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Abstract
The maximum size of data set being presented to the discrete Fourier transform (DFT) is becoming increasingly large to 
reflect the increasingly challenging problems being faced in today’s ‘big data’ era, in areas such as astronomy, medical 
imaging and the real-time spectrum analysis of multi GHz radio frequency signals for cognitive radio networks. Such 
problems are typically addressed by means of the fast Fourier transform (FFT), but there will always be data sets – typically 
real valued in nature – that are too large to be efficiently processed in real time with existing computing technology, so that 
alternative approaches are needed. The approach pursued here for the spectrum analysis problem assumes that a relatively 
small number of outputs are likely to contain detectable levels of signal energy with such signals being detected through 
the use of a sparse version of the FFT (sFFT). A flexible and scalable sFFT design has been sought for implementation 
with silicon-based computing technology that’s able to yield resource efficient low power solutions by maximizing the 
computational density through exploitation of both partitioned memory and the real valued nature of the data. A theoretical 
analysis shows how this may be achieved with a parameterized solution which, with a low-end field programmable gate 
array (FPGA) device, a 2 GHz sampling rate and a 100 MHz clock rate, is able to achieve a latency of < 1 ms for a 2 million 
point real-data sFFT together with low resource utilization and which compares favourably with other recently published 
FFT and sFFT solutions.
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1. Introduction
The discrete Fourier transform (DFT) is an orthogonal transform 
which may be expressed in its normalized form as

					                              (1)
for k = 0,1,…,N-1, where 

					                                (2)

is the Nth complex primitive root of unity [5,12,34]. The 
maximum size of data set being presented to the DFT is becoming 
increasingly large to reflect the increasingly challenging 
problems being faced in today’s ‘big data’ era, in areas such 
as astronomy, medical imaging and the real-time spectrum 
analysis of multi GHz radio frequency signals – such as might be 
encountered, for example, with cognitive radio networks – where 
the power spectral density (PSD) may be obtained directly from 
the DFT coefficients. Such problems are typically addressed 
by means of a fast solution to the DFT, referred to generically 
as the fast Fourier transform (FFT) with much research being 
carried out in recent years into the design of such algorithms 
for the case where the transform is both ‘dense’ and very large, 

with references catering for transforms of up to 1 million (M) 
samples. However, there will always be problems that are too 
large to be efficiently implemented with the existing computing 
technology – in terms of both power consumption and silicon 
resources – so that alternative approaches need still to be found 
for addressing such problems [12,16,26,27]. 
		
When dealing with real-world spectrum estimation problems 
involving such large data sets it is generally the case that a 
relatively small number of the outputs will actually contain 
detectable levels of signal energy, with the remainder comprising 
just noise. As a result, the problem of detecting those frequency-
dependant signals may be tackled through the use of a ‘sparse’ 
version of the FFT, referred to hereafter as the sFFT [15]. A 
generic version of the algorithm, based upon research carried 
out at the Massachusetts Institute of Technology (MIT) in the 
USA over the past decade or so is outlined in Fig. 1, which 
lists the various tasks that need typically to be performed. With 
this algorithm, which may be viewed as a key computational 
tool in the increasingly important field of compressive sensing 
wideband spectrum sensing systems may be defined whereby 
only those signal frequencies of interest are identified and the 
associated spectrum components computed [1,2,13,30]. 
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Figure 1: Outline of Generic Processing Scheme for Sparse FFT algorithm 
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Figure 1: Outline of Generic Processing Scheme for Sparse FFT algorithm

As with most modern digital signal processing (DSP) algorithms, 
the input data set to the sFFT is invariably taken to consist of 
complex valued samples comprising both real (in-phase) and 
imaginary (quadrature) components so that the short dense 
(as opposed to sparse) FFTs needing to be performed by the 
algorithm are also assumed to operate on complex valued data. 
With most real world applications, however, the naturally (NAT) 
ordered input data typically starts out in real valued (fixed-point 
integer) form, as produced by the analog to digital conversion 
(ADC) unit, only to be subsequently processed with a complex 
data solution – regardless of the nature of the input data – given 
that the designs of most commercially available fixed radix FFTs 
are built around the adoption of the complex-data multiplier 
and accumulator (MAC). This is an arithmetic unit ideally 
suited to the implementation of the radix-2 butterfly, which is 
the computational engine used for carrying out the repetitive 
arithmetic operations required by the complex data version of 
the radix-2 FFT.

The complex-data approach might typically entail the initial 
conversion of the real valued data to complex-valued data via 

a wideband digital down-conversion (DDC) process or the 
adoption of a ‘real from-complex’ strategy whereby two real 
data DFTs are computed simultaneously via one full length 
complex-data FFT or where one real-data DFT is computed 
via one half-length complex-data FFT [25]. Each of the real 
from-complex solutions, however, involves a computational 
overhead when compared to the more direct approach of a real-
data FFT in terms of increased memory, increased processing 
delay to allow for the possible acquisition/processing of pairs 
of data sets, and additional packing/unpacking complexity. With 
the DDC approach, the integrity of the information content of 
short duration signals may also be compromised through the 
introduction of the filtering operation.

A number of specialized FFT algorithms do exist for dealing 
with the case of real-valued data which compare favourably, 
in terms of arithmetic complexity and memory requirement, 
with those derived using the real-from-complex strategy, but 
suffer in terms of a loss of regularity (making silicon based 
hardware implementations somewhat less attractive) and 
reduced flexibility in that different algorithms are typically 
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required for the computation of the forward DFT and that of its 
inverse [7,11,31]. A more recent study has produced a solution, 
based upon modification (removing redundant operations) of 
the complex-data version of the familiar radix-2 Cooley-Tukey 
algorithm with NAT-ordered inputs, which possesses a more 
regular structure for an efficient pipelined implementation – 
although the processing requirements do vary from one pipeline 
stage to the next [3,9,14]. This is aimed at streaming (or 
continuous flow) rather than block-based (or batch) operation 
and is achieved at the expense of having the outputs produced 
in a non-standard (that is, not bit-reversed) order so that a more 
complex pipelining scheme is required for retrieving the data in 
the required NAT-ordered form [25]. Such solutions to the real-
data FFT, however, are not scalable (which refers to the ease with 
which the solution may be modified in order to accommodate 
increasing or decreasing transform sizes or parameter changes) 
so that larger transforms require proportionately longer pipelines 
and thus increased latency as well as proportionately more 
resources for their implementation.

The aim of this paper, therefore, is to produce a flexible (achieved 
through parameterization) and scalable design for the real-data 
sFFT that is able, through maximization of the throughput per 
unit area of silicon – referred to as the computational density  
– to yield resource efficient low power solutions that are also 
able to exploit directly the real valued nature of the data, as 
produced by the ADC unit [25]. This is achieved through: 1) 
the extensive use of partitioned memory as this facilitates the 
parallel computation of the sFFT which enables the clock rate, 
and thus the power consumption, to be minimized, and 2) the 
adoption of a resource efficient and scalable solution to the 
discrete Hartley transform (DHT) [6,18] – referred to as the 
regularized fast Hartley transform (RFHT)  – for carrying out, in 
optimal fashion, the short dense real-data FFTs – referred to as 
SDRD-FFTs – used for processing the multiple short randomly-
generated (SRG) data sets, as derived from the input data set via 
the use of a random (RND) number generator and as required by 
most variations of the sFFT algorithm [23-25].

Note that most of the memories used for storage of the various 
data sets produced during the execution of the sFFT algorithm 
are each to be partitioned into eight equal sized memory banks 
made up of fast dual port random access memory (RAM). This 
makes them consistent with the operation of the RFHT whose 
performance has already been proven in silicon with a fixed-
point implementation using field programmable gate array 
(FPGA) technology and with partitioned memory being used to 
facilitate an eight fold speed-up over a purely sequential solution 
to the real data FFT [24,33].

The validity of using the RFHT – which is simply a fast and 
highly-parallel solution to the real valued DHT – for computing 
the real data DFT derives from the fact that the output data sets 
produced by the two orthogonal transforms, the DFT, as given 
by Eqtn. 1, and the DHT, as given in its normalized form by the 
expression  

	             				                              (3)

for k = 0,1,…,N-1, where the transform kernel is given by the 
‘cas’ function

may each be simply obtained, one from the other, so that the 
class of fast algorithms typically used for solving the DHT – 
referred to generically as the fast Hartley transform (FHT) and 
for which the RFHT is a member – may also be effectively used 
to solve the DFT, particularly when the input data set is known 
to be real valued in nature [6]. To see the truth of this, note that 
the equality
					   

(where ‘Re’ stands for real component and ‘Im’ stands 
for imaginary component) relates the kernels of the two 
transformations. As a result

which expresses the DHT outputs in terms of the DFT outputs, 
whilst the equations

express the real and imaginary components of the DFT 
outputs, respectively, in terms of the DHT outputs and where, 
from transform periodicity, index ‘–k’ may be regarded as 
being equivalent to ‘N–k’. This enables the PSD outputs to be 
expressed directly in terms of either DFT or DHT outputs via 
the expression
 		   

as will be required when searching for the dominant SDRD-
FFTs outputs, to be discussed in Section 5.

Thus, following this introductory section, Section 2 provides 
a brief overview of the design process which involves a 
description of the basic tasks needing to be performed together 
with a discussion of some of the key design issues. Section 3 
next discusses the first (or data space) stage of the processing 
chain (see Fig. 1), which is concerned with the derivation of the 
windowed versions of the multiple SRG (referred to as WSRG) 
data sets. This is followed in Section 4 with an account of the 
second stage of the processing chain which converts the problem 
from data-space to transform-space and relates to how the RFHT 
may be efficiently used for carrying out the SDRD-FFTs that 
operate upon the WSRG data sets. Section 5 next discusses the 
third and final (or transform space) stage of the processing chain 
(see Fig. 1), namely the determination of: 1) the locations of 
the dominant frequency bins for each set of SDRD FFT outputs 
– after first converting the data from Hartley space to Fourier 
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space and generating the PSD data, together with 2) those signal 
frequencies appearing as frequencies of interest (FOI) within the 
dominant frequency bins of each set of SDRD FFT outputs and, 
finally, 3) the spectrum components for those identified signal 
frequencies. This is followed in Section 6 with a discussion of 
the possible complexity trade offs – in terms of both ‘space’ 
and ‘time’ complexities – to be considered in producing a 
resource-efficient parallel solution for the proposed real-data 
sFFT algorithm, with a detailed illustration in Section 7 of a 2M 
point multi GHz example. Finally, a summary and conclusions 
is provided in Section 8.

2. Design Issues for Proposed Scheme
The problem to be addressed in this paper involves the design of 
a fixed-point sFFT algorithm for carrying out the DFT of a large 
real valued data set, of length ‘N’, where N is taken (for ease 
of analysis) to be a radix-2 integer.  The generic version of the 
algorithm, as illustrated in Fig.1, involves repeatedly mapping 
N frequencies into a much smaller number of frequency bins, 
say ‘P’, this being achieved by carrying out an SDRD-FFT upon 
multiple WSRG data sets, each of length P, where the window 
(such as the Dolph Chebyshev function is designed to extract 
just a subset of the input data set and possesses the attraction of 
having a narrow support in both data space and transform space 
[17,23-25]. The energy contained within any given frequency 
bin is obtained as the sum of the spectrum components 
corresponding to those N/P frequencies that are mapped into the 
bin. By carefully choosing the P samples to be processed it is 
possible to ensure that with each data set different frequencies 
will map into different bins with a high probability. By repeating 
this binning process, say ‘L’ times, each time using a WSRG 
data set obtained with a different set of permuted input samples, 
the algorithm is able to permute the spectrum components and to 
randomize the mapping of frequencies to bins so that those signal 
components that were initially closely spaced in frequency will, 
with a high probability, become sufficiently isolated within the 
permuted spectrum to allow for their unambiguous recovery.

Note, however, that when dealing with real-world data the recovery 
of the individual frequency dependent signal components will be 
heavily dependent upon the available signal-to-noise ratio (SNR), 
where the lower the SNR the more difficult the problem of signal 
detection becomes. However, the situation is improved somewhat 
in that the detection is to be carried out in the frequency domain, 
rather than the time domain, so that the SNR will benefit from 
an increase provided by the coherent gain of the SDRD-FFT, 
namely 10.log10P dB, so that the longer the SDRD-FFTs can be 
made without adversely affecting the real-time capability of the 
proposed sFFT algorithm the better the performance in terms 
of both detection (due to reduced variance in the spectral data) 
and false alarm rates (arising from reduced collisions where 
multiple frequencies map to the same SDRD-FFT bin). This can 
be achieved by having the SDRD FFTs carried out via the RFHT 
given its already proven implementational attractions in terms of 
both resource efficiency and scalability.   

The speed at which the NAT-ordered input data samples are 
to be produced by the ADC unit is typically equal to, or some 

integer multiple of, the clock rate of the target computing device 
– assumed here to be an FPGA. This sampling rate dictates 
the value of the ‘data set refresh rate’, which is defined as the 
rate at which each new input data set is transferred from the 
ADC to the external data space memory (DSM). The DSM is 
taken to be a partitioned memory – consisting of eight memory 
banks with each memory bank containing N/8 samples – which 
is maintained in double-buffered form in order to facilitate 
continuous real-time operation. The associated time period is 
referred to as the ‘update period’ and consecutive samples are 
taken to be stored cyclically across the eight memory banks with 
memory bank no 8 always being followed by memory bank no 1. 
Clearly, with the multi GHz wide bandwidth signals of interest 
it is evident that each clock cycle will yield multiple samples as 
there is a clear need for the clock rate of the target FPGA device 
(typically measured in MHz rather than GHz) to be kept as low 
as possible in order that the power consumption be minimized. 
This relationship is evident by noting that the dominant dynamic 
power component, PD, may be expressed as

PD = C×V2×f		                                                        (10)

where ‘C’ is the capacitance of the node switching, ‘V’ the supply 
voltage and ‘f’ the clock or switching rate, so that reducing the 
clock rate will lead to a reduction in the power consumption [25].

