTLANVTSDLNRKNVTCWAENDVGRAEVSVQVNVSFPASVQLHTAVEM
HHWCIPFSVDGQPAPSLRWLFNGSVLNETSFIFTEFLEPAANETVRHGCLRLNQPTHVNNGNYTLLA
ANPFGQASASIMAAFMDNP

>NGFchainE
SSSHPIFHRGEFSVCDSVSVWVGDKTTATDIKGKEVMVLGEVNINNSVFKQYFFETKCRDPNPV

DSGCRGIDSKHWNSYCTTTHTFVKALTMDGKQAAWRFIRIDTACVCVLSRKAVRRA
>NGFchainF
SSSHPIFHRGEFSVCDSVSVWVGDKTTATDIKGKEVMVLGEVNINNSVFKQYFFETKCRDPNPV

DSGCRGIDSKHWNSYCTTTHTFVKALTMDGKQAAWRFIRIDTACVCVLSRKAVRRA
To further elucidate the mechanism of the design of NGF analogues to suppress pain signal

transduction mediated by the p75NTR-NGF-TrkA complex here, Figure 2 shows a closer look of the
homodimer of two native NGF molecules, as experimentally determined by X-ray diffraction in 2007

Figure 1: A Overview of the Experimental Structure of the Extracellular Segment of Human TRKA in Complex with Nerve 
Growth Factor (PDB ID 2IFG [48]). This Figure is Prepared by PyMol [49].

Specifically, of the structure of the extracellular segment of hu-
man TRKA in complex with nerve growth factor with PDB ID 
2IFG, a set of relevant amino acid sequences are listed in italics 
in fasta format as below [48],

>TRKAchainA
CPDACCPHGSSGLRCTRDGALDSLHHLPGAENLTELYIEN-
QQHLQHLELRDLRGLGELRNLTIV KSGLRFVAPDAFHFT-
PRLSRLNLSFNALESLSWKTVQGLSLQELVLSGNPLHCS-
CALRWLQRWEEEGL
GGVPEQKLQCHGQGPLAHMPNASCGVPTLKVQVPNAS-
VDVGDDVLLRCQVEGRGLEQAGWILTE
LEQSATVMKSGGLPSLGLTLANVTSDLNRKNVTCWAEND-
VGRAEVSVQVNVSFPASVQLHTAVEM
H H W C I P F S V D G Q PA P S L R W L F N G S V L N E T S -
FIFTEFLEPAANETVRHGCLRLNQPTHVNNGNYTLLA
ANPFGQASASIMAAFMDNP
>TRKAchainB
CPDACCPHGSSGLRCTRDGALDSLHHLPGAENLTELYIEN-
QQHLQHLELRDLRGLGELRNLTIV KSGLRFVAPDAFHFT-
PRLSRLNLSFNALESLSWKTVQGLSLQELVLSGNPLHCS-
CALRWLQRWEEEGL
GGVPEQKLQCHGQGPLAHMPNASCGVPTLKVQVPNAS-
VDVGDDVLLRCQVEGRGLEQAGWILTE
LEQSATVMKSGGLPSLGLTLANVTSDLNRKNVTCWAEND-
VGRAEVSVQVNVSFPASVQLHTAVEM

H H W C I P F S V D G Q PA P S L R W L F N G S V L N E T S -
FIFTEFLEPAANETVRHGCLRLNQPTHVNNGNYTLLA ANPF-
GQASASIMAAFMDNP
>NGFchainE
SSSHPIFHRGEFSVCDSVSVWVGDKTTATDIKGKEVMVL-
GEVNINNSVFKQYFFETKCRDPNPV DSGCRGIDSKHWN-
SYCTTTHTFVKALTMDGKQAAWRFIRIDTACVCVLSRKAVR-
RA >NGFchainF
SSSHPIFHRGEFSVCDSVSVWVGDKTTATDIKGKEVMVL-
GEVNINNSVFKQYFFETKCRDPNPV DSGCRGIDSKHWN-
SYCTTTHTFVKALTMDGKQAAWRFIRIDTACVCVLSRKAVR-
RA

