
 Volume 1 | Issue 2 | 68OA J Applied Sci Technol, 2023

Citation: Jones, K. J. (2023). Design for Resource-Efficient Parallel Solution to Real-Data Sparse FFT. OA J Applied Sci
Technol, 1(2), 68-88.

Design for Resource-Efficient Parallel Solution to Real-Data Sparse FFT

*Corresponding Author
Keith John Jones, Consultant Mathematician, Weymouth, Dorset, UK.

Submitted: 2023, July 01; Accepted: 2023, July 21 ; Published: 2023, Aug 21

Keith John Jones*

Consultant Mathematician(Retired), UK

Abstract
The maximum size of data set being presented to the discrete Fourier transform (DFT) is becoming increasingly large to
reflect the increasingly challenging problems being faced in today’s ‘big data’ era, in areas such as astronomy, medical
imaging and the real-time spectrum analysis of multi GHz radio frequency signals for cognitive radio networks. Such
problems are typically addressed by means of the fast Fourier transform (FFT), but there will always be data sets – typically
real valued in nature – that are too large to be efficiently processed in real time with existing computing technology, so that
alternative approaches are needed. The approach pursued here for the spectrum analysis problem assumes that a relatively
small number of outputs are likely to contain detectable levels of signal energy with such signals being detected through
the use of a sparse version of the FFT (sFFT). A flexible and scalable sFFT design has been sought for implementation
with silicon-based computing technology that’s able to yield resource efficient low power solutions by maximizing the
computational density through exploitation of both partitioned memory and the real valued nature of the data. A theoretical
analysis shows how this may be achieved with a parameterized solution which, with a low-end field programmable gate
array (FPGA) device, a 2 GHz sampling rate and a 100 MHz clock rate, is able to achieve a latency of < 1 ms for a 2 million
point real-data sFFT together with low resource utilization and which compares favourably with other recently published
FFT and sFFT solutions.

Research Article

Keywords: FFT, FHT, FPGA, Sparse, Spectrum, Sub-Sampling

1. Introduction
The discrete Fourier transform (DFT) is an orthogonal transform
which may be expressed in its normalized form as

					 (1)
for k = 0,1,…,N-1, where

					 (2)

is the Nth complex primitive root of unity [5,12,34]. The
maximum size of data set being presented to the DFT is becoming
increasingly large to reflect the increasingly challenging
problems being faced in today’s ‘big data’ era, in areas such
as astronomy, medical imaging and the real-time spectrum
analysis of multi GHz radio frequency signals – such as might be
encountered, for example, with cognitive radio networks – where
the power spectral density (PSD) may be obtained directly from
the DFT coefficients. Such problems are typically addressed
by means of a fast solution to the DFT, referred to generically
as the fast Fourier transform (FFT) with much research being
carried out in recent years into the design of such algorithms
for the case where the transform is both ‘dense’ and very large,

with references catering for transforms of up to 1 million (M)
samples. However, there will always be problems that are too
large to be efficiently implemented with the existing computing
technology – in terms of both power consumption and silicon
resources – so that alternative approaches need still to be found
for addressing such problems [12,16,26,27].
		
When dealing with real-world spectrum estimation problems
involving such large data sets it is generally the case that a
relatively small number of the outputs will actually contain
detectable levels of signal energy, with the remainder comprising
just noise. As a result, the problem of detecting those frequency-
dependant signals may be tackled through the use of a ‘sparse’
version of the FFT, referred to hereafter as the sFFT [15]. A
generic version of the algorithm, based upon research carried
out at the Massachusetts Institute of Technology (MIT) in the
USA over the past decade or so is outlined in Fig. 1, which
lists the various tasks that need typically to be performed. With
this algorithm, which may be viewed as a key computational
tool in the increasingly important field of compressive sensing
wideband spectrum sensing systems may be defined whereby
only those signal frequencies of interest are identified and the
associated spectrum components computed [1,2,13,30].