The objective of the research described in this paper is thus to 
come up with a flexible and scalable design for the real-data 
sFFT that’s able to produce solutions yielding a new sparse 
spectrum with every update period and such that the required 
silicon resources and the clock rate enable the associated costs 
and power consumption to be minimized. As already stated, 
the approach taken involves producing a design based upon the 
maximizing of the computational density through the combined 
use of partitioned memory, which is a key technique for enabling 
the adoption of a low clock rate, and the RFHT, which is a resource 
efficient and scalable means of carrying out the DHT and/or the 
real data DFT. The solutions will be assessed in terms of their 
space and time complexities where, for any given task, the ‘space 
complexity’ is defined as comprising arithmetic and memory 
components where the arithmetic component corresponds to 
the numbers of fast multipliers and adders required to carry out 
that task and the memory component to the required amount of 
fast dual port RAM. The ‘time complexity’ corresponds to the 
number of clock cycles required to carry out the task which, for a 
realizable solution, needs clearly to be sufficiently less than that 
corresponding to the update period.     

3. Data-Space Processing Requirement
The first stage of the processing chain involves the derivation of 
the multiple WSRG data sets, as obtained from the partitioned 
DSM and the window function coefficients. The resulting data 
sets will be subsequently used as inputs to the second stage, 
namely that concerning the computation of the SDRD FFTs 
via the RFHT. As already stated, emphasis is to be placed on 
the exploitation of partitioned memory as this will facilitate the 
parallel computation of the proposed solution and thus enable the 
adoption of a lower clock rate for the target computing device – 
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as required if the power consumption is to be minimized. Thus, 
given the partitioning of each of the various memories into eight 
equal sized banks, each eight sample data set (with at most two 
samples per memory bank) will be referred to hereafter simply 
as a ‘woctad’ (where ‘octad’ means set of eight objects so that 
‘woctad’ is defined as meaning set of eight words where each 
word holds either a single sample of data or a single coefficient 
or a single data address) in order to avoid unnecessary verbiage.

3.1 Random Reordering of Input Data Set and its Spectrum
Suppose now that the NAT-ordered input data set, denoted {x[n]}, 
as stored in the partitioned DSM, is to be reordered or permuted 
according to the RND-generated index mapping [5]

to yield a RND-reordered data set, {y[n]}, where 

for n = 0 up to N-1, with 'σ' being an RND-generated (or pre-
selected) ‘invertible’ integer such that

This requires that the integer σ should be relatively prime [34] to 
N which may be easily satisfied by simply selecting N to be an 
even-valued integer (such as a radix-2 integer assumed here) and   
σ to be an odd-valued integer. 

Then, when viewed in Fourier-space, following the application 
of an N-point dense FFT, it can be shown that the spectra 
obtained from the processing of the NAT-ordered and RND-
reordered data sets, denoted {X[n]} and {Y[n]}, respectively, 
will be related via the inverse index mapping [19]

with 

so that the two spectra may be simply obtained, one from the 
other. 

Thus, for a given index of the RND-reordered spectrum, 
{Y[n]}, the mapping  Φ of Eqtn. 11 tells us to which index of 
the NAT-ordered spectrum, {X[n]}, it corresponds. Conversely, 
for a given index of the NAT-ordered spectrum, {X[n]}, the 
inverse mapping	      of Eqtn. 14 tells us to which index of the 
RND-reordered spectrum, {Y[n]}, it corresponds. As a result, 
if the n’th element of the NAT ordered spectrum is f[n], then 
after permutation by       the n’th element of the resulting RND 
reordered spectrum will be given by f [ 	   ] and after this 
spectrum is itself permuted by      the n’th element of the resulting 
spectrum will be given by  		   	                 
		
			     			            (16)

thereby enabling the original frequency to be recovered. Note, 
from Eqtns. 11 and 14, that the index sequences,  	           and	
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namely W bits, where W is such that W ≥ max (WA,WD).

Thus, ignoring the memory requirement for the external storage 
of the initial NAT-ordered input data set within the partitioned 
and double-buffered DSM, if L SRG data sets are to be produced, 
where distinct values of σ  are required to be generated and used 
according to the constraint of being odd-valued, then the space 
complexity required for carrying out the RND reordering of data 
in a fine-grained parallel (i.e. exploiting partitioned memory), 
coarse-grained sequential (i.e. SRG data sets processed one at 
a time) fashion will involve a zero arithmetic component and a 
memory component consisting of: 1) L×P words for the storage 
of the resulting SRG data sets within the partitioned transform 
space memory (TSM), with each data set being assigned its own 
version of the memory consisting of eight memory banks with 
each bank containing Q samples, together with 2) L×P words 
for the storage of the pre computed sample addresses within the 
partitioned DAM, with each address set being assigned its own 
version of the memory consisting of eight memory banks with 
each bank containing Q addresses. This results in a total memory 
component, denoted MRND, of

words, whilst the associated time complexity, denoted TRND, for 
carrying out these tasks in such a fashion will involve Q clock 
cycles for producing each SRG data set, resulting in a total for 
all L data sets of 

clock cycles, where one woctad of data is written to the TSM 
whilst the next woctad of data and its addresses are being read 
from the DSM and the DAM, respectively. However, before 
being written to the TSM, there is another task that must first be 
performed.
         
3.2  Windowing of Randomly-Generated Data Sets        
The next task in the processing chain is concerned with the 
application of a window function, of length P, to each of the SRG 
data sets with the resulting WSRG data sets being written to the 
partitioned TSM. Each of the SRG data sets uses its own set of 
pre-computed window coefficients which are stored within its 
own partitioned window coefficient memory (WCM). Each set 
of coefficients is obtained from an N-point NAT-ordered version 
of the full window function (which does not need to be computed 
and stored) via the same sets of addresses, obtained from the 
DAM, as used for accessing the data from the partitioned DSM. 
For the task to be efficiently carried out in a parallel fashion a 
set of eight fast multipliers is provided which enables the latest 
SRG data woctad retrieved from the DSM to be multiplied, 
sample-by-sample, by the appropriate elements of the coefficient 
woctad, obtained from the WCM, before being written to the 
TSM – see Fig. 2. This task takes place whilst the next data 
and coefficient woctads are being retrieved from the DSM and 
WCM, respectively. By overlapping the two processing steps in 
this way, the set of eight fast multipliers – which each typically 
operates in a pipelined fashion over several clock cycles – may 
be fed continuously with new data and coefficient woctads every 
clock cycle.    

each address pair within a single word of memory the P address pairs may be pre-computed and stored within 

the partitioned data address memory (DAM), which consists of eight memory banks with each bank containing 

Q = P/8 addresses, in order to simplify the task of producing L SRG data sets, each of length P, from the 

original N-sample input data set and, in so doing, to reduce the associated addressing complexity. Each address 

stored within the DAM consists of a WA-bit word, with  WA ≥ log2(N/8)+3, whilst each (integer-valued) sample 

of data stored within the DSM consists of a WD-bit word. For ease of analysis, however, all data samples and 

addresses will be assumed hereafter to be of common length, namely W bits, where W is such that W ≥ max 

(WA,WD). 

 

  Thus, ignoring the memory requirement for the external storage of the initial NAT-ordered input data 

set within the partitioned and double-buffered DSM, if L SRG data sets are to be produced, where distinct 

values of   are required to be generated and used according to the constraint of being odd-valued, then the 

space-complexity required for carrying out the RND-reordering of data in a fine-grained parallel (i.e. exploiting 

partitioned memory), coarse-grained sequential (i.e. SRG data sets processed one at a time) fashion will 

involve a zero arithmetic component and a memory component consisting of: 1) L×P words for the storage of 

the resulting SRG data sets within the partitioned transform-space memory (TSM), with each data set being 

assigned its own version of the memory consisting of eight memory banks with each bank containing Q 

samples, together with 2) L×P words for the storage of the pre-computed sample addresses within the 

partitioned DAM, with each address set being assigned its own version of the memory consisting of eight 

memory banks with each bank containing Q addresses. This results in a total memory component, denoted 

MRND, of 

  MRND ≈  PL2            (20) 

words, whilst the associated time-complexity, denoted TRND, for carrying out these tasks in such a fashion will 

involve Q clock cycles for producing each SRG data set, resulting in a total for all L data sets of  

  TRND ≈ QL  PL8
1            (21) 

clock cycles, where one woctad of data is written to the TSM whilst the next woctad of data and its addresses 

are being read from the DSM and the DAM, respectively. However, before being written to the TSM, there is 

another task that must first be performed. 

          

3.2  Windowing of Randomly-Generated Data Sets         
  The next task in the processing chain is concerned with the application of a window function, of length 

P, to each of the SRG data sets with the resulting WSRG data sets being written to the partitioned TSM. Each 

of the SRG data sets uses its own set of pre-computed window coefficients which are stored within its own 

each address pair within a single word of memory the P address pairs may be pre-computed and stored within 

the partitioned data address memory (DAM), which consists of eight memory banks with each bank containing 

Q = P/8 addresses, in order to simplify the task of producing L SRG data sets, each of length P, from the 

original N-sample input data set and, in so doing, to reduce the associated addressing complexity. Each address 

stored within the DAM consists of a WA-bit word, with  WA ≥ log2(N/8)+3, whilst each (integer-valued) sample 

of data stored within the DSM consists of a WD-bit word. For ease of analysis, however, all data samples and 

addresses will be assumed hereafter to be of common length, namely W bits, where W is such that W ≥ max 

(WA,WD). 

 

  Thus, ignoring the memory requirement for the external storage of the initial NAT-ordered input data 

set within the partitioned and double-buffered DSM, if L SRG data sets are to be produced, where distinct 

values of   are required to be generated and used according to the constraint of being odd-valued, then the 

space-complexity required for carrying out the RND-reordering of data in a fine-grained parallel (i.e. exploiting 

partitioned memory), coarse-grained sequential (i.e. SRG data sets processed one at a time) fashion will 

involve a zero arithmetic component and a memory component consisting of: 1) L×P words for the storage of 

the resulting SRG data sets within the partitioned transform-space memory (TSM), with each data set being 

assigned its own version of the memory consisting of eight memory banks with each bank containing Q 

samples, together with 2) L×P words for the storage of the pre-computed sample addresses within the 

partitioned DAM, with each address set being assigned its own version of the memory consisting of eight 

memory banks with each bank containing Q addresses. This results in a total memory component, denoted 

MRND, of 

  MRND ≈  PL2            (20) 

words, whilst the associated time-complexity, denoted TRND, for carrying out these tasks in such a fashion will 

involve Q clock cycles for producing each SRG data set, resulting in a total for all L data sets of  

  TRND ≈ QL  PL8
1            (21) 

clock cycles, where one woctad of data is written to the TSM whilst the next woctad of data and its addresses 

are being read from the DSM and the DAM, respectively. However, before being written to the TSM, there is 

another task that must first be performed. 

          

3.2  Windowing of Randomly-Generated Data Sets         
  The next task in the processing chain is concerned with the application of a window function, of length 

P, to each of the SRG data sets with the resulting WSRG data sets being written to the partitioned TSM. Each 

of the SRG data sets uses its own set of pre-computed window coefficients which are stored within its own 

each address pair within a single word of memory the P address pairs may be pre-computed and stored within 

the partitioned data address memory (DAM), which consists of eight memory banks with each bank containing 

Q = P/8 addresses, in order to simplify the task of producing L SRG data sets, each of length P, from the 

original N-sample input data set and, in so doing, to reduce the associated addressing complexity. Each address 

stored within the DAM consists of a WA-bit word, with  WA ≥ log2(N/8)+3, whilst each (integer-valued) sample 

of data stored within the DSM consists of a WD-bit word. For ease of analysis, however, all data samples and 

addresses will be assumed hereafter to be of common length, namely W bits, where W is such that W ≥ max 

(WA,WD). 

 

  Thus, ignoring the memory requirement for the external storage of the initial NAT-ordered input data 

set within the partitioned and double-buffered DSM, if L SRG data sets are to be produced, where distinct 

values of   are required to be generated and used according to the constraint of being odd-valued, then the 

space-complexity required for carrying out the RND-reordering of data in a fine-grained parallel (i.e. exploiting 

partitioned memory), coarse-grained sequential (i.e. SRG data sets processed one at a time) fashion will 

involve a zero arithmetic component and a memory component consisting of: 1) L×P words for the storage of 

the resulting SRG data sets within the partitioned transform-space memory (TSM), with each data set being 

assigned its own version of the memory consisting of eight memory banks with each bank containing Q 

samples, together with 2) L×P words for the storage of the pre-computed sample addresses within the 

partitioned DAM, with each address set being assigned its own version of the memory consisting of eight 

memory banks with each bank containing Q addresses. This results in a total memory component, denoted 

MRND, of 

  MRND ≈  PL2            (20) 

words, whilst the associated time-complexity, denoted TRND, for carrying out these tasks in such a fashion will 

involve Q clock cycles for producing each SRG data set, resulting in a total for all L data sets of  

  TRND ≈ QL  PL8
1            (21) 

clock cycles, where one woctad of data is written to the TSM whilst the next woctad of data and its addresses 

are being read from the DSM and the DAM, respectively. However, before being written to the TSM, there is 

another task that must first be performed. 

          

3.2  Windowing of Randomly-Generated Data Sets         
  The next task in the processing chain is concerned with the application of a window function, of length 

P, to each of the SRG data sets with the resulting WSRG data sets being written to the partitioned TSM. Each 

of the SRG data sets uses its own set of pre-computed window coefficients which are stored within its own 

each address pair within a single word of memory the P address pairs may be pre-computed and stored within 

the partitioned data address memory (DAM), which consists of eight memory banks with each bank containing 

Q = P/8 addresses, in order to simplify the task of producing L SRG data sets, each of length P, from the 

original N-sample input data set and, in so doing, to reduce the associated addressing complexity. Each address 

stored within the DAM consists of a WA-bit word, with  WA ≥ log2(N/8)+3, whilst each (integer-valued) sample 

of data stored within the DSM consists of a WD-bit word. For ease of analysis, however, all data samples and 

addresses will be assumed hereafter to be of common length, namely W bits, where W is such that W ≥ max 

(WA,WD). 