To further elucidate the mechanism of the design of NGF an-
alogues to suppress pain signal transduction mediated by the 
p75NTR-NGF-TrkA complex here, Figure 2 shows a closer look 
of the homodimer of two native NGF molecules, as experimen-
tally determined by X-ray diffraction in 2007 (PDB ID 2IFG), 
as the core of the idea is that NGF analogues are to be still able 
to bind two neurotrophin receptors: p75 neurotrophin receptor 
(p75NTR) and tyrosine kinase receptor A (TrkA), yet, their abil-
ity to form a homodimer (Figure 2) is inhibited via disruptions 
of a set of key inter-residue interactions at the binding interface 
of native NGF homodimers (Figure 1) [48,50].
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(PDB ID 2IFG [48]), as the core of the idea is that NGF analogues are to be still able to bind two
neurotrophin receptors: p75 neurotrophin receptor (p75NTR) and tyrosine kinase receptor A (TrkA),
yet, their ability to form a homodimer (Figure 2) is inhibited via disruptions of a set of key inter-residue
interactions [50] at the binding interface of native NGF homodimers (Figure 1).

Figure 2. A closer look of the homodimer of two native NGF molecules as determined by X-ray
diffraction (PDB ID 2IFG [48]). This figure is prepared by PyMol [49].

2.1. A comprehensive structural and biophysical analysis of the p75NTR-NGF-TrkA complex

As described previously in [50–52], a comprehensive structural and biophysical analysis was
conducted for the structure of the extracellular segment of human TRKA in complex with nerve growth
factor with PDB ID 2IFG [48]. Specifically, the salt bridge analysis was conducted with an in-house
python script only for titrateable residues (Asp, Glu, Lys, Arg and His), 4.0 Å was used as the cutoff
distance for the two oppositely charged groups [50]. The hydrogen bond analysis was also conducted
for only side chain nuclei with an in-house python script, and employed two geometric criteria: (a)
a cutoff value of the angle formed by acceptor (A), donor (D) and hydrogen (H) (∠ADH) of 30°; (b)
a cutoff value of donor-acceptor distance at 3.0 Å. That is, a hydrogen bond is only considered to be
formed if ∠ADH is no larger than 30° and the donor-acceptor distance is not larger than 3.0 Å [50].

2.2. The design of NGF analogues to suppress pain signal transduction mediated by the p75NTR-NGF-TrkA
complex

In combination with the comprehensive structural and biophysical analysis [50] as described
above, the key amino acid residues at the p75NTR-NGF-TrkA complex binding interface (PDB ID:
2IFG) were examined carefully [? ] in PyMol [49], and the inter-residue distances were calculated by
PyMol [49] to identify potential neighbouring residue pair(s) to modulate the structural stability of the
p75NTR-NGF-TrkA complex structure, leading to the design of a set of NGF analogues with reduced
affinity such that ability of NGF monomers to form a homodimer (Figure 2) is inhibited via disruptions
of a set of key inter-residue interactions [50] at the binding interface of native NGF homodimers
(Figure 1). Specifically, after homology structural modeling with Modeller [53], the binding affinity
between rt-PA analogue and PAI-1 was calculated using Prodigy [54,55].

Figure 2: A Closer Look of the Homodimer of Two Native NGF Molecules as Determined by X-ray Diffraction (PDB ID 2IFG 
[48]). This Figure Is Prepared by PyMol [49].

2.1. A Comprehensive Structural and Biophysical Analysis 
of the p75NTR-NGF-TrkA Complex
As described previously in, a comprehensive structural and bio-
physical analysis was conducted for the structure of the extra-
cellular segment of human TRKA in complex with nerve growth 
factor with PDB ID 2IFG [48,50–52]. Specifically, the salt 
bridge analysis was conducted with an in-house python script 
only for titrateable residues (Asp, Glu, Lys, Arg and His), 4.0 Å 
was used as the cutoff distance for the two oppositely charged 
groups [50]. The hydrogen bond analysis was also conducted 
for only side chain nuclei with an in-house python script, and 
employed two geometric criteria: (a) a cutoff value of the angle 
formed by acceptor (A), donor (D) and hydrogen (H) (∠ADH) 
of 30°; (b) a cutoff value of donor-acceptor distance at 3.0 Å. 
That is, a hydrogen bond is only considered to be formed if 
∠ADH is no larger than 30° and the donor-acceptor distance is 
not larger than 3.0 Å [50].