Keywords: FFT, FHT, FPGA, Sparse, Spectrum, Sub-Sampling

1. Introduction

The discrete Fourier transform (DFT) [12] is an orthogonal transform which may be expressed in its

normalized form as

 





1N

0n

nk
N

)F(W].n[x
N
1]k[X (1)

for k = 0,1,…,N-1, where

  N/2iexpWN  (2)

is the Nth complex primitive root of unity [5, 34]. The maximum size of data set being presented to the DFT is

becoming increasingly large to reflect the increasingly challenging problems being faced in today’s ‘big data’

era, in areas such as astronomy, medical imaging and the real-time spectrum analysis of multi-GHz radio

frequency signals – such as might be encountered, for example, with cognitive radio networks – where the

power spectral density (PSD) may be obtained directly from the DFT coefficients. Such problems are typically

addressed by means of a fast solution to the DFT, referred to generically as the fast Fourier transform (FFT)

[12], with much research being carried out in recent years into the design of such algorithms for the case where

the transform is both ‘dense’ and very large, with references [16,26,27] catering for transforms of up to 1

million (M) samples. However, there will always be problems that are too large to be efficiently implemented

with the existing computing technology – in terms of both power consumption and silicon resources – so that

alternative approaches need still to be found for addressing such problems.

 When dealing with real-world spectrum estimation problems involving such large data sets it is generally

the case that a relatively small number of the outputs will actually contain detectable levels of signal energy,

with the remainder comprising just noise. As a result, the problem of detecting those frequency-dependant

signals may be tackled through the use of a ‘sparse’ version of the FFT, referred to hereafter as the sFFT [15].

A generic version of the algorithm, based upon research carried out at the Massachusetts Institute of

Technology (MIT) in the USA over the past decade or so [19,20], is outlined in Fig. 1, which lists the various

tasks that need typically to be performed. With this algorithm, which may be viewed as a key computational

tool in the increasingly important field of compressive sensing [1,13], wideband spectrum sensing systems may

be defined [2,30] whereby only those signal frequencies of interest are identified and the associated spectrum

components computed.

Figure 1 insert here

Keywords: FFT, FHT, FPGA, Sparse, Spectrum, Sub-Sampling

1. Introduction

The discrete Fourier transform (DFT) [12] is an orthogonal transform which may be expressed in its

normalized form as

 





1N

0n

nk
N

)F(W].n[x
N
1]k[X (1)

for k = 0,1,…,N-1, where

  N/2iexpWN  (2)

is the Nth complex primitive root of unity [5, 34]. The maximum size of data set being presented to the DFT is

becoming increasingly large to reflect the increasingly challenging problems being faced in today’s ‘big data’

era, in areas such as astronomy, medical imaging and the real-time spectrum analysis of multi-GHz radio

frequency signals – such as might be encountered, for example, with cognitive radio networks – where the

power spectral density (PSD) may be obtained directly from the DFT coefficients. Such problems are typically

addressed by means of a fast solution to the DFT, referred to generically as the fast Fourier transform (FFT)

[12], with much research being carried out in recent years into the design of such algorithms for the case where

the transform is both ‘dense’ and very large, with references [16,26,27] catering for transforms of up to 1

million (M) samples. However, there will always be problems that are too large to be efficiently implemented

with the existing computing technology – in terms of both power consumption and silicon resources – so that

alternative approaches need still to be found for addressing such problems.

 When dealing with real-world spectrum estimation problems involving such large data sets it is generally

the case that a relatively small number of the outputs will actually contain detectable levels of signal energy,

with the remainder comprising just noise. As a result, the problem of detecting those frequency-dependant

signals may be tackled through the use of a ‘sparse’ version of the FFT, referred to hereafter as the sFFT [15].

A generic version of the algorithm, based upon research carried out at the Massachusetts Institute of

Technology (MIT) in the USA over the past decade or so [19,20], is outlined in Fig. 1, which lists the various

tasks that need typically to be performed. With this algorithm, which may be viewed as a key computational

tool in the increasingly important field of compressive sensing [1,13], wideband spectrum sensing systems may

be defined [2,30] whereby only those signal frequencies of interest are identified and the associated spectrum

components computed.