 

  Thus, ignoring the memory requirement for the external storage of the initial NAT-ordered input data 

set within the partitioned and double-buffered DSM, if L SRG data sets are to be produced, where distinct 

values of   are required to be generated and used according to the constraint of being odd-valued, then the 

space-complexity required for carrying out the RND-reordering of data in a fine-grained parallel (i.e. exploiting 

partitioned memory), coarse-grained sequential (i.e. SRG data sets processed one at a time) fashion will 

involve a zero arithmetic component and a memory component consisting of: 1) L×P words for the storage of 

the resulting SRG data sets within the partitioned transform-space memory (TSM), with each data set being 

assigned its own version of the memory consisting of eight memory banks with each bank containing Q 

samples, together with 2) L×P words for the storage of the pre-computed sample addresses within the 

partitioned DAM, with each address set being assigned its own version of the memory consisting of eight 

memory banks with each bank containing Q addresses. This results in a total memory component, denoted 

MRND, of 

  MRND ≈  PL2            (20) 

words, whilst the associated time-complexity, denoted TRND, for carrying out these tasks in such a fashion will 

involve Q clock cycles for producing each SRG data set, resulting in a total for all L data sets of  

  TRND ≈ QL  PL8
1            (21) 

clock cycles, where one woctad of data is written to the TSM whilst the next woctad of data and its addresses 

are being read from the DSM and the DAM, respectively. However, before being written to the TSM, there is 

another task that must first be performed. 

          

3.2  Windowing of Randomly-Generated Data Sets         
  The next task in the processing chain is concerned with the application of a window function, of length 

P, to each of the SRG data sets with the resulting WSRG data sets being written to the partitioned TSM. Each 

of the SRG data sets uses its own set of pre-computed window coefficients which are stored within its own 

 

 
 
 
 
 
 
 

 
Figure 2: Scheme for Generation and Windowing of Reordered Samples Selected from Input Data Set Figure 2: Scheme for Generation and Windowing of Reordered Samples Selected from Input Data Set

The space-complexity required for carrying out the windowing 
of the multiple SRG data sets in a fine grained parallel, coarse-
grained sequential fashion involves an arithmetic component, 
denoted AWND, of

AWND = 8 multipliers & 0 adders 	                                          (22)

together with a memory component, denoted MWND, of 

MWND ≈ L×P		                                                              (23) 

words. Due to the overlapping of: 1) the retrieval of the data and 
coefficient woctads, with 2) the application of the coefficients 
to the data samples, the associated time complexity, denoted 
TWND, for carrying out the windowing in such a fashion will be 
‘effectively’ zero, apart from that involving the small start-up 
delay required for the pipelining of the fast multipliers.	

3.3 Summary of Complexity Requirements
At this point L WSRG data sets, each of length P and stored 
within its own version of the TSM, are available for input to 
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the next stage of the processing chain concerning the use of 
the RFHT, the outputs of which will also be stored within the 
TSM (by simply over-writing the WSRG data) for subsequent 
conversion from Hartley-space to Fourier-space. From the 
complexity results provided in this and the previous sections 
it is evident that the space complexity for the first stage of the 
processing chain involving the production of the multiple WSRG 
data sets in a fine grained parallel, coarse-grained sequential 
fashion possesses an arithmetic component, denoted ASTG1, of

ASTG1 = ARND+WND 
= 8 multipliers & 0 adders	                                                     (24)

together with a memory component, denoted MSTG1, of

words, whilst the associated time-complexity, denoted TSTG1, 
for carrying out the combined task in such a fashion may be 
expressed as

clock cycles, after taking into account the overlapping of their 
operations.
	  
Note that although the memory component of the space-
complexity has been increased in order to cater for the storage 
of the pre-computed sample addresses and window coefficients 
associated with each WSRG data set, the time complexity has 
been considerably reduced as their pre computation and storage 
avoids the need for their costly on-the-fly computation. 

4. Data-Space to Transform-Space Conversion 
The second stage of the processing chain is concerned with the 
computation of low-resolution spectral samples via the L SDRD 
FFTs, this being achieved by applying the RFHT to the WSRG 
data sets produced by the first stage. Note, however, that the 
conversion routine for transferring the data from Hartley space 
to Fourier space – as described by Eqtns. 7 and 8 – is omitted 
at this stage as it may be included more naturally as part of the 
transform-space processing of Section 5.

4.1  Parallel Data Reordering via Dibit-Reversal Mapping
Being a radix-4 decimation-in-time (DIT) algorithm the input 
data to the RFHT – as stored within the partitioned TSM – 
needs first to be reordered according to the dibit-reversal 
(DBR) mapping which is a radix-4 digit reversal permutation 
in which the radix-4 digits of the index of each element are 
reversed in order to obtain the permuted index [25,31]. The DBR 
reordered input data set may then be transferred from the TSM 
to the partitioned memory used for the storage of the RFHT 
input/output data with consecutive data samples being stored 
cyclically within consecutive memory banks. On completion of 
the RFHT, the NAT ordered output data set may be read out from 
the partitioned memory with consecutive data samples being 
retrieved cyclically from consecutive memory banks. With each 
partitioned memory made up of dual-port RAM and comprising 

eight memory banks it can be shown that the DBR reordered 
samples may be transferred from one set of memory banks to 
another at the rate of two woctads (with two samples from each 
memory bank) per clock cycle, so that the time complexity, 
denoted TDBR, for the construction and transfer of each DBR 
reordered data set of length P may be expressed as [25]

clock cycles, whilst the associated space-complexity – apart from 
a small fixed amount of intermediate memory – is insignificant.

A number of alternative implementations of the digit reversal 
mapping – as required for those fixed-radix FFTs where the 
radix is a power of two – have been produced in recent years, 
such as those pipelined implementations described in which are 
designed for consistency with the streaming operation of the 
pipelined FFT [8,29]. With the DBR mapping and the adoption 
of four-fold parallelism that is, processing four samples at a time 
for the corresponding radix-4 real-data FFT – such solutions 
are able to achieve, for the case of large P, a latency of ~ P/4 
clock cycles at the expense of ~ P words of additional memory. 
Such solutions, however, are not scalable with larger transforms 
(and digit-reversal routines) requiring proportionately longer 
pipelines and thus increased latency as well as proportionately 
more resources for their implementation.   
 
4.2 The Regularized Fast Hartley Transform – A Summary
The correctness of operation of the RFHT – which has shown 
itself ideally suited to block based rather than streaming 
operation – has already been proven in silicon with a fixed point 
implementation using FPGA technology where the storage of 
the data and the trigonometric coefficients was carried out in 
each case using dual port RAM [24]. A brief overview of the 
algorithm is now provided in order to highlight the merits of its 
application to the current problem, namely the computation of 
multiple SDRD FFTs where the length P of each transform may 
be freely chosen to be a radix-4 integer. 

4.2.1 Overview
The RFHT is a resource efficient and scalable means of carrying 
out the DHT in a highly parallel fashion, whilst it’s being 
‘regularized’ refers to the fact that the algorithm structure has 
been made regular (by maximizing the amount of repetition 
and symmetry present in the design) so that the conventional 
need for two separate butterfly designs for the fixed-radix FHT 
is thus avoided [25]. The design includes two key features: 1) an 
architecture based upon the use of a single processing element 
(PE), as shown in Fig. 3, which exploits partitioned memory to 
facilitate the parallel computation of the butterfly operation, and      
2) conflict free and in place parallel memory addressing schemes 
for both the data, as stored in the PE’s internal data memory 
(PDM), and the trigonometric coefficients (or twiddle factors), 
as stored in the PE’s internal coefficient memory (PCM). These 
features, when combined with pipelining techniques for the 
internal operation of the PE, enable the generic double butterfly 
– the large computational engine used by the RFHT – to produce 
output woctads at the rate of one per clock cycle.

  MSTG1 = MRND+WND  

   ≈    PL3                        (25) 

words, whilst the associated time-complexity, denoted TSTG1, for carrying out the combined task in such a 
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clock cycles, whilst the associated space-complexity – apart from a small fixed amount of intermediate 

memory – is insignificant. 

 

 A number of alternative implementations of the digit-reversal mapping – as required for those fixed-

radix FFTs where the radix is a power of two – have been produced in recent years, such as those pipelined 

implementations described in [8,29], which are designed for consistency with the streaming operation of the 

pipelined FFT. With the DBR mapping and the adoption of four-fold parallelism – that is, processing four 

samples at a time for the corresponding radix-4 real-data FFT – such solutions are able to achieve, for the case 

of large P, a latency of ~ P/4 clock cycles at the expense of ~ P words of additional memory. Such solutions, 

however, are not scalable with larger transforms (and digit-reversal routines) requiring proportionately longer 

pipelines and thus increased latency as well as proportionately more resources for their implementation.    

  

4.2  The Regularized Fast Hartley Transform – A Summary 
  The correctness of operation of the RFHT – which has shown itself ideally suited to block-based rather 

than streaming operation – has already been proven in silicon with a fixed-point implementation [24] using 

FPGA technology where the storage of the data and the trigonometric coefficients was carried out in each case 

using dual-port RAM. A brief overview of the algorithm is now provided in order to highlight the merits of its 

application to the current problem, namely the computation of multiple SDRD-FFTs where the length P of each 

transform may be freely chosen to be a radix-4 integer.  
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fashion, whilst it’s being ‘regularized’ refers to the fact that the algorithm structure has been made regular (by 

maximizing the amount of repetition and symmetry present in the design) so that the conventional need for two 

separate butterfly designs for the fixed-radix FHT is thus avoided [25]. The design includes two key features: 

1) an architecture based upon the use of a single processing element (PE), as shown in Fig. 3, which exploits 

partitioned memory to facilitate the parallel computation of the butterfly operation, and      2) conflict-free and 

in-place parallel memory addressing schemes for both the data, as stored in the PE’s internal data memory 

(PDM), and the trigonometric coefficients (or twiddle factors), as stored in the PE’s internal coefficient 

memory (PCM). These features, when combined with pipelining techniques for the internal operation of the 

PE, enable the generic double butterfly – the large computational engine used by the RFHT – to produce output 

woctads at the rate of one per clock cycle. 
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Figure 4: Signal Flow Graph for Twelve-Multiplier Version of Generic Double Butterfly 

 

                                                        trigonometric 
                                                         coefficients 

The original design [23] required 12 multipliers and 22 adders 
for carrying out the double butterfly operation, as shown in Fig. 
4, with: 1) each woctad (as obtained from four or eight memory 
banks) being read/written in parallel from/to the partitioned 
PDM, configurable as an array of eight memory banks, and 2) 
the trigonometric coefficients being read in parallel from the 
partitioned PCM, configurable as an array of three one-level look 
up tables (LUTs), with each LUT storing a single quadrant of the 
sine function [23]. The PDM addressing, over two consecutive 
clock cycles, enables all those samples required by consecutive 
instances of the double butterfly operation to be read from the 

PDM, processed and then written back to the PDM in a conflict 
free and in place manner at the rate of one woctad per clock 
cycle [25].	
	
4.2.2 Resource-Constrained Design Variations
Three additional versions of the PE have been subsequently 
derived which enable the arithmetic component of the space-
complexity to be traded off against the memory component, 
which varies according to the use of either one level or two level 
LUTs for the PCM [25]. The use of two level LUTs results in a 
reduced memory requirement of O(     ) words, as opposed to the )P(O
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O(P) requirement of the one level LUTs, this reduction being 
obtained at the expense of increased addressing complexity 
through the need for the combined use of both coarse resolution 
and fine resolution LUTs. A theoretical performance/resource 
comparison of all four versions of the RFHT is provided in Table 
1, although it should be noted that a fifth version using a PE 
based upon the use of Co Ordinate Rotation DIgital Computer 

(CORDIC) arithmetic has also been successfully produced 
[25,36]. With each version, the RFHT achieves an O(P×logP)  
time complexity which corresponds, in clock cycles, to the 
total number of double butterflies to be executed per transform, 
namely 1/8(P×log4P). The adoption of Version II of the RFHT is 
to be assumed hereafter when assessing space-complexity. 	

 

 

Version     

of      

Solution 

Arithmetic-Complexity Memory Requirement 
(words) 

Time-Complexity 
(clock cycles) 

Processing Element Coefficient Generator Data Memory 

(Single-Buffer) 

Coefficient   

Memory 

Update Time /       

Latency Multipliers Adders Multipliers Adders 

I 12 22 0 0 N N4
3  Nlog.N8

1
4  

II 9 25 0 6 N N4
3  Nlog.N8

1
4  

III 12 22 7 8 N N2
3  Nlog.N8

1
4  

IV 9 25 7 14 N N2
3  Nlog.N8

1
4  

                       Table 1: Performance/Resource Comparison for Fast Multiplier Versions of N-Point Regularized FHT Table 1: Performance/Resource Comparison for Fast Multiplier Versions of N-Point Regularized FHT

4.3 Summary of Complexity Requirements
The space complexity for carrying out the second stage of the 
processing chain involving the construction and transfer of the L 
DBR reordered data sets followed by the corresponding P point 
RFHTs, in a fine grained parallel, coarse-grained sequential 
fashion, possesses an arithmetic component, denoted ASTG2, of

ASTG2 = ADBR+FHT 
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together with a memory component, denoted MSTG2, of
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carrying out the task in such a fashion may be expressed as
		   

clock cycles. Note, however, that each TSM may be used for 
the storage of both the input and the output data sets to/from the 
RFHT, as the input data woctads may be simply overwritten by 
the corresponding output data woctads given that the input data 

set is accessed by the PE from the PDM rather than the TSM.
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able to achieve the computational density of the most advanced 
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use in determining the locations of the dominant FFT bins.

5.1 Hartley-Space to Fourier-Space Conversion and PSD 
Estimation
From Eqtns. 7 and 8 it was seen how the real and imaginary 
components of the DFT outputs could be obtained 
straightforwardly from the DHT outputs, with the construction 
of each set of four consecutive complex-valued DFT outputs 
needing access to eight real-valued DHT outputs – four with 
consecutive positive indices and four with consecutive negative 
indices. Given that each RFHT may have its output data set stored 
within its own version of the TSM each of the eight memory 
banks will contain at most two of the required eight samples 
from the RFHT output data set, one corresponding to the positive 
index and the other corresponding to the negative index. Given 
the dual-port nature of the memory, this means that the RFHT 
output data required for the construction of each set of four DFT 
outputs, as given by Eqtns. 7 and 8, may be obtained within a 
single clock cycle. Thus, with fine-grained pipelined processing, 
it is possible that with eight adders operating in parallel upon the 
RFHT outputs, each set of four consecutive SDRD-FFT outputs 
may be constructed whilst the next set of eight RFHT outputs 
is being accessed, so that each set of complex-valued SDRD-
FFT outputs (there are P/2 of these produced from each set of 
P RFHT outputs) may be produced from the set of real-valued 
RFHT outputs in just P/8 clock cycles.  