2.2. The Design of NGF Analogues to Suppress Pain Signal 
Transduction Mediated by the p75NTR-NGF-TrkA Com-
plex
In combination with the comprehensive structural and biophys-
ical analysis  as described above, the key amino acid residues 
at the p75NTR-NGF-TrkA complex binding interface (PDB ID: 
2IFG) were examined carefully [? ] in PyMol, and the inter-res-
idue distances were calculated by PyMol to identify potential 
neighbouring residue pair(s) to modulate the structural stability 
of the p75NTR-NGF-TrkA complex structure, leading to the de-
sign of a set of NGF analogues with reduced affinity such that 

ability of NGF monomers to form a homodimer (Figure 2) is 
inhibited via disruptions of a set of key inter-residue interactions 
at the binding interface of native NGF homodimers (Figure 1). 
Specifically, after homology structural modeling with Modeller, 
the binding affinity between rt-PA analogue and PAI-1 was cal-
culated using Prodigy [49,50,53-55] .

3. Results
As described above, the core of the idea is that NGF analogues 
are to be still able to bind two neurotrophin receptors: p75 neu-
rotrophin receptor (p75NTR) and tyrosine kinase receptor A 
(TrkA), yet, their ability to form a homodimer (Figure 2) is in-
hibited via disruptions of a set of key inter-residue interactions 
at the binding interface of native NGF homodimers (Figure 1) 
[50]. Essentially, the design of NGF analogues here is the con-
struction of an n-dimensional NGF dimer-based mini GIBAC 
[52] towards the suppression of chronic NGF-related pain sig-
naling, where n represents the number of site-specific mutations 
introduced to the amino acid sequence of NGF, as listed below: 
>NGFchainE
SSSHPIFHRGEFSVCDSVSVWVGDKTTATDIKGKEVMVL-
GEVNINNSVFKQYFFETKCRDPNPV DSGCRGIDSKHWN-
SYCTTTHTFVKALTMDGKQAAWRFIRIDTACVCVLSRKAVR-
RA >NGFchainF
SSSHPIFHRGEFSVCDSVSVWVGDKTTATDIKGKEVMVL-
GEVNINNSVFKQYFFETKCRDPNPV
DSGCRGIDSKHWNSYCTTTHTFVKALTMDGKQAAWR-
FIRIDTACVCVLSRKAVRRA
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3. Results

As described above, the core of the idea is that NGF analogues are to be still able to bind two
neurotrophin receptors: p75 neurotrophin receptor (p75NTR) and tyrosine kinase receptor A (TrkA),
yet, their ability to form a homodimer (Figure 2) is inhibited via disruptions of a set of key inter-residue
interactions [50] at the binding interface of native NGF homodimers (Figure 1). Essentially, the design
of NGF analogues here is the construction of an n-dimensional NGF dimer-based mini GIBAC [52]
towards the suppression of chronic NGF-related pain signaling, where n represents the number of
site-specific mutations introduced to the amino acid sequence of NGF, as listed below:

>NGFchainE
SSSHPIFHRGEFSVCDSVSVWVGDKTTATDIKGKEVMVLGEVNINNSVFKQYFFETKCRDPNPV

DSGCRGIDSKHWNSYCTTTHTFVKALTMDGKQAAWRFIRIDTACVCVLSRKAVRRA
>NGFchainF
SSSHPIFHRGEFSVCDSVSVWVGDKTTATDIKGKEVMVLGEVNINNSVFKQYFFETKCRDPNPV