Figure 1 insert here

Open Access Journal of Applied Science and Technology
ISSN: 2993-5377

Volume 1 | Issue 2 | 69OA J Applied Sci Technol, 2023

Figure 1: Outline of Generic Processing Scheme for Sparse FFT algorithm

 output spectrum

input data set

 Repeat × 1

Randomized Data Reordering
+

Windowing

DATA-SPACE
PROCESSING

Repeat × L

Determination of Signal
Frequencies from Frequencies of

Interest Occurring within Dominant
FFT Bins

TRANSFORM-SPACE
PROCESSING

Repeat × L

Determination of Spectrum
Components for Identified

Signal Frequencies

Computation of Short Dense FFT
Routine

DATA-SPACE TO
TRANSFORM-SPACE

CONVERSION
Repeat × L

Location of Dominant FFT Bins

 Repeat × 1

Note: L = no of data subsets

Figure 1: Outline of Generic Processing Scheme for Sparse FFT algorithm

As with most modern digital signal processing (DSP) algorithms,
the input data set to the sFFT is invariably taken to consist of
complex valued samples comprising both real (in-phase) and
imaginary (quadrature) components so that the short dense
(as opposed to sparse) FFTs needing to be performed by the
algorithm are also assumed to operate on complex valued data.
With most real world applications, however, the naturally (NAT)
ordered input data typically starts out in real valued (fixed-point
integer) form, as produced by the analog to digital conversion
(ADC) unit, only to be subsequently processed with a complex
data solution – regardless of the nature of the input data – given
that the designs of most commercially available fixed radix FFTs
are built around the adoption of the complex-data multiplier
and accumulator (MAC). This is an arithmetic unit ideally
suited to the implementation of the radix-2 butterfly, which is
the computational engine used for carrying out the repetitive
arithmetic operations required by the complex data version of
the radix-2 FFT.

The complex-data approach might typically entail the initial
conversion of the real valued data to complex-valued data via

a wideband digital down-conversion (DDC) process or the
adoption of a ‘real from-complex’ strategy whereby two real
data DFTs are computed simultaneously via one full length
complex-data FFT or where one real-data DFT is computed
via one half-length complex-data FFT [25]. Each of the real
from-complex solutions, however, involves a computational
overhead when compared to the more direct approach of a real-
data FFT in terms of increased memory, increased processing
delay to allow for the possible acquisition/processing of pairs
of data sets, and additional packing/unpacking complexity. With
the DDC approach, the integrity of the information content of
short duration signals may also be compromised through the
introduction of the filtering operation.

A number of specialized FFT algorithms do exist for dealing
with the case of real-valued data which compare favourably,
in terms of arithmetic complexity and memory requirement,
with those derived using the real-from-complex strategy, but
suffer in terms of a loss of regularity (making silicon based
hardware implementations somewhat less attractive) and
reduced flexibility in that different algorithms are typically

Volume 1 | Issue 2 | 70OA J Applied Sci Technol, 2023

required for the computation of the forward DFT and that of its
inverse [7,11,31]. A more recent study has produced a solution,
based upon modification (removing redundant operations) of
the complex-data version of the familiar radix-2 Cooley-Tukey
algorithm with NAT-ordered inputs, which possesses a more
regular structure for an efficient pipelined implementation –
although the processing requirements do vary from one pipeline
stage to the next [3,9,14]. This is aimed at streaming (or
continuous flow) rather than block-based (or batch) operation
and is achieved at the expense of having the outputs produced
in a non-standard (that is, not bit-reversed) order so that a more
complex pipelining scheme is required for retrieving the data in
the required NAT-ordered form [25]. Such solutions to the real-
data FFT, however, are not scalable (which refers to the ease with
which the solution may be modified in order to accommodate
increasing or decreasing transform sizes or parameter changes)
so that larger transforms require proportionately longer pipelines
and thus increased latency as well as proportionately more
resources for their implementation.

The aim of this paper, therefore, is to produce a flexible (achieved
through parameterization) and scalable design for the real-data
sFFT that is able, through maximization of the throughput per
unit area of silicon – referred to as the computational density
– to yield resource efficient low power solutions that are also
able to exploit directly the real valued nature of the data, as
produced by the ADC unit [25]. This is achieved through: 1)
the extensive use of partitioned memory as this facilitates the
parallel computation of the sFFT which enables the clock rate,
and thus the power consumption, to be minimized, and 2) the
adoption of a resource efficient and scalable solution to the
discrete Hartley transform (DHT) [6,18] – referred to as the
regularized fast Hartley transform (RFHT) – for carrying out, in
optimal fashion, the short dense real-data FFTs – referred to as
SDRD-FFTs – used for processing the multiple short randomly-
generated (SRG) data sets, as derived from the input data set via
the use of a random (RND) number generator and as required by
most variations of the sFFT algorithm [23-25].