Note that to maintain this computational throughput in an 
efficient manner it is necessary, for each RFHT, that the 
subsequent SDRD-FFT outputs are efficiently stored, as they are 
produced, in the existing TSM. This may be achieved by having, 
for each RFHT output woctad, the set of four positive index 
outputs overwritten by the real components of the corresponding 
set of four SDRD-FFT outputs and the set of four negative index 

outputs overwritten by the imaginary components.     
   
The space-complexity required for carrying out the conversion of 
all L sets of the transform outputs from Hartley-space to Fourier-
space in a fine-grained parallel, coarse-grained sequential 
fashion, involves an arithmetic component, denoted ACON, of
	
ACON = 0 multipliers & 8 adders                                                 (31)

together with a zero memory component. The associated time 
complexity, denoted TCON, for carrying out the conversion 
routine for all L Hartley-space data sets in such a fashion may 
be expressed as 

clock cycles.

Turning to the PSD estimation, it was seen from Eqtn. 9 how 
the PSD estimates could be obtained straightforwardly in terms 
of either the DHT or the DFT outputs. Thus, with fine grained 
pipelined processing, it is possible that with eight multipliers 
operating in parallel upon the real and imaginary components 
of the DFT outputs followed by four adders operating in parallel 
upon the resulting squared terms, each set of four consecutive 
PSD outputs may be constructed and stored within its own 
partitioned power spectrum memory (PSM) – which consists 
of eight equal sized memory banks each comprising Q/2 words 
– whilst the next set of four SDRD-FFT outputs are being 
produced, as illustrated in Fig. 5, so that apart from a short start-
up delay for the computational pipeline, the sets of complex-
valued SDRD-FFT outputs and real-valued PSD outputs, each of 
length P/2, may both be produced in just P/8 clock cycles.   
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The space-complexity required for carrying out the PSD 
estimation for all L Fourier-space data sets in a fine-grained 
parallel, coarse-grained sequential fashion, involves an 
arithmetic component, denoted APSD, of

APSD = 8 multipliers & 4 adders		                          (33)

together with a memory component, denoted  MPSD, of

words for the partitioned PSMs. Due to the pipelining of the 
operations required for carrying out both the conversion routine 
and the PSD estimation, the associated time complexity for 
carrying out the PSD estimation for all L Fourier-space data sets 
will be ‘effectively’ zero, apart from that involving the small 
start-up delay required for the pipelining of the fast multipliers.

At this point L sets of both Fourier-space and PSD data are 
available within the partitioned TSMs and PSMs, respectively, 
for input to the remaining key tasks required of this final 
stage of the processing chain concerning the derivation of the 
individual components of the sparse spectrum. The overall space 
complexity required for obtaining these two data sets in a fine-
grained parallel, coarse grained sequential fashion, is given by 
an arithmetic component of
	

together with a memory component of

words, whilst the associated time-complexity for carrying out 
the combined task for all L data sets in such a fashion may be 
expressed as

clock cycles, where each of the above data sets is stored within 
its own partitioned memory. 

5.2  Location of Dominant SDRD-FFT Bins
Given that the maximum number of SDRD-FFT bins, ‘KD’, 
considered to contain a detectable signal component is such that 
KD << P << N and KD|P, the task now is to determine the locations 
of those dominant SDRD-FFT bins, for each of the L spectral 
data sets, from examination of the associated PSD outputs – as 
illustrated in Fig. 5. To achieve this, a full sort routine could 
simply be used, but this would involve a time complexity of 
O(P×log2P) clock cycles which would be unnecessarily complex 
for the problem being addressed [10,22]. A partial sort routine 
would be a more appropriate solution for the problem at hand 
with an attractive means of achieving this being to create a ‘Heap’ 
data structure – or, more specifically, a ‘Min Heap’ data structure 
– which for every iteration would keep track of the largest KD 
values and their addresses from the currently processed PSD 
set and would enable the time complexity to be reduced to just 
O(P×log2KD) clock cycles – a reduction of O(log2P/log2KD) [4]. 

The approach is thus to create a Min-Heap data structure 
which will yield the largest KD PSD outputs using the two 
heap operations of ‘insert’ and ‘delete’, each of which may be 
assumed to involve up to log2KD exchanges yielding a time-
complexity of O(log2KD) clock cycles. After initializing the 
heap with the first KD PSD outputs using the insert operation, 
the partial sort algorithm iterates through the remaining P/2–KD 
outputs comparing each new value with the existing minimum 
value of the heap. If the value is less than the existing minimum 
value then the processing for that iteration terminates, whereas 
if the value is greater than the existing minimum value then that 
minimum value is deleted and the new value inserted into the 
heap. After all the iterations have been completed the Min-Heap 
will contain the values of the KD largest PSD outputs, together 
with the corresponding PSD addresses within the PSM – noting 
that the corresponding SDRD-FFT output has the same address 
within the TSM as the PSD output within the PSM. The heap 
data – which is updated and stored within the dominant bin 
memory (DBM) – consists of KD pairs of numbers where the 
first number of each pair is the value of a dominant PSD output 
whilst the second number is its address within the PSM. The 
addresses are then used to set up a binary indicator array (BIA), 
of length P/2, where the presence/absence of a ‘1’ indicates the 
presence/absence of a dominant signal component residing at 
that SDRD-FFT index.  

Thus, with a sequential approach, where the insert and delete 
operations are each assumed to be achievable in at most 
α×log2KD clock cycles, for some factor ‘α’, the initialization 
of the heap may be carried out in at most α×KD×log2KD clock 
cycles, whilst the remaining P/2–KD iterations of the partial sort 
algorithm may be carried out in at most 2α×(P/2–KD)×log2KD 
clock cycles, although this figure will only be realized with the 
pathological situation where successive PSD outputs occur in 
a monotonically increasing fashion whereby each new iteration 
requires that the existing minimum value be deleted from the heap 
and the new value inserted. A more realistic situation involves 
using randomly generated values for the PSD outputs so that the 
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words, where the dominant PSD values and addresses occur 
in pairs within each DBM. The associated (worst-case) time 
complexity, denoted TLOC, (where maximum allowable number 
of inserts and deletes to be made in second phase of the algorithm 
– at which point the processing is terminated – is taken to be 
20% of maximum possible) for carrying out the task in such a 
fashion may be expressed as

clock cycles, where the set of addresses for each set of dominant 
PSD outputs is stored within its own BIA.   

5.3  Determination of Dominant Signal Frequencies 
At this point the locations of the KD dominant bins are now 
known for each of the L sets of SDRD FFTs outputs where, for 
each such bin, there corresponds a set of N/P FOIs whose indices 
within the full N/2 point NAT reordered spectrum – which thus 
correspond to actual frequencies – are as given by Eqtn. 11. The 
task now is to determine, in a computationally efficient manner, 
the best frequency estimates from those available that correspond 
to the presence of detectable signal components in all of the L 
SDRD FFT output data sets – where each set is stored within its 
own version of the TSM. This equates, in ‘set theoretic’ terms, 
to finding the intersection of the L sets where each set contains 
the indices of KD×N/P FOIs, with a total of just KD frequency 
indices being actually sought. Processing all combinations of 
FOIs across all L sets of N/P indices in a brute-force set theoretic 
manner would however be computationally unrealistic as the 
time complexity involved would prove prohibitively large. The 
task is thus to produce a simplified solution able to identify and 

discard invalid FOIs (namely, those that do not correspond to 
valid signal components) as soon as they are encountered so as 
to avoid unnecessary frequency comparisons.

One way to achieve this would be to successively compute, 
using the recursive form of the mapping       of Eqtn. 17, the 
FOIs corresponding to the KD sets of N/P permuted frequency 
indices for the first SDRD FFT and to test whether each FOI, 
as it is produced, lies within a dominant bin for each of the 
remaining L-1 SDRD FFT output sets. This testing process 
may be achieved, for each SDRD FFT, through the application 
of the inverse mapping     of Eqtn. 14 to each FOI using the 
appropriate versions of the parameter      (given that each SDRD 
FFT output set will have been derived using a different value for 
the parameter σ and may be carried out in a pipelined fashion by 
means of an (L-1)-stage filter  as illustrated in Fig. 6, where the 
m’th stage of the filter/pipeline uses the function	 together 
with the parameter       to determine within which SDRD-
FFT bin, if any, the FOI belongs [2]. As soon as an FOI fails 
to fall within a dominant bin for a given SDRD FFT output 
set – as determined through comparison with the appropriate 
element of its BIA – it is discarded so that only KD FOIs should 
manage to pass successfully through all L-1 stages of the filter 
with most FOIs being discarded after passing through the first 
stage of the filter. Each stage of the filter that is successfully 
traversed forwards the address of the dominant SDRD-FFT bin 
(as yielded by its BIA), together with previously forwarded 
addresses followed by the FOI, so that if and when the final stage 
is successfully traversed all L dominant bin addresses will be 
available for storage in the frequency address memory (FAM) 
followed by the corresponding FOI.       

possible (which is 1536 for the chosen parameter set), suggesting that an attractive low-complexity solution 

would be to terminate the processing once such a limit has been reached. The occasional loss of a detectable 

signal component would seem a reasonable compromise to make in order to ensure a realizable solution and 

could be overcome through the subsequent averaging over several consecutive sparse spectral output data sets, 

a commonly adopted practice used to reduce the variance.       
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The space-complexity for carrying out this multi-stage filtering 
task comprises an arithmetic component, denoted AFRQ, of

AFRQ = L-1 multipliers & L adders                                           (40)

with the dominant bin address offsets (which are multiples of 
N/P, a radix-2 integer) being computed via simple left shift 
operations and each multiplier involving a fixed multiplicand, 
together with a memory component, denoted MFRQ, of
 
MFRQ ≈ KD×(L+1)	 	                                                         (41)

words, with L addresses and one FOI being allocated to each 

of the KD dominant signal components. The associated time 
complexity, denoted TFRQ, for carrying out the task in such a 
fashion may be expressed as

clock cycles, where the first part of the expression corresponds 
to the recursive generation of the FOIs (Eqtn. 17) and the 
second part to the filter delay. The term ‘ β’ is a small integer 
that represents the length of each filter stage’s internal pipeline, 
as required for computing the dominant bin address via the 
inverse mapping of Eqtn.14 followed by the looking up of the 
appropriate element of the BIA and the subsequent forwarding 
(where appropriate) of the dominant bin addresses.   

and to test whether each FOI, as it is produced, lies within a dominant bin for each of the remaining L-1 

SDRD-FFT output sets. This testing process may be achieved, for each SDRD-FFT, through the application of 

the inverse mapping 1  of Eqtn. 14 to each FOI using the appropriate versions of the parameter 1  (given 

that each SDRD-FFT output set will have been derived using a different value for the parameter  ) and may 

be carried out in a pipelined fashion by means of an (L-1)-stage filter [2], as illustrated in Fig. 6, where the 

m’th stage of the filter/pipeline uses the function 1  together with the parameter 1
1m


  to determine within 

which SDRD-FFT bin, if any, the FOI belongs. As soon as an FOI fails to fall within a dominant bin for a 

given SDRD-FFT output set – as determined through comparison with the appropriate element of its BIA – it is 

discarded so that only KD FOIs should manage to pass successfully through all L-1 stages of the filter with 

most FOIs being discarded after passing through the first stage of the filter. Each stage of the filter that is 

successfully traversed forwards the address of the dominant SDRD-FFT bin (as yielded by its BIA), together 

with previously forwarded addresses followed by the FOI, so that if and when the final stage is successfully 

traversed all L dominant bin addresses will be available for storage in the frequency address memory (FAM) 

followed by the corresponding FOI.        
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5.4  Determination of Sparse Spectrum Components
At this point in the processing chain: 1) L sets of complex-
valued SDRD-FFT outputs have been produced and stored in the 
partitioned TSMs (as described in Section 5.1), each set being 
of length P/2, together with 2) the spectral locations of the KD 
dominant outputs, as stored in the BIAs, for each such set (as 
described in Section 5.2) and 3) the values of the corresponding 
KD signal frequencies together with, for each, the associated 
set of L spectrum addresses, one per SDRD-FFT output set, 
as stored in the FAM (as described in Section 5.3). Thus, the 
value (both real and imaginary components) and frequency 
index of the KD dominant signal components for each of the L 
spectral data sets are now available for further processing. For 
each frequency index, the L addresses preceding it within the 

FAM are used to access the SDRD FFT outputs stored within 
the TSMs. The L real components are then averaged to yield a 
representative value for the real component of the sFFT at that 
frequency, whilst in similar fashion the L imaginary components 
are averaged to yield a representative value for the imaginary 
component. The processing scheme for carrying out the task 
may be expressed via a computational pipeline, as illustrated 
in Fig. 7 for the case where the parameter L has a value of  8 
so that the pipeline is of length log2L = 3. The KD pairs of real 
and imaginary spectral components produced by the pipeline are 
then stored in the sparse spectrum memory (SSM), together with 
the frequency index specifying its position within the idealized 
NAT ordered N/2 point spectrum – as would be obtained with a 
dense real-data FFT of length N. 

 

 
Figure 7: Computational Pipeline for Determining Spectrum Components for Case Where L = 8 Figure 7: Computational Pipeline for Determining Spectrum Components for Case Where L = 8

The space-complexity for carrying out this task in a pipelined 
fashion possesses an arithmetic component, denoted ASSP, of

ASSP = 0 multipliers & L-1 adders		                            (43)

together with a memory component, denoted MSSP, of 

MSSP ≈ 3KD 	   	                                                        (44)

words, this involving real and imaginary components of the 
sFFT output together with the associated spectrum address for 
each of the KD dominant spectral components. The associated 

time complexity, denoted TSSP, for carrying out the task in such a 
fashion may be expressed as

TSSP ≈ 2KD + log2L        	                                                      (45)

clock cycles – for the simple case where L is a radix-2 integer.