DSGCRGIDSKHWNSYCTTTHTFVKALTMDGKQAAWRFIRIDTACVCVLSRKAVRRA

Mutation Energy mean Energy std Kd mean Kd std
S4F -10.270 0.671 8.953000000000001e-08 6.715793400634061e-08
S4A -10.310 0.342 6.23e-08 3.199703111227665e-08
S4P -10.320 0.389 6.8e-08 6.065311203887233e-08
S4V -10.370 0.335 5.59e-08 2.6135990511170603e-08
S4I -10.370 0.377 6.05e-08 4.102499238269277e-08
S4M -10.450 0.478 5.9399999999999996e-08 4.9218289283558e-08
S4L -10.560 0.578 5.859e-08 7.30497973987608e-08
S4Y -10.650 0.301 3.52e-08 1.70926884953772e-08
S4G -10.660 0.258 3.24e-08 1.3162066707018317e-08
S4C -10.850 0.461 2.911e-08 1.89068479657504e-08
A98S -10.860 0.595 3.832e-08 5.483358095182185e-08
S4K -11.020 0.328 1.958e-08 1.4229111005259603e-08
A98Q -11.070 0.454 2.023e-08 1.62038297942184e-08
A98T -11.150 0.364 1.6529999999999996e-08 1.0195494102788742e-08
S4E -11.180 0.464 1.726e-08 1.4366293885341482e-08
S104I -11.180 0.447 1.645e-08 1.0609736094738644e-08
S4D -11.200 0.410 1.5650000000000004e-08 1.0420772524146184e-08
S104L -11.260 0.250 1.24e-08 3.7812696280482305e-09
N36A -11.260 0.242 1.24e-08 4.991192242340502e-09
S4W -11.280 0.440 1.394e-08 8.486247698482527e-09
N36P -11.310 0.262 1.1369999999999999e-08 4.242652472215937e-09
I35S -11.370 0.618 1.4880000000000002e-08 1.4351431984300383e-08
S104P -11.420 0.392 1.025e-08 5.6498230060772695e-09
S104F -11.420 0.421 1.1350000000000002e-08 8.690368231553827e-09
S104G -11.430 0.473 1.126e-08 7.755282070950095e-09
S4H -11.440 0.472 1.229e-08 1.466243158551814e-08
S104A -11.460 0.361 9.48e-09 4.582313826005372e-09
N36G -11.470 0.323 9.34e-09 5.523078851510269e-09
I35T -11.500 0.490 1.1449999999999998e-08 1.2621509418449125e-08
S104V -11.540 0.508 1.091e-08 1.3590912404985913e-08
Nddm -12.700 0.000 1.2e-09 0.0

Table 2. Single site-specific mutation-based analysis of the binding affinities between two nerve growth
factor monomers. Prodigy [55] is used to calculate the binding energy and Kd between two nerve
growth factor monomers. In this table, the row for Nddm (yellow background) represents the binding
affinity between two native nerve growth factor monomers.

Table 2: Single Site-Specific Mutation-Based Analysis of the Binding Affinities Between Two Nerve Growth Factor Monomers. 
Prodigy is Used to Calculate The Binding Energy and Kd Between Two Nerve Growth Factor Monomers. In this table, the 
row for Nddm (yellow background) Represents the Binding Affinity Between Two Native Nerve Growth Factor Monomers 
[55].

Given that the length of monomeric NGF is 121, n is not to be 
beyond six to ensure that the NGF analogues is more than 95% 
homologous to its native counterpart, and the accuracy of the 
homology structural modeling using the experimental structure 
of the extracellular segment of human TRKA in complex with 
nerve growth factor (PDB ID 2IFG [48]).

Here, in this article, a total of three occasions were reported, i.e., 
n = 3, specifically,
1. n = 1, i.e., a one-dimensional NGF dimer-based mini GIBAC 
[51,52] for the design of NGF analogues towards the suppression 

of NGF-related chronic pain signalling, as partly listed in Table 
2.
2. n = 2, i.e., a two-dimensional NGF dimer-based mini GIBAC 
[51,52] for the design of NGF analogues towards the suppression 
of NGF-related chronic pain signalling, as partly listed in Table 
3.
3. n = 3, i.e., a three-dimensional NGF dimer-based mini GIBAC 
[51,52] (supplementary file trio.pdf) for the design of NGF 
analogues towards the suppression of NGF-related chronic pain 
signalling, as partly listed in Table 4.



    Volume 2 | Issue 5 | 6 Int Internal Med J, 2024

6 of 14

Given that the length of monomeric NGF is 121, n is not to be beyond six to ensure that the NGF
analogues is more than 95% homologous to its native counterpart, and the accuracy of the homology
structural modeling using the experimental structure of the extracellular segment of human TRKA in
complex with nerve growth factor (PDB ID 2IFG [48]).

Here, in this article, a total of three occasions were reported, i.e., n = 3, specifically,

1. n = 1, i.e., a one-dimensional NGF dimer-based mini GIBAC [51,52] for the design of NGF
analogues towards the suppression of NGF-related chronic pain signaling, as partly listed in
Table 2.

2. n = 2, i.e., a two-dimensional NGF dimer-based mini GIBAC [51,52] for the design of NGF
analogues towards the suppression of NGF-related chronic pain signaling, as partly listed in
Table 3.

3. n = 3, i.e., a three-dimensional NGF dimer-based mini GIBAC [51,52] (supplementary file
trio.pdf) for the design of NGF analogues towards the suppression of NGF-related chronic pain
signaling, as partly listed in Table 4.

Mutation Energy mean Energy std Kd mean Kd std
S4F_A98G -8.600 0.000 9.1e-07 0.0
S4A_L81D -8.600 0.000 8.3e-07 0.0
S4Y_L81A -8.700 0.000 7.8e-07 0.0
S4A_I22G -8.800 0.000 6.3e-07 0.0
S4A_D63G -8.800 0.000 6e-07 0.0
S4G_A98Q -8.900 0.000 5.5e-07 0.0
S4G_A88E -8.900 0.000 5.2e-07 0.0
S4A_V33A -8.900 0.000 5.1e-07 0.0
S4F_D63I -9.000 0.000 4.6e-07 0.0
S4A_A98Q -9.000 0.000 4.4e-07 0.0
S4Y_G1Q -9.100 0.000 3.8e-07 0.0
S4A_I22F -9.100 0.000 3.9e-07 0.0
S4G_E46D -9.100 0.000 4.1e-07 0.0
S4G_K79E -9.100 0.000 3.7e-07 0.0
S4G_H66A -9.100 0.000 3.9e-07 0.0
S4A_K106L -9.100 0.000 3.9e-07 0.0
S4Y_A89L -9.200 0.000 3.4e-07 0.0
S4G_W90P -9.200 0.000 3.4e-07 0.0
S4A_K65R -9.200 0.000 3.2e-07 0.0
S4G_L81E -9.300 0.000 2.6e-07 0.0
S4A_I95A -9.300 0.000 2.9e-07 0.0
S4G_L30M -9.300 0.000 2.9e-07 0.0
S4G_W90G -9.300 0.000 2.7e-07 0.0
S4L_H75I -9.300 0.000 3e-07 0.0
Nddm -12.700 0.000 1.2e-09 0.0

Table 3. Double site-specific mutation-based analysis of the binding affinities between two nerve
growth factor monomers. Prodigy [55] is used to calculate the binding energy and Kd between two
nerve growth factor monomers. In this table, the row for Nddm (yellow background) represents the
binding affinity between two native nerve growth factor monomers.

As quantitatively described in Tables 2, 3 and 4, the binding affinity (Kd) between two native
nerve growth factor monomers at 37 ◦C is 1.2 × 10-9 M, while the binding affinity (Kd) between
two nerve growth factor analogue monomers at 37 ◦C is reduced to as low as 5.8 × 10-6 M (i.e., the
S4A_A98Q_V33A site-specific mutations for native NGF monomers) with a set of triple site-specific
mutations introduced into the amino acid sequence of native NGF sequence, towards the disruption of
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As quantitatively described in Tables 2, 3 and 4, the binding 
affinity (Kd) between two native nerve growth factor monomers 
at 37 ◦C is 1.2 × 10-9 M, while the binding affinity (Kd) between 
two nerve growth factor analogue monomers at 37 ◦C is reduced 
to as low as 5.8 × 10-6 M (i.e., the S4A_A98Q_V33A site-specific 
mutations for native NGF monomers) with a set of triple site-

specific mutations introduced into the amino acid sequence of 
native NGF sequence, towards the disruption of the homodimer 
of NGF and the suppression of NGF-related chronic pain 
signalling mediated by the p75NTR-NGF-TrkA complex (PDB 
ID 2IFG [48]).
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the homodimer of NGF and the suppression of NGF-related chronic pain signaling mediated by the
p75NTR-NGF-TrkA complex (PDB ID 2IFG [48]).

Mutation Energy mean Energy std Kd mean Kd std
S4A_A98Q_V33A -7.400 0.000 5.8e-06 0.0
S4A_A98Q_V33G -7.400 0.000 6.1e-06 0.0
S4G_A98Q_K79P -7.500 0.000 4.7e-06 0.0
S4G_A98Q_W90A -7.500 0.000 4.8e-06 0.0
S4Y_A98Q_R105I -7.500 0.000 5.5e-06 0.0
S4Y_A98Q_K41P -7.600 0.000 4.2e-06 0.0
S4F_A98Q_Y70L -7.700 0.000 3.5e-06 0.0
S4G_A98Q_W90V -7.700 0.000 4e-06 0.0
S4F_A98Q_K41V -7.700 0.000 3.5e-06 0.0
S4G_A98Q_K79M -7.700 0.000 3.5e-06 0.0
S4A_A98Q_L81A -7.700 0.000 3.5e-06 0.0
S4Y_A98Q_K41V -7.800 0.000 3.2e-06 0.0
S4A_A98Q_W12G -7.800 0.000 3.1e-06 0.0
S4F_A98Q_L81K -7.800 0.000 3e-06 0.0
S4G_A98Q_Q42G -7.800 0.000 2.9e-06 0.0
S4L_L81G_I35Q -7.800 0.000 3e-06 0.0
S4G_A98Q_K41P -7.800 0.000 3.4e-06 0.0
S4G_A98Q_D63G -7.900 0.000 2.9e-06 0.0
S4F_A98Q_K79G -7.900 0.000 2.5e-06 0.0
S4G_A98Q_R105G -7.900 0.000 2.5e-06 0.0
Nddm -12.700 0.000 1.2e-09 0.0