5.5 Summary of Complexity Requirements
The overall space complexity for carrying out the third and final 
stage of the processing chain involving: 1) the conversion of 
data from Hartley-space to Fourier space, 2) the PSD estimation, 
3) the determination of the dominant signal frequencies, and 4) 
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the determination of the corresponding spectrum components, 
involves an arithmetic component, denoted ASTG3, of
ASTG3 = ACON+PSD+ALOC+AFRQ+ASSP 

= L+7 multipliers & 2L+11 adders	                                        (46)

together with a memory component, denoted MSTG3, of

words, whilst the overall time-complexity, denoted TSTG3, may 
be expressed as

clock cycles, these results based (for the most part) upon the 
processing being carried out in a fine-grained parallel, coarse-
grained sequential fashion. 
    
6. Trading off Latency Against Silicon Resources
The previous three sections have provided descriptions of the 
individual tasks needing to be carried out by the proposed real-
data sFFT algorithm, together with their respective space and 
time complexities when the multiple data sets are processed 
sequentially. Complexity trade-offs are now considered 
including how multiple instances of certain tasks might best be 
carried out in parallel, via the adoption of the single instruction, 
multiple-data (SIMD) approach which uses multiple identical 
memories and processing streams to process multiple data sets 
simultaneously [3]. This will facilitate coarse-grained parallel 
processing which, together with the fine grained parallelism 
already achieved via the adoption of partitioned memory and 
pipelining, will enable latency to be traded off against silicon 
resources.  

6.1 Data-Space Processing  + Short Dense Real-Data FFTs
Suppose that the outputs of the first stage of the processing chain, 
the L WSRG data sets, are produced prior to the execution of the 
second stage concerning the execution of the RFHTs. Then the 
time complexity for carrying out the first two stages is simply 
derived from the combined timing figures of Eqtns. 26 and 30, 
which may be expressed as TSTG1+STG2 = TSTG1 + TSTG2. In reality, 
however, the first of the RFHTs (bearing in mind that multiple 
RFHT modules might be used) may commence processing as 
soon as there is sufficient data available to process which, if each 
WSRG data set is stored within its own version of partitioned 
TSM, is as soon as the first such data set has been produced, 
namely after P/8 clock cycles, which from the contents of 
Table 1 is considerably less than the latency of the RFHT for 
all transform sizes of interest. The last WSRG data set, in turn, 
will be available for processing after L×P/8 clock cycles, so that 
TSTG1+STG2 ≠ TSTG1+TSTG2 and the processing for the two stages may 
be overlapped in order to reduce the overall time complexity. 

Suppose, in addition, that the time-complexity is further reduced 
through the parallel operation of multiple processing streams 

where each stream involves the processing, via the RFHT, of one 
or more of the WSRG data sets, so that there would be between 
1 and L such processing streams operating independently of 
each other in an SIMD fashion.  The exact number of streams 
is denoted by parameter ‘S1’, where S1|L, so that each stream 
is assigned the processing of exactly L/S1 WSRG data sets in 
an interleaved fashion so that with the case of two streams, for 
example, one stream might deal with the processing of the even 
addressed data sets whilst the other deals with the processing of 
the odd addressed data sets. This enables the time complexity to 
be expressed via the more general expression 

clock cycles, where the superscript ‘P’ refers to the fact that the 
complexity now reflects the adoption of coarse-grained parallel 
computation techniques.

The corresponding space-complexity figures for carrying out the 
first two stages of the processing chain will as a consequence 
increase to account for the scaling up of the second stage by a 
factor of S1, so that
	  

and

words.		   

6.2 Transform-Space Processing
The parallelization is now extended to cater for the third and 
final stage of the processing chain, with the space-complexity 
for the initial conversion of all L sets of RFHT outputs from 
Hartley space to Fourier-space and of the subsequent production 
of the PSD data – and using the same level of parallelism as 
for the computation of the multiple RFHTs – involving a total 
arithmetic component of

together with a total memory component of

words, whilst the associated time-complexity for the combined 
task may be expressed as

clock cycles, where S1 processes are now assumed to be operating 
in parallel in SIMD fashion upon the L sets of Hartley space data 
with L/S1 data sets being assigned to each process. 
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For the parallelization of the next task concerning the 
determination of the dominant bin locations for each of the 
L SDRD-FFT output data sets, the space complexity – just 
as for the sequential solution – will possess a zero arithmetic 
component together with a memory component, denoted  	 , 
of        

words, whilst the associated (worst-case) time complexity, 
denoted	          , may be expressed as

clock cycles, where ‘S2’ processes are now assumed to be 
operating in parallel in SIMD fashion upon the L sets of PSD data 
with L/S2 data sets being assigned to each process and where S2 
is such that S2|L. Note, however, that a highly-parallel alternative 
to having multiple sequential solutions running in parallel may 
be achieved for each data set by pipelining the iterations, in a 
fine-grained fashion, so that updated versions of the Min-Heap 
may be produced every O(1) clock cycles [21], rather than every 
O(logKD) clock cycles (as is required for each of the insert and 
delete operations), at the expense of an O(logKD) increase in the 
space complexity.

For the parallelization of the next task concerning the 
determination of the signal frequencies, the space complexity 
will possess an arithmetic component, denoted 	  , of

together with a memory component, denoted		 , of        

words, whilst the associated time complexity, denoted          		
may be expressed as

clock cycles, where ‘S3’ multi-stage filters are now operating in 
parallel in SIMD fashion upon the sets of FOIs so that parameter 
S3 must be such that S3|KD with KD/S3 sets, each of N/P FOIs, 
being assigned to each pipelined process. A memory-efficient 
implementation that avoids having to replicate the set of BIAs 
for each version of the multi-stage filter may be achieved by 
setting S3 equal to L and processing L consecutive sets of FOIs 
in parallel where, to avoid addressing conflicts: 1) the BIA used 
to feed the L multi-stage filters is different for each with the BIA 
used by the n’th multi-stage filter (where n varies from 1 to L) 
being set to that defined for the n’th SDRD-FFT, and 2) the BIA 
used by the m’th stage (where m varies from 1 to L-1) of the n’th 
multi-stage filter is set to that defined for the k’th SDRD-FFT, 
where 

In this way, the ordering of the L BIAs is simply rotated by 
one position with increasing n so that all the BIAs may be used 

simultaneously for all L-1 stages of the L multi-stage filters. 
Care needs to be taken, however, to ensure that when all stages 
of a given filter are successfully traversed the resulting set of L 
addresses is suitably rotated to enable them to be stored in their 
correct order. 

For the last task of the final stage concerning the determination of 
the spectrum components, the low space and time complexities 
for carrying out this task suggest that no additional parallelization 
is required so that the solution described in Section 5.4 – which 
consists of a single pipelined process – is retained, this possessing 
an arithmetic component, denoted          , of

together with a memory component, denoted		  of 

words, whilst the associated time complexity, denoted         for 
carrying out the task may be expressed as

clock cycles – for the simple case where L is a radix-2 integer.

Combining these complexity results, the space-complexity for 
carrying out the transform-space processing in a coarse-grained 
parallel fashion involves an arithmetic component, denoted 	
of  

together with a memory component, denoted		 of   
     

words, whilst the associated time complexity, denoted	
for carrying out the task may be expressed as
	

clock cycles.

6.3 Discussion
This section has provided space and time complexity results 
for parallel versions of all three stages of the processing chain, 
with the results for the first two stages concerning the data-space 
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may be produced every O(1) clock cycles [21], rather than every O(logKD) clock cycles (as is required for each 

of the insert and delete operations), at the expense of an O(logKD) increase in the space-complexity. 
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6.3 Discussion 
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concerning the transform-space processing (Eqtns. 64 to 66) being based upon each of the individual tasks 

being completed before its successor can commence – although complexity results for the first two tasks 
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when instead the parameters N and KD are fixed and the parameters L and P are allowed to increase.  

  Note also that the block-based nature of its operation enables arbitrary large transforms to be realized 

through the replication of silicon resources by having multiple sFFT’s applied to consecutive input data sets, in 

turn, so as to produce interleaved output data sets. 

 

 

7. A Detailed Example: 2M-Point Real-Data Sparse FFT 
  A parameterized model has been produced in MatLab [32] for evaluating the timing and resource 

requirements which, for a given set of constraints relating to the data set refresh rate (and, equivalently, the 

  )P(
3STGT = )P(

PSDCONT  + )P(
LOCT + )P(

FRQT + )P(
SSPT   

 ≈  
1S8

PL +     N/P/SK 3D  + (2KD+log2L) 

  +   D2D
2

Klog)K3P(LS5 




     (66) 

clock cycles. 

 

6.3 Discussion 

      This section has provided space and time complexity results for parallel versions of all three stages of 

the processing chain, with the results for the first two stages concerning the data-space processing and the 

RFHTs being combined (Eqtns. 49 to 51) due to the overlapping of their operations and those for the last stage 

concerning the transform-space processing (Eqtns. 64 to 66) being based upon each of the individual tasks 

being completed before its successor can commence – although complexity results for the first two tasks 

concerning the data conversion and PSD estimation routines are combined via the pipelining of their 

operations. As a result, for the case of interest where the parameters L, KD, P and N are such that L << KD << P 

<< N, the overall time-complexity is of 


















 

3
D

2
D

1 S
)P/N(KS

Klog
S

Plog)PL(O   

                           (67) 

where S1, S2 and S3 are the parallelization parameters, which 

  














3
D S

)P/N(KO            (68) 

when the performance-related parameters L and P are fixed and the size-related parameters N and KD are 

allowed to increase, and 

  












 

2
D

1 S
Klog

S
Plog)PL(O   (69) 

when instead the parameters N and KD are fixed and the parameters L and P are allowed to increase.  

  Note also that the block-based nature of its operation enables arbitrary large transforms to be realized 

through the replication of silicon resources by having multiple sFFT’s applied to consecutive input data sets, in 

turn, so as to produce interleaved output data sets. 

 

 

7. A Detailed Example: 2M-Point Real-Data Sparse FFT 
  A parameterized model has been produced in MatLab [32] for evaluating the timing and resource 

requirements which, for a given set of constraints relating to the data set refresh rate (and, equivalently, the 

)P(
SSPT



Volume 1 | Issue 2 | 84OA J Applied Sci Technol, 2023

processing and the RFHTs being combined (Eqtns. 49 to 51) due 
to the overlapping of their operations and those for the last stage 
concerning the transform-space processing (Eqtns. 64 to 66) 
being based upon each of the individual tasks being completed 
before its successor can commence – although complexity 
results for the first two tasks concerning the data conversion 
and PSD estimation routines are combined via the pipelining of 
their operations. As a result, for the case of interest where the 
parameters L, KD, P and N are such that L << KD << P << N, the 
overall time-complexity is of 				                    	
	  

where S1, S2 and S3 are the parallelization parameters, which

when the performance-related parameters L and P are fixed and 
the size-related parameters N and KD are allowed to increase, 
and

when instead the parameters N and KD are fixed and the 
parameters L and P are allowed to increase. 

Note also that the block based nature of its operation enables 
arbitrary large transforms to be realized through the replication 
of silicon resources by having multiple sFFT’s applied to 
consecutive input data sets, in turn, so as to produce interleaved 
output data sets.

7. A Detailed Example: 2M-Point Real-Data Sparse FFT
A parameterized model has been produced in MatLab [32] for 
evaluating the timing and resource requirements which, for 
a given set of constraints relating to the data set refresh rate 
(and, equivalently, the update period) and the available silicon 
resources, enables solutions to be identified which are able to 
meet those constraints and thus to be actually realized. A typical 
parameter set is now described, based upon a hypothetical FPGA 
implementation, consisting of: 
1) sampling rate of 

where the samples are real-valued (assumed here to be 18-bit 
integers); 
2) FPGA clock rate of

3) input data set comprising

real-valued samples, leading to a real-data sFFT of ~ 2M points 
(only one half of which are independent, making problem 
computationally equivalent to 1M-point complex-data sFFT); 
4) SDRD-FFT of length

which after transform-domain conversion yields 8K complex-
valued FFT outputs; 
5) maximum number of dominant signal frequencies of

6) number of SDRD-FFTs – each carried out by means of the 
RFHT – to be given by

and, finally, 

7) parameter ‘α’ relating to the KD-element Min-Heap data 
structure of Section 5.2 to be given by 

so as to yield latency results consistent with those derived for 
a data structure of length 16K [28] whereby each ‘insert’ and 
‘delete’ operation was catered for with just 16 clock cycles.

The data set refresh rate, FR, which has already been defined as 
the rate at which each new input data set is transferred from the 
simple ADC-based sampling system to the DSM, dictates in turn 
the corresponding update period, PU, which for this example is 
given by
		   				  

clock cycles. Thus, for real-time operation of the proposed block-
based solution, this update period must be able to accommodate 
the execution of the three stages of the processing chain as 
described in Sections 3 to 5, namely: 1) the derivation of the 
multiple WSRG data sets, followed by 2) the carrying out of 
the SDRD FFTs upon the data sets, and 3) the construction of 
the sparse spectrum from the processing of the resulting sets of 
SDRD FFT outputs. 

The model showed that an attractive solution could be found 
by setting the parallelization parameters S1, S2 and S3 to values 
of 2, 4 and 4 (i.e. S3 = L), respectively, where the constraints 
are such that S1|L, S2|L and S3|KD, so that: 1) the data-space 
processing, followed by the RFHTs, the Hartley-space to Fourier 
space conversion and the PSD estimation are each partitioned 
into two parallel processing streams, whilst 2) the dominant bin 
location and signal frequency estimation of the transform-space 
processing are each partitioned into four parallel processing 
streams – as illustrated in Fig. 8. This level of coarse-grained 
parallelism, combined with the fine-grained parallelism already 
achieved via the use of partitioned memory, enables the 
computation of the 2M point real data sFFT to be carried out 
in an efficient fashion by means of the proposed design with 
512 dominant spectrum outputs being produced for each new 
input data set in ~ 95.8×103 clock cycles, which with a 100 MHz 
clock rate equates to a latency of ~ 0.96 millisecond (ms). This 
is less than the limit imposed by the update period of Eqtn. 77, 
as required for a realizable solution, yielding a safety margin of 
~ 8.7%. This performance, which involves the production and 
processing of 32K low resolution spectral samples in order to 
compute the dominant outputs from the 1M independent outputs 

  )P(
3STGT = )P(

PSDCONT  + )P(
LOCT + )P(

FRQT + )P(
SSPT   

 ≈  
1S8

PL +     N/P/SK 3D  + (2KD+log2L) 

  +   D2D
2

Klog)K3P(LS5 




     (66) 

clock cycles. 