Table 4. Triple site-specific mutation-based analysis of the binding affinities between two nerve growth
factor monomers. Prodigy [55] is used to calculate the binding energy and Kd between two nerve
growth factor monomers. In this table, the row for Nddm (yellow background) represents the binding
affinity between two native nerve growth factor monomers.

4. Conclusion and Discussion

Overall, this article for the first time puts forward a set of NGF analogues, including in particular
NGF analogues with four site-specific mutations, for whose dimerizations the Kd at 37 ◦C were reduced
by three orders of magnitude (from 10-9 M to 10-6 M) compared to the Kd at 37 ◦C for the dimerization
of native NGFs. As discussed above, a structural and biophysical perspective (Figure 3) is crucial in
guiding the rational design of these analogues, ensuring a nuanced understanding of the intricate
molecular mechanisms involved in pain transduction and enabling the development of therapeutics
with enhanced specificity and efficacy [56–60]. Hence, the investigation here of the design of NGF
analogues, targeted at suppressing pain signal transduction mediated by the p75 neurotrophin receptor
(p75NTR)-NGF-tyrosine kinase receptor A (TrkA) complex, has yielded valuable insights into the
potential for developing innovative analgesic interventions [61–65].

Of further pharmaceutical interest is the integration of experimental biophysical techniques
complemented our computational predictions, offering a dynamic perspective on the interactions
between the designed analogues and the complex [66–69]. In the realm of drug discovery and design,
the quest for innovative therapeutic interventions to alleviate chronic pain has become a pivotal focus.
Chronic pain, a pervasive and debilitating condition, poses a significant clinical challenge, necessitating
the exploration of novel targets and strategies. Among the various molecular players implicated in
pain signal transduction, the p75 neurotrophin receptor (p75NTR)-nerve growth factor (NGF)-tyrosine
kinase receptor A (TrkA) complex has emerged as a promising nexus for intervention [70–74].

In short, the use of NGF analogues in drug discovery heralds a paradigm shift in the approach to
pain modulation. By harnessing insights from structural and biophysical perspectives, researchers can
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the homodimer of NGF and the suppression of NGF-related chronic pain signaling mediated by the
p75NTR-NGF-TrkA complex (PDB ID 2IFG [48]).

Mutation Energy mean Energy std Kd mean Kd std
S4A_A98Q_V33A -7.400 0.000 5.8e-06 0.0
S4A_A98Q_V33G -7.400 0.000 6.1e-06 0.0
S4G_A98Q_K79P -7.500 0.000 4.7e-06 0.0
S4G_A98Q_W90A -7.500 0.000 4.8e-06 0.0
S4Y_A98Q_R105I -7.500 0.000 5.5e-06 0.0
S4Y_A98Q_K41P -7.600 0.000 4.2e-06 0.0
S4F_A98Q_Y70L -7.700 0.000 3.5e-06 0.0
S4G_A98Q_W90V -7.700 0.000 4e-06 0.0
S4F_A98Q_K41V -7.700 0.000 3.5e-06 0.0
S4G_A98Q_K79M -7.700 0.000 3.5e-06 0.0
S4A_A98Q_L81A -7.700 0.000 3.5e-06 0.0
S4Y_A98Q_K41V -7.800 0.000 3.2e-06 0.0
S4A_A98Q_W12G -7.800 0.000 3.1e-06 0.0
S4F_A98Q_L81K -7.800 0.000 3e-06 0.0
S4G_A98Q_Q42G -7.800 0.000 2.9e-06 0.0
S4L_L81G_I35Q -7.800 0.000 3e-06 0.0
S4G_A98Q_K41P -7.800 0.000 3.4e-06 0.0
S4G_A98Q_D63G -7.900 0.000 2.9e-06 0.0
S4F_A98Q_K79G -7.900 0.000 2.5e-06 0.0
S4G_A98Q_R105G -7.900 0.000 2.5e-06 0.0
Nddm -12.700 0.000 1.2e-09 0.0

Table 4. Triple site-specific mutation-based analysis of the binding affinities between two nerve growth
factor monomers. Prodigy [55] is used to calculate the binding energy and Kd between two nerve
growth factor monomers. In this table, the row for Nddm (yellow background) represents the binding
affinity between two native nerve growth factor monomers.