 

6.3 Discussion 

      This section has provided space and time complexity results for parallel versions of all three stages of 

the processing chain, with the results for the first two stages concerning the data-space processing and the 

RFHTs being combined (Eqtns. 49 to 51) due to the overlapping of their operations and those for the last stage 

concerning the transform-space processing (Eqtns. 64 to 66) being based upon each of the individual tasks 

being completed before its successor can commence – although complexity results for the first two tasks 

concerning the data conversion and PSD estimation routines are combined via the pipelining of their 

operations. As a result, for the case of interest where the parameters L, KD, P and N are such that L << KD << P 

<< N, the overall time-complexity is of 


















 

3
D

2
D

1 S
)P/N(KS

Klog
S

Plog)PL(O   

                           (67) 

where S1, S2 and S3 are the parallelization parameters, which 

  














3
D S

)P/N(KO            (68) 

when the performance-related parameters L and P are fixed and the size-related parameters N and KD are 

allowed to increase, and 

  












 

2
D

1 S
Klog

S
Plog)PL(O   (69) 

when instead the parameters N and KD are fixed and the parameters L and P are allowed to increase.  

  Note also that the block-based nature of its operation enables arbitrary large transforms to be realized 

through the replication of silicon resources by having multiple sFFT’s applied to consecutive input data sets, in 

turn, so as to produce interleaved output data sets. 

 

 

7. A Detailed Example: 2M-Point Real-Data Sparse FFT 
  A parameterized model has been produced in MatLab [32] for evaluating the timing and resource 

requirements which, for a given set of constraints relating to the data set refresh rate (and, equivalently, the 

  )P(
3STGT = )P(

PSDCONT  + )P(
LOCT + )P(

FRQT + )P(
SSPT   

 ≈  
1S8

PL +     N/P/SK 3D  + (2KD+log2L) 

  +   D2D
2

Klog)K3P(LS5 




     (66) 

clock cycles. 

 

6.3 Discussion 

      This section has provided space and time complexity results for parallel versions of all three stages of 

the processing chain, with the results for the first two stages concerning the data-space processing and the 

RFHTs being combined (Eqtns. 49 to 51) due to the overlapping of their operations and those for the last stage 

concerning the transform-space processing (Eqtns. 64 to 66) being based upon each of the individual tasks 

being completed before its successor can commence – although complexity results for the first two tasks 

concerning the data conversion and PSD estimation routines are combined via the pipelining of their 

operations. As a result, for the case of interest where the parameters L, KD, P and N are such that L << KD << P 

<< N, the overall time-complexity is of 


















 

3
D

2
D

1 S
)P/N(KS

Klog
S

Plog)PL(O   

                           (67) 

where S1, S2 and S3 are the parallelization parameters, which 

  














3
D S

)P/N(KO            (68) 

when the performance-related parameters L and P are fixed and the size-related parameters N and KD are 

allowed to increase, and 

  












 

2
D

1 S
Klog

S
Plog)PL(O   (69) 

when instead the parameters N and KD are fixed and the parameters L and P are allowed to increase.  

  Note also that the block-based nature of its operation enables arbitrary large transforms to be realized 

through the replication of silicon resources by having multiple sFFT’s applied to consecutive input data sets, in 

turn, so as to produce interleaved output data sets. 
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requirements which, for a given set of constraints relating to the data set refresh rate (and, equivalently, the 

update period) and the available silicon resources, enables solutions to be identified which are able to meet 

those constraints and thus to be actually realized. A typical parameter set is now described, based upon a 

hypothetical FPGA implementation, consisting of:  

1) sampling rate of  

  9102F   Hz = 2 GHz,         (70) 

where the samples are real-valued (assumed here to be 18-bit integers);  

2) FPGA clock rate of 

  FC = 100×106 Hz = 100 MHz;                (71) 

3) input data set comprising 

  N = 2×220  ~ 2M (2,097,152)        (72) 

real-valued samples, leading to a real-data sFFT of ~ 2M points (only one half of which are independent, 

making problem computationally equivalent to 1M-point complex-data sFFT);  

4) SDRD-FFT of length 
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5) maximum number of dominant signal frequencies of 
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6) number of SDRD-FFTs – each carried out by means of the RFHT – to be given by 
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7) parameter ‘α’ relating to the KD-element Min-Heap data structure of Section 5.2 to be given by  
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so as to yield latency results consistent with those derived for a data structure of length 16K [28] whereby each 

‘insert’ and ‘delete’ operation was catered for with just 16 clock cycles. 

 

  The data set refresh rate, FR, which has already been defined as the rate at which each new input data 

set is transferred from the simple ADC-based sampling system to the DSM, dictates in turn the corresponding 

update period, PU, which for this example is given by 

     FFNFFP CCRU      310105858,104            

(77) 

clock cycles. Thus, for real-time operation of the proposed block-based solution, this update period must be 

able to accommodate the execution of the three stages of the processing chain as described in Sections 3 to 5, 

namely: 1) the derivation of the multiple WSRG data sets, followed by 2) the carrying out of the SDRD-FFTs 

update period) and the available silicon resources, enables solutions to be identified which are able to meet 

those constraints and thus to be actually realized. A typical parameter set is now described, based upon a 

hypothetical FPGA implementation, consisting of:  

1) sampling rate of  

  9102F   Hz = 2 GHz,         (70) 

where the samples are real-valued (assumed here to be 18-bit integers);  

2) FPGA clock rate of 

  FC = 100×106 Hz = 100 MHz;                (71) 

3) input data set comprising 

  N = 2×220  ~ 2M (2,097,152)        (72) 

real-valued samples, leading to a real-data sFFT of ~ 2M points (only one half of which are independent, 

making problem computationally equivalent to 1M-point complex-data sFFT);  

4) SDRD-FFT of length 

  P = 16K           (73) 

which after transform-domain conversion yields 8K complex-valued FFT outputs;  

5) maximum number of dominant signal frequencies of 

  KD = 512;                       (74) 

6) number of SDRD-FFTs – each carried out by means of the RFHT – to be given by 

  L = 4;           (75) 

and, finally,  

7) parameter ‘α’ relating to the KD-element Min-Heap data structure of Section 5.2 to be given by  

  α = (log2KD+2)/log2KD,          (76)    

so as to yield latency results consistent with those derived for a data structure of length 16K [28] whereby each 

‘insert’ and ‘delete’ operation was catered for with just 16 clock cycles. 

 

  The data set refresh rate, FR, which has already been defined as the rate at which each new input data 

set is transferred from the simple ADC-based sampling system to the DSM, dictates in turn the corresponding 

update period, PU, which for this example is given by 

     FFNFFP CCRU      310105858,104            

(77) 

clock cycles. Thus, for real-time operation of the proposed block-based solution, this update period must be 

able to accommodate the execution of the three stages of the processing chain as described in Sections 3 to 5, 

namely: 1) the derivation of the multiple WSRG data sets, followed by 2) the carrying out of the SDRD-FFTs 

update period) and the available silicon resources, enables solutions to be identified which are able to meet 

those constraints and thus to be actually realized. A typical parameter set is now described, based upon a 

hypothetical FPGA implementation, consisting of:  

1) sampling rate of  

  9102F   Hz = 2 GHz,         (70) 

where the samples are real-valued (assumed here to be 18-bit integers);  

2) FPGA clock rate of 

  FC = 100×106 Hz = 100 MHz;                (71) 

3) input data set comprising 

  N = 2×220  ~ 2M (2,097,152)        (72) 

real-valued samples, leading to a real-data sFFT of ~ 2M points (only one half of which are independent, 

making problem computationally equivalent to 1M-point complex-data sFFT);  

4) SDRD-FFT of length 

  P = 16K           (73) 

which after transform-domain conversion yields 8K complex-valued FFT outputs;  

5) maximum number of dominant signal frequencies of 

  KD = 512;                       (74) 

6) number of SDRD-FFTs – each carried out by means of the RFHT – to be given by 

  L = 4;           (75) 

and, finally,  

7) parameter ‘α’ relating to the KD-element Min-Heap data structure of Section 5.2 to be given by  

  α = (log2KD+2)/log2KD,          (76)    

so as to yield latency results consistent with those derived for a data structure of length 16K [28] whereby each 

‘insert’ and ‘delete’ operation was catered for with just 16 clock cycles. 

 

  The data set refresh rate, FR, which has already been defined as the rate at which each new input data 

set is transferred from the simple ADC-based sampling system to the DSM, dictates in turn the corresponding 

update period, PU, which for this example is given by 

     FFNFFP CCRU      310105858,104            

(77) 

clock cycles. Thus, for real-time operation of the proposed block-based solution, this update period must be 

able to accommodate the execution of the three stages of the processing chain as described in Sections 3 to 5, 

namely: 1) the derivation of the multiple WSRG data sets, followed by 2) the carrying out of the SDRD-FFTs 

update period) and the available silicon resources, enables solutions to be identified which are able to meet 

those constraints and thus to be actually realized. A typical parameter set is now described, based upon a 

hypothetical FPGA implementation, consisting of:  

1) sampling rate of  

  9102F   Hz = 2 GHz,         (70) 

where the samples are real-valued (assumed here to be 18-bit integers);  

2) FPGA clock rate of 

  FC = 100×106 Hz = 100 MHz;                (71) 

3) input data set comprising 

  N = 2×220  ~ 2M (2,097,152)        (72) 

real-valued samples, leading to a real-data sFFT of ~ 2M points (only one half of which are independent, 

making problem computationally equivalent to 1M-point complex-data sFFT);  

4) SDRD-FFT of length 

  P = 16K           (73) 

which after transform-domain conversion yields 8K complex-valued FFT outputs;  

5) maximum number of dominant signal frequencies of 

  KD = 512;                       (74) 

6) number of SDRD-FFTs – each carried out by means of the RFHT – to be given by 

  L = 4;           (75) 

and, finally,  

7) parameter ‘α’ relating to the KD-element Min-Heap data structure of Section 5.2 to be given by  

  α = (log2KD+2)/log2KD,          (76)    

so as to yield latency results consistent with those derived for a data structure of length 16K [28] whereby each 

‘insert’ and ‘delete’ operation was catered for with just 16 clock cycles. 

 

  The data set refresh rate, FR, which has already been defined as the rate at which each new input data 

set is transferred from the simple ADC-based sampling system to the DSM, dictates in turn the corresponding 

update period, PU, which for this example is given by 

     FFNFFP CCRU      310105858,104            

(77) 

clock cycles. Thus, for real-time operation of the proposed block-based solution, this update period must be 

able to accommodate the execution of the three stages of the processing chain as described in Sections 3 to 5, 

namely: 1) the derivation of the multiple WSRG data sets, followed by 2) the carrying out of the SDRD-FFTs 

update period) and the available silicon resources, enables solutions to be identified which are able to meet 

those constraints and thus to be actually realized. A typical parameter set is now described, based upon a 

hypothetical FPGA implementation, consisting of:  

1) sampling rate of  

  9102F   Hz = 2 GHz,         (70) 

where the samples are real-valued (assumed here to be 18-bit integers);  

2) FPGA clock rate of 

  FC = 100×106 Hz = 100 MHz;                (71) 

3) input data set comprising 

  N = 2×220  ~ 2M (2,097,152)        (72) 

real-valued samples, leading to a real-data sFFT of ~ 2M points (only one half of which are independent, 

making problem computationally equivalent to 1M-point complex-data sFFT);  

4) SDRD-FFT of length 

  P = 16K           (73) 

which after transform-domain conversion yields 8K complex-valued FFT outputs;  

5) maximum number of dominant signal frequencies of 

  KD = 512;                       (74) 

6) number of SDRD-FFTs – each carried out by means of the RFHT – to be given by 

  L = 4;           (75) 

and, finally,  

7) parameter ‘α’ relating to the KD-element Min-Heap data structure of Section 5.2 to be given by  

  α = (log2KD+2)/log2KD,          (76)    

so as to yield latency results consistent with those derived for a data structure of length 16K [28] whereby each 

‘insert’ and ‘delete’ operation was catered for with just 16 clock cycles. 

 

  The data set refresh rate, FR, which has already been defined as the rate at which each new input data 

set is transferred from the simple ADC-based sampling system to the DSM, dictates in turn the corresponding 

update period, PU, which for this example is given by 

     FFNFFP CCRU      310105858,104            

(77) 

clock cycles. Thus, for real-time operation of the proposed block-based solution, this update period must be 

able to accommodate the execution of the three stages of the processing chain as described in Sections 3 to 5, 

namely: 1) the derivation of the multiple WSRG data sets, followed by 2) the carrying out of the SDRD-FFTs 

update period) and the available silicon resources, enables solutions to be identified which are able to meet 

those constraints and thus to be actually realized. A typical parameter set is now described, based upon a 

hypothetical FPGA implementation, consisting of:  

1) sampling rate of  

  9102F   Hz = 2 GHz,         (70) 

where the samples are real-valued (assumed here to be 18-bit integers);  

2) FPGA clock rate of 

  FC = 100×106 Hz = 100 MHz;                (71) 

3) input data set comprising 

  N = 2×220  ~ 2M (2,097,152)        (72) 

real-valued samples, leading to a real-data sFFT of ~ 2M points (only one half of which are independent, 

making problem computationally equivalent to 1M-point complex-data sFFT);  

4) SDRD-FFT of length 

  P = 16K           (73) 

which after transform-domain conversion yields 8K complex-valued FFT outputs;  

5) maximum number of dominant signal frequencies of 

  KD = 512;                       (74) 

6) number of SDRD-FFTs – each carried out by means of the RFHT – to be given by 

  L = 4;           (75) 

and, finally,  

7) parameter ‘α’ relating to the KD-element Min-Heap data structure of Section 5.2 to be given by  

  α = (log2KD+2)/log2KD,          (76)    

so as to yield latency results consistent with those derived for a data structure of length 16K [28] whereby each 

‘insert’ and ‘delete’ operation was catered for with just 16 clock cycles. 

 

  The data set refresh rate, FR, which has already been defined as the rate at which each new input data 

set is transferred from the simple ADC-based sampling system to the DSM, dictates in turn the corresponding 

update period, PU, which for this example is given by 

     FFNFFP CCRU      310105858,104            

(77) 

clock cycles. Thus, for real-time operation of the proposed block-based solution, this update period must be 

able to accommodate the execution of the three stages of the processing chain as described in Sections 3 to 5, 

namely: 1) the derivation of the multiple WSRG data sets, followed by 2) the carrying out of the SDRD-FFTs 

update period) and the available silicon resources, enables solutions to be identified which are able to meet 

those constraints and thus to be actually realized. A typical parameter set is now described, based upon a 

hypothetical FPGA implementation, consisting of:  

1) sampling rate of  

  9102F   Hz = 2 GHz,         (70) 

where the samples are real-valued (assumed here to be 18-bit integers);  

2) FPGA clock rate of 

  FC = 100×106 Hz = 100 MHz;                (71) 

3) input data set comprising 

  N = 2×220  ~ 2M (2,097,152)        (72) 

real-valued samples, leading to a real-data sFFT of ~ 2M points (only one half of which are independent, 

making problem computationally equivalent to 1M-point complex-data sFFT);  

4) SDRD-FFT of length 

  P = 16K           (73) 

which after transform-domain conversion yields 8K complex-valued FFT outputs;  

5) maximum number of dominant signal frequencies of 

  KD = 512;                       (74) 

6) number of SDRD-FFTs – each carried out by means of the RFHT – to be given by 

  L = 4;           (75) 

and, finally,  

7) parameter ‘α’ relating to the KD-element Min-Heap data structure of Section 5.2 to be given by  

  α = (log2KD+2)/log2KD,          (76)    

so as to yield latency results consistent with those derived for a data structure of length 16K [28] whereby each 

‘insert’ and ‘delete’ operation was catered for with just 16 clock cycles. 

 

  The data set refresh rate, FR, which has already been defined as the rate at which each new input data 

set is transferred from the simple ADC-based sampling system to the DSM, dictates in turn the corresponding 

update period, PU, which for this example is given by 

     FFNFFP CCRU      310105858,104            

(77) 

clock cycles. Thus, for real-time operation of the proposed block-based solution, this update period must be 

able to accommodate the execution of the three stages of the processing chain as described in Sections 3 to 5, 

namely: 1) the derivation of the multiple WSRG data sets, followed by 2) the carrying out of the SDRD-FFTs 

update period) and the available silicon resources, enables solutions to be identified which are able to meet 

those constraints and thus to be actually realized. A typical parameter set is now described, based upon a 

hypothetical FPGA implementation, consisting of:  

1) sampling rate of  

  9102F   Hz = 2 GHz,         (70) 

where the samples are real-valued (assumed here to be 18-bit integers);  

2) FPGA clock rate of 

  FC = 100×106 Hz = 100 MHz;                (71) 

3) input data set comprising 

  N = 2×220  ~ 2M (2,097,152)        (72) 

real-valued samples, leading to a real-data sFFT of ~ 2M points (only one half of which are independent, 

making problem computationally equivalent to 1M-point complex-data sFFT);  

4) SDRD-FFT of length 

  P = 16K           (73) 

which after transform-domain conversion yields 8K complex-valued FFT outputs;  

5) maximum number of dominant signal frequencies of 

  KD = 512;                       (74) 

6) number of SDRD-FFTs – each carried out by means of the RFHT – to be given by 

  L = 4;           (75) 

and, finally,  

7) parameter ‘α’ relating to the KD-element Min-Heap data structure of Section 5.2 to be given by  

  α = (log2KD+2)/log2KD,          (76)    

so as to yield latency results consistent with those derived for a data structure of length 16K [28] whereby each 

‘insert’ and ‘delete’ operation was catered for with just 16 clock cycles. 

 

  The data set refresh rate, FR, which has already been defined as the rate at which each new input data 

set is transferred from the simple ADC-based sampling system to the DSM, dictates in turn the corresponding 

update period, PU, which for this example is given by 

     FFNFFP CCRU      310105858,104            

(77) 

clock cycles. Thus, for real-time operation of the proposed block-based solution, this update period must be 

able to accommodate the execution of the three stages of the processing chain as described in Sections 3 to 5, 

namely: 1) the derivation of the multiple WSRG data sets, followed by 2) the carrying out of the SDRD-FFTs 

update period) and the available silicon resources, enables solutions to be identified which are able to meet 

those constraints and thus to be actually realized. A typical parameter set is now described, based upon a 

hypothetical FPGA implementation, consisting of:  

1) sampling rate of  

  9102F   Hz = 2 GHz,         (70) 

where the samples are real-valued (assumed here to be 18-bit integers);  

2) FPGA clock rate of 

  FC = 100×106 Hz = 100 MHz;                (71) 

3) input data set comprising 

  N = 2×220  ~ 2M (2,097,152)        (72) 

real-valued samples, leading to a real-data sFFT of ~ 2M points (only one half of which are independent, 

making problem computationally equivalent to 1M-point complex-data sFFT);  

4) SDRD-FFT of length 

  P = 16K           (73) 

which after transform-domain conversion yields 8K complex-valued FFT outputs;  

5) maximum number of dominant signal frequencies of 

  KD = 512;                       (74) 

6) number of SDRD-FFTs – each carried out by means of the RFHT – to be given by 

  L = 4;           (75) 

and, finally,  

7) parameter ‘α’ relating to the KD-element Min-Heap data structure of Section 5.2 to be given by  

  α = (log2KD+2)/log2KD,          (76)    

so as to yield latency results consistent with those derived for a data structure of length 16K [28] whereby each 

‘insert’ and ‘delete’ operation was catered for with just 16 clock cycles. 

 

  The data set refresh rate, FR, which has already been defined as the rate at which each new input data 

set is transferred from the simple ADC-based sampling system to the DSM, dictates in turn the corresponding 

update period, PU, which for this example is given by 

     FFNFFP CCRU      310105858,104            

(77) 

clock cycles. Thus, for real-time operation of the proposed block-based solution, this update period must be 

able to accommodate the execution of the three stages of the processing chain as described in Sections 3 to 5, 

namely: 1) the derivation of the multiple WSRG data sets, followed by 2) the carrying out of the SDRD-FFTs 

update period) and the available silicon resources, enables solutions to be identified which are able to meet 

those constraints and thus to be actually realized. A typical parameter set is now described, based upon a 

hypothetical FPGA implementation, consisting of:  

1) sampling rate of  

  9102F   Hz = 2 GHz,         (70) 

where the samples are real-valued (assumed here to be 18-bit integers);  

2) FPGA clock rate of 

  FC = 100×106 Hz = 100 MHz;                (71) 

3) input data set comprising 

  N = 2×220  ~ 2M (2,097,152)        (72) 

real-valued samples, leading to a real-data sFFT of ~ 2M points (only one half of which are independent, 

making problem computationally equivalent to 1M-point complex-data sFFT);  

4) SDRD-FFT of length 

  P = 16K           (73) 

which after transform-domain conversion yields 8K complex-valued FFT outputs;  

5) maximum number of dominant signal frequencies of 

  KD = 512;                       (74) 

6) number of SDRD-FFTs – each carried out by means of the RFHT – to be given by 

  L = 4;           (75) 

and, finally,  

7) parameter ‘α’ relating to the KD-element Min-Heap data structure of Section 5.2 to be given by  

  α = (log2KD+2)/log2KD,          (76)    

so as to yield latency results consistent with those derived for a data structure of length 16K [28] whereby each 

‘insert’ and ‘delete’ operation was catered for with just 16 clock cycles. 

 

  The data set refresh rate, FR, which has already been defined as the rate at which each new input data 

set is transferred from the simple ADC-based sampling system to the DSM, dictates in turn the corresponding 

update period, PU, which for this example is given by 

     FFNFFP CCRU      310105858,104            

(77) 

clock cycles. Thus, for real-time operation of the proposed block-based solution, this update period must be 

able to accommodate the execution of the three stages of the processing chain as described in Sections 3 to 5, 

namely: 1) the derivation of the multiple WSRG data sets, followed by 2) the carrying out of the SDRD-FFTs 

update period) and the available silicon resources, enables solutions to be identified which are able to meet 

those constraints and thus to be actually realized. A typical parameter set is now described, based upon a 

hypothetical FPGA implementation, consisting of:  

1) sampling rate of  

  9102F   Hz = 2 GHz,         (70) 

where the samples are real-valued (assumed here to be 18-bit integers);  

2) FPGA clock rate of 

  FC = 100×106 Hz = 100 MHz;                (71) 

3) input data set comprising 

  N = 2×220  ~ 2M (2,097,152)        (72) 

real-valued samples, leading to a real-data sFFT of ~ 2M points (only one half of which are independent, 

making problem computationally equivalent to 1M-point complex-data sFFT);  

4) SDRD-FFT of length 

  P = 16K           (73) 

which after transform-domain conversion yields 8K complex-valued FFT outputs;  

5) maximum number of dominant signal frequencies of 

  KD = 512;                       (74) 

6) number of SDRD-FFTs – each carried out by means of the RFHT – to be given by 

  L = 4;           (75) 

and, finally,  

7) parameter ‘α’ relating to the KD-element Min-Heap data structure of Section 5.2 to be given by  

  α = (log2KD+2)/log2KD,          (76)    

so as to yield latency results consistent with those derived for a data structure of length 16K [28] whereby each 

‘insert’ and ‘delete’ operation was catered for with just 16 clock cycles. 

 

  The data set refresh rate, FR, which has already been defined as the rate at which each new input data 

set is transferred from the simple ADC-based sampling system to the DSM, dictates in turn the corresponding 

update period, PU, which for this example is given by 

     FFNFFP CCRU      310105858,104            

(77) 

clock cycles. Thus, for real-time operation of the proposed block-based solution, this update period must be 

able to accommodate the execution of the three stages of the processing chain as described in Sections 3 to 5, 

namely: 1) the derivation of the multiple WSRG data sets, followed by 2) the carrying out of the SDRD-FFTs 

update period) and the available silicon resources, enables solutions to be identified which are able to meet 

those constraints and thus to be actually realized. A typical parameter set is now described, based upon a 

hypothetical FPGA implementation, consisting of:  

1) sampling rate of  

  9102F   Hz = 2 GHz,         (70) 

where the samples are real-valued (assumed here to be 18-bit integers);  

2) FPGA clock rate of 

  FC = 100×106 Hz = 100 MHz;                (71) 

3) input data set comprising 

  N = 2×220  ~ 2M (2,097,152)        (72) 

real-valued samples, leading to a real-data sFFT of ~ 2M points (only one half of which are independent, 

making problem computationally equivalent to 1M-point complex-data sFFT);  

4) SDRD-FFT of length 

  P = 16K           (73) 

which after transform-domain conversion yields 8K complex-valued FFT outputs;  

5) maximum number of dominant signal frequencies of 

  KD = 512;                       (74) 

6) number of SDRD-FFTs – each carried out by means of the RFHT – to be given by 

  L = 4;           (75) 

and, finally,  

7) parameter ‘α’ relating to the KD-element Min-Heap data structure of Section 5.2 to be given by  

  α = (log2KD+2)/log2KD,          (76)    

so as to yield latency results consistent with those derived for a data structure of length 16K [28] whereby each 

‘insert’ and ‘delete’ operation was catered for with just 16 clock cycles. 

 

  The data set refresh rate, FR, which has already been defined as the rate at which each new input data 

set is transferred from the simple ADC-based sampling system to the DSM, dictates in turn the corresponding 

update period, PU, which for this example is given by 

     FFNFFP CCRU      310105858,104            

(77) 

clock cycles. Thus, for real-time operation of the proposed block-based solution, this update period must be 

able to accommodate the execution of the three stages of the processing chain as described in Sections 3 to 5, 

namely: 1) the derivation of the multiple WSRG data sets, followed by 2) the carrying out of the SDRD-FFTs 

update period) and the available silicon resources, enables solutions to be identified which are able to meet 

those constraints and thus to be actually realized. A typical parameter set is now described, based upon a 

hypothetical FPGA implementation, consisting of:  

1) sampling rate of  

  9102F   Hz = 2 GHz,         (70) 

where the samples are real-valued (assumed here to be 18-bit integers);  

2) FPGA clock rate of 

  FC = 100×106 Hz = 100 MHz;                (71) 

3) input data set comprising 

  N = 2×220  ~ 2M (2,097,152)        (72) 

real-valued samples, leading to a real-data sFFT of ~ 2M points (only one half of which are independent, 

making problem computationally equivalent to 1M-point complex-data sFFT);  

4) SDRD-FFT of length 

  P = 16K           (73) 

which after transform-domain conversion yields 8K complex-valued FFT outputs;  

5) maximum number of dominant signal frequencies of 

  KD = 512;                       (74) 

6) number of SDRD-FFTs – each carried out by means of the RFHT – to be given by 

  L = 4;           (75) 

and, finally,  

7) parameter ‘α’ relating to the KD-element Min-Heap data structure of Section 5.2 to be given by  

  α = (log2KD+2)/log2KD,          (76)    

so as to yield latency results consistent with those derived for a data structure of length 16K [28] whereby each 

‘insert’ and ‘delete’ operation was catered for with just 16 clock cycles. 

 

  The data set refresh rate, FR, which has already been defined as the rate at which each new input data 

set is transferred from the simple ADC-based sampling system to the DSM, dictates in turn the corresponding 

update period, PU, which for this example is given by 

     FFNFFP CCRU      310105858,104            

(77) 

clock cycles. Thus, for real-time operation of the proposed block-based solution, this update period must be 

able to accommodate the execution of the three stages of the processing chain as described in Sections 3 to 5, 

namely: 1) the derivation of the multiple WSRG data sets, followed by 2) the carrying out of the SDRD-FFTs 

update period) and the available silicon resources, enables solutions to be identified which are able to meet 

those constraints and thus to be actually realized. A typical parameter set is now described, based upon a 

hypothetical FPGA implementation, consisting of:  

1) sampling rate of  

  9102F   Hz = 2 GHz,         (70) 

where the samples are real-valued (assumed here to be 18-bit integers);  

2) FPGA clock rate of 

  FC = 100×106 Hz = 100 MHz;                (71) 

3) input data set comprising 

  N = 2×220  ~ 2M (2,097,152)        (72) 

real-valued samples, leading to a real-data sFFT of ~ 2M points (only one half of which are independent, 

making problem computationally equivalent to 1M-point complex-data sFFT);  

4) SDRD-FFT of length 

  P = 16K           (73) 

which after transform-domain conversion yields 8K complex-valued FFT outputs;  

5) maximum number of dominant signal frequencies of 

  KD = 512;                       (74) 

6) number of SDRD-FFTs – each carried out by means of the RFHT – to be given by 

  L = 4;           (75) 

and, finally,  

7) parameter ‘α’ relating to the KD-element Min-Heap data structure of Section 5.2 to be given by  

  α = (log2KD+2)/log2KD,          (76)    

so as to yield latency results consistent with those derived for a data structure of length 16K [28] whereby each 

‘insert’ and ‘delete’ operation was catered for with just 16 clock cycles. 