4. Conclusion and Discussion

Overall, this article for the first time puts forward a set of NGF analogues, including in particular
NGF analogues with four site-specific mutations, for whose dimerizations the Kd at 37 ◦C were reduced
by three orders of magnitude (from 10-9 M to 10-6 M) compared to the Kd at 37 ◦C for the dimerization
of native NGFs. As discussed above, a structural and biophysical perspective (Figure 3) is crucial in
guiding the rational design of these analogues, ensuring a nuanced understanding of the intricate
molecular mechanisms involved in pain transduction and enabling the development of therapeutics
with enhanced specificity and efficacy [56–60]. Hence, the investigation here of the design of NGF
analogues, targeted at suppressing pain signal transduction mediated by the p75 neurotrophin receptor
(p75NTR)-NGF-tyrosine kinase receptor A (TrkA) complex, has yielded valuable insights into the
potential for developing innovative analgesic interventions [61–65].

Of further pharmaceutical interest is the integration of experimental biophysical techniques
complemented our computational predictions, offering a dynamic perspective on the interactions
between the designed analogues and the complex [66–69]. In the realm of drug discovery and design,
the quest for innovative therapeutic interventions to alleviate chronic pain has become a pivotal focus.
Chronic pain, a pervasive and debilitating condition, poses a significant clinical challenge, necessitating
the exploration of novel targets and strategies. Among the various molecular players implicated in
pain signal transduction, the p75 neurotrophin receptor (p75NTR)-nerve growth factor (NGF)-tyrosine
kinase receptor A (TrkA) complex has emerged as a promising nexus for intervention [70–74].

In short, the use of NGF analogues in drug discovery heralds a paradigm shift in the approach to
pain modulation. By harnessing insights from structural and biophysical perspectives, researchers can
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4. Conclusion and Discussion
Overall, this article for the first time puts forward a set of NGF 
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◦C were reduced by three orders of magnitude (from 10-9 M 
to 10-6 M) compared to the Kd at 37 ◦C for the dimerization of 
native NGFs. As discussed above, a structural and biophysical 
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intricate molecular mechanisms involved in pain transduction 
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of the design of NGF analogues, targeted at suppressing pain 
signal transduction mediated by the p75 neurotrophin receptor 
(p75NTR)-NGF-tyrosine kinase receptor A (TrkA) complex, 
has yielded valuable insights into the potential for developing 
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the p75NTR-NGF-TrkA complex. This precision allows for the 
design of therapeutics with the potential to selectively dampen 
pain signalling pathways while minimizing off-target effects 
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Figure 3. Flowchart of the design of NGF analogues to disrupt the NGF homodimer and suppress pain
signal transduction mediated by the p75NTR-NGF-TrkA complex.

tailor NGF analogues to disrupt specific interactions within the p75NTR-NGF-TrkA complex. This
precision allows for the design of therapeutics with the potential to selectively dampen pain signaling
pathways while minimizing off-target effects [75–82].

In conclusion, the structural and biophysical perspective on designing NGF analogues to suppress
pain signal transduction provides a robust foundation for the development of targeted analgesic
therapies. By elucidating the structural biophysics underlying the p75NTR-NGF-TrkA complex,
this article contributes valuable knowledge to the field, paving the way for the next generation of
therapeutic strategies aimed at alleviating chronic pain [83–91].
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Figure 3: Flowchart of the Design of NGF Analogues to Disrupt the NGF Homodimer and Suppress Pain Signal Transduction 
Mediated by the p75NTR-NGF-TrkA Complex
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In conclusion, the structural and biophysical perspective on 
designing NGF analogues to suppress pain signal transduction 
provides a robust foundation for the development of targeted 
analgesic therapies. By elucidating the structural biophysics 
underlying the p75NTR-NGF-TrkA complex, this article 
contributes valuable knowledge to the field, paving the way for 
the next generation of therapeutic strategies aimed at alleviating 
chronic pain [83–91].
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