 

  The data set refresh rate, FR, which has already been defined as the rate at which each new input data 

set is transferred from the simple ADC-based sampling system to the DSM, dictates in turn the corresponding 

update period, PU, which for this example is given by 

     FFNFFP CCRU      310105858,104            

(77) 

clock cycles. Thus, for real-time operation of the proposed block-based solution, this update period must be 

able to accommodate the execution of the three stages of the processing chain as described in Sections 3 to 5, 

namely: 1) the derivation of the multiple WSRG data sets, followed by 2) the carrying out of the SDRD-FFTs 

update period) and the available silicon resources, enables solutions to be identified which are able to meet 

those constraints and thus to be actually realized. A typical parameter set is now described, based upon a 

hypothetical FPGA implementation, consisting of:  

1) sampling rate of  

  9102F   Hz = 2 GHz,         (70) 

where the samples are real-valued (assumed here to be 18-bit integers);  

2) FPGA clock rate of 

  FC = 100×106 Hz = 100 MHz;                (71) 

3) input data set comprising 

  N = 2×220  ~ 2M (2,097,152)        (72) 

real-valued samples, leading to a real-data sFFT of ~ 2M points (only one half of which are independent, 

making problem computationally equivalent to 1M-point complex-data sFFT);  

4) SDRD-FFT of length 

  P = 16K           (73) 

which after transform-domain conversion yields 8K complex-valued FFT outputs;  

5) maximum number of dominant signal frequencies of 

  KD = 512;                       (74) 

6) number of SDRD-FFTs – each carried out by means of the RFHT – to be given by 

  L = 4;           (75) 

and, finally,  

7) parameter ‘α’ relating to the KD-element Min-Heap data structure of Section 5.2 to be given by  

  α = (log2KD+2)/log2KD,          (76)    

so as to yield latency results consistent with those derived for a data structure of length 16K [28] whereby each 

‘insert’ and ‘delete’ operation was catered for with just 16 clock cycles. 

 

  The data set refresh rate, FR, which has already been defined as the rate at which each new input data 

set is transferred from the simple ADC-based sampling system to the DSM, dictates in turn the corresponding 

update period, PU, which for this example is given by 

     FFNFFP CCRU      310105858,104            

(77) 

clock cycles. Thus, for real-time operation of the proposed block-based solution, this update period must be 

able to accommodate the execution of the three stages of the processing chain as described in Sections 3 to 5, 

namely: 1) the derivation of the multiple WSRG data sets, followed by 2) the carrying out of the SDRD-FFTs 

update period) and the available silicon resources, enables solutions to be identified which are able to meet 

those constraints and thus to be actually realized. A typical parameter set is now described, based upon a 

hypothetical FPGA implementation, consisting of:  

1) sampling rate of  

  9102F   Hz = 2 GHz,         (70) 

where the samples are real-valued (assumed here to be 18-bit integers);  

2) FPGA clock rate of 

  FC = 100×106 Hz = 100 MHz;                (71) 

3) input data set comprising 

  N = 2×220  ~ 2M (2,097,152)        (72) 

real-valued samples, leading to a real-data sFFT of ~ 2M points (only one half of which are independent, 

making problem computationally equivalent to 1M-point complex-data sFFT);  

4) SDRD-FFT of length 

  P = 16K           (73) 

which after transform-domain conversion yields 8K complex-valued FFT outputs;  

5) maximum number of dominant signal frequencies of 

  KD = 512;                       (74) 

6) number of SDRD-FFTs – each carried out by means of the RFHT – to be given by 

  L = 4;           (75) 

and, finally,  

7) parameter ‘α’ relating to the KD-element Min-Heap data structure of Section 5.2 to be given by  

  α = (log2KD+2)/log2KD,          (76)    

so as to yield latency results consistent with those derived for a data structure of length 16K [28] whereby each 

‘insert’ and ‘delete’ operation was catered for with just 16 clock cycles. 

 

  The data set refresh rate, FR, which has already been defined as the rate at which each new input data 

set is transferred from the simple ADC-based sampling system to the DSM, dictates in turn the corresponding 

update period, PU, which for this example is given by 

     FFNFFP CCRU      310105858,104            

(77) 

clock cycles. Thus, for real-time operation of the proposed block-based solution, this update period must be 

able to accommodate the execution of the three stages of the processing chain as described in Sections 3 to 5, 

namely: 1) the derivation of the multiple WSRG data sets, followed by 2) the carrying out of the SDRD-FFTs 

update period) and the available silicon resources, enables solutions to be identified which are able to meet 

those constraints and thus to be actually realized. A typical parameter set is now described, based upon a 

hypothetical FPGA implementation, consisting of:  

1) sampling rate of  

  9102F   Hz = 2 GHz,         (70) 

where the samples are real-valued (assumed here to be 18-bit integers);  

2) FPGA clock rate of 

  FC = 100×106 Hz = 100 MHz;                (71) 

3) input data set comprising 

  N = 2×220  ~ 2M (2,097,152)        (72) 

real-valued samples, leading to a real-data sFFT of ~ 2M points (only one half of which are independent, 

making problem computationally equivalent to 1M-point complex-data sFFT);  

4) SDRD-FFT of length 

  P = 16K           (73) 

which after transform-domain conversion yields 8K complex-valued FFT outputs;  

5) maximum number of dominant signal frequencies of 

  KD = 512;                       (74) 

6) number of SDRD-FFTs – each carried out by means of the RFHT – to be given by 

  L = 4;           (75) 

and, finally,  

7) parameter ‘α’ relating to the KD-element Min-Heap data structure of Section 5.2 to be given by  

  α = (log2KD+2)/log2KD,          (76)    

so as to yield latency results consistent with those derived for a data structure of length 16K [28] whereby each 

‘insert’ and ‘delete’ operation was catered for with just 16 clock cycles. 

 

  The data set refresh rate, FR, which has already been defined as the rate at which each new input data 

set is transferred from the simple ADC-based sampling system to the DSM, dictates in turn the corresponding 

update period, PU, which for this example is given by 

     FFNFFP CCRU      310105858,104            

(77) 

clock cycles. Thus, for real-time operation of the proposed block-based solution, this update period must be 

able to accommodate the execution of the three stages of the processing chain as described in Sections 3 to 5, 

namely: 1) the derivation of the multiple WSRG data sets, followed by 2) the carrying out of the SDRD-FFTs 



Volume 1 | Issue 2 | 85OA J Applied Sci Technol, 2023

available, is obtained at the expense of 54 fast multipliers (with 
12 involving a fixed multiplicand), 105 adders (noting that 
each adder requires just O(W) logic slices when implemented 

in logic) and 0.28 Mwords of RAM – the external storage of 
the input data set as held in the double buffered DSM not being 
included in these figures. 

 

Figure 8: Processing Chain for Carrying out 2M-Point Real-Data sFFT with 
Parallelization Parameters Given By: S1 = 2 & S2 = S3 = 4  
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Figure 8: Processing Chain for Carrying out 2M-Point  Real-Data sFFT with Parallelization Parameters: S1 = 2 & S2 = S3 = 4

With the adoption of a low-end Xilinx Vertex-6 FPGA such as 
the XC6VLX240T device, a total of 768 embedded multipliers 
would be available together with ~ 0.82 Mwords of 18-bit block 
RAM (BRAM), so that the fast multiplier requirement of the 
proposed real data sFFT would involve a utilization figure of ~ 
7% and the memory requirement a utilization figure of ~ 34% 
(with 23% accounting for the multiple DAMs and WCMs). [37]. 
When the data-space processing (randomized data reordering 
and windowing) is excluded from these figures – as was the 
case for the MIT streaming solution of Agarwal et al – the fast 

multiplier requirement reduces to a utilization figure of ~ 5.5%  
and the memory requirement (still including access to TSMs) to 
~ 19.5%, with a latency of ~ 0.92 ms [2]. With the same device 
and clock rate, the Agarwal solution (which, like the proposed 
solution, involves the production and processing of 32K low 
resolution spectral samples in order to cater for the same sized 
spectrum of ~ 1M independent samples) achieves a latency of 
~ 1.39 ms and an update time of ~ 1.16 ms at the expense of a 
fast multiplier utilization of ~ 16% and a memory utilization of 
~ 26% – see Table 2. 
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[1] Vertex-6 FPGA XC6VLX240T: Resources = 768 embedded multipliers & ~ 0.82 Mwords of BRAM   

[2] Vertex Ultrascale FPGA XVCU095: Resources = 768 embedded multipliers & ~ 1.69 Mwords of BRAM   

[3] Vertex-4 FPGA XC4VLX60: Resources = 64 embedded multipliers & ~ 0.16 Mwords of BRAM 

 

Table 2: Comparative Performance Figures for Implementation of sFFT & FFT 

FPGA-Based Solutions  

 
 

Solution 
 

Space-Complexity 
 (Utilization %) 

Time-Complexity         
(clock cycles × 103) Clock Rate  

(MHz) 
Multipliers Memory Latency Update Time 

Proposed sFFT Solution [1] 
~ 2M points, real data  

Short Dense FFTs          
+ Transform-Space 

Processing 

~ 5.5 ~ 19.5 
~ 93          

(~ 0.93 ms) 

~ 93          

(~ 0.93 ms) 
100 

Proposed sFFT Solution [1] 
~ 2M points, real data 

# Data-Space Processing #    
+ Short Dense FFTs         
+ Transform-Space 

Processing  

~ 7 ~ 34 
~ 97          

(~ 0.97 ms)  

~ 97          

(~ 0.97 ms) 
100 

Agarwal sFFT Solution [1] 
~1M points, complex data 

Short Dense FFTs          
+ Transform-Space 

Processing 

~ 16 ~ 26 
~ 139         

(~ 1.39 ms) 

~ 116         

(~ 1.16 ms) 
100 

Kanders FFT Solution [2] 
~1M points, complex data ~ 4 ~ 67 -             ~ 1000        

(~ 4.29 ms) 
233 

Kamazaki FFT Solution [3] 
~1M points, complex data high high  ~ 500        

(~ 4.00 ms)    
- 125 

[1] Vertex-6 FPGA XC6VLX240T: Resources = 768 embedded multipliers & ~ 0.82 Mwords of BRAM  
[2] Vertex Ultrascale FPGA XVCU095: Resources = 768 embedded multipliers & ~ 1.69 Mwords of BRAM  

[3] Vertex-4 FPGA XC4VLX60: Resources = 64 embedded multipliers & ~ 0.16 Mwords of BRAM

Table 2: Comparative Performance Figures for Implementation of sFFT & FFT FPGA Based Solutions 

Thus, for the simplified problem (involving data-space to 
transform-space conversion and the transform-space processing 
only) discussed above, the proposed real-data sFFT solution, 
when compared to the Agarwal solution, is able to achieve a 
latency reduction of ~ 33% whilst at the same time achieving 
reductions in resource  utilization of ~ 66% for the multipliers 
and ~ 25% for the memory – although the associated logic 
requirement cannot be properly assessed without information 
derived from a real world implementation. Note, however, that 
in comparing the two solutions, whereas the Agarwal solution 
uses eight short dense FFTs, each of length 4K, the proposed 
solution uses four such FFTs, each of length 8K (as obtained 
from the 16K Hartley space outputs), so that the proposed 
solution possesses the attraction of an extra 3 dB of SNR in 
the low resolution spectral data (due to increased coherent 
gain) but at the expense of a doubling of the variance in the 
real and imaginary components of the resulting sFFT outputs. 
At the time of publication, however, the Agarwal solution 
appeared to offer significant improvements over existing sFFT 
software implementations such as the multi-threaded software 

implementation of that required 100 ms for addressing the same 
size of problem [2].

Finally, for the purposes of comparison, Table 2 outlines the 
performances of the dense 1M-point complex-data FFTs of: 1) 
Kanders et al which shows itself able to produce a full 1M-point 
spectrum but, compared to the proposed solution, requires 
approximately 4 times the memory requirement and 7/3 times the 
clock rate whilst achieving an update time that’s approximately 
4 times longer; and 2) Kamazaki et al [26], which also shows 
itself able to produce a full 1M-point spectrum but, compared 
to the proposed solution, requires 5/4 times the clock rate whilst 
achieving a latency that’s approximately 4 times longer – the 
small amount of resources available on the chosen device also 
suggests that the utilization must be particularly high [26,27]. 
An additional comparison may be made with the dense 1M point 
complex-data FFT of Han et al [16] which requires the benefits 
(and far greater expense) of an application-specific integrated 
circuit (ASIC) implementation [33], with comparable 40 nm 
technology and a 500 MHz clock rate, in order to achieve a high 
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computational density yielding a latency of 14.8 ms [16,33]. 

8. Summary and Conclusions  
The aim of the research described in this paper has been to 
produce a flexible and scalable design for the real-data sFFT 
that’s able to yield resource efficient low power solutions, when 
implemented with silicon-based computing technology, this 
being achieved by maximizing the computational density through 
the exploitation of both partitioned memory and the real valued 
nature of the data. The parameterization of the design enables 
different problem sizes and requirements to be simply catered 
for through the replication of silicon resources (i.e. multiple 
memories and processing modules), rather than through changes 
to the basic design, resulting in a flexible and easily modifiable 
solution. A theoretical analysis has shown that with a low-
end FPGA device it would be possible, with frequency sparse 
data comprising ~ 2M real-valued samples, for the frequencies 
and values of the 512 dominant spectral components to be 
determined via the proposed sFFT in < 1 ms whilst maintaining 
low resource utilization. Such a performance would appear to 
compare favourably – in terms of fast multiplier and memory 
utilization, together with latency – with other recently published 
FFT and sFFT silicon-based solutions. 
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