Note that most of the memories used for storage of the various
data sets produced during the execution of the sFFT algorithm
are each to be partitioned into eight equal sized memory banks
made up of fast dual port random access memory (RAM). This
makes them consistent with the operation of the RFHT whose
performance has already been proven in silicon with a fixed-
point implementation using field programmable gate array
(FPGA) technology and with partitioned memory being used to
facilitate an eight fold speed-up over a purely sequential solution
to the real data FFT [24,33].

The validity of using the RFHT – which is simply a fast and
highly-parallel solution to the real valued DHT – for computing
the real data DFT derives from the fact that the output data sets
produced by the two orthogonal transforms, the DFT, as given
by Eqtn. 1, and the DHT, as given in its normalized form by the
expression

	 				 (3)

for k = 0,1,…,N-1, where the transform kernel is given by the
‘cas’ function

may each be simply obtained, one from the other, so that the
class of fast algorithms typically used for solving the DHT –
referred to generically as the fast Hartley transform (FHT) and
for which the RFHT is a member – may also be effectively used
to solve the DFT, particularly when the input data set is known
to be real valued in nature [6]. To see the truth of this, note that
the equality
					

(where ‘Re’ stands for real component and ‘Im’ stands
for imaginary component) relates the kernels of the two
transformations. As a result

which expresses the DHT outputs in terms of the DFT outputs,
whilst the equations

express the real and imaginary components of the DFT
outputs, respectively, in terms of the DHT outputs and where,
from transform periodicity, index ‘–k’ may be regarded as
being equivalent to ‘N–k’. This enables the PSD outputs to be
expressed directly in terms of either DFT or DHT outputs via
the expression
 		

as will be required when searching for the dominant SDRD-
FFTs outputs, to be discussed in Section 5.

Thus, following this introductory section, Section 2 provides
a brief overview of the design process which involves a
description of the basic tasks needing to be performed together
with a discussion of some of the key design issues. Section 3
next discusses the first (or data space) stage of the processing
chain (see Fig. 1), which is concerned with the derivation of the
windowed versions of the multiple SRG (referred to as WSRG)
data sets. This is followed in Section 4 with an account of the
second stage of the processing chain which converts the problem
from data-space to transform-space and relates to how the RFHT
may be efficiently used for carrying out the SDRD-FFTs that
operate upon the WSRG data sets. Section 5 next discusses the
third and final (or transform space) stage of the processing chain
(see Fig. 1), namely the determination of: 1) the locations of
the dominant frequency bins for each set of SDRD FFT outputs
– after first converting the data from Hartley space to Fourier

required NAT-ordered form. Such solutions to the real-data FFT, however, are not scalable (which refers to the

ease with which the solution may be modified in order to accommodate increasing or decreasing transform

sizes or parameter changes) so that larger transforms require proportionately longer pipelines and thus

increased latency as well as proportionately more resources for their implementation.

 The aim of this paper, therefore, is to produce a flexible (achieved through parameterization) and

scalable design for the real-data sFFT that is able, through maximization of the throughput per unit area of

silicon – referred to as the computational density [25] – to yield resource-efficient low-power solutions that are

also able to exploit directly the real-valued nature of the data, as produced by the ADC unit. This is achieved

through: 1) the extensive use of partitioned memory as this facilitates the parallel computation of the sFFT

which enables the clock rate, and thus the power consumption, to be minimized, and 2) the adoption of a

resource-efficient and scalable solution to the discrete Hartley transform (DHT) [6,18] – referred to as the

regularized fast Hartley transform (RFHT) [23-25] – for carrying out, in optimal fashion, the short dense real-

data FFTs – referred to as SDRD-FFTs – used for processing the multiple short randomly-generated (SRG)

data sets, as derived from the input data set via the use of a random (RND) number generator and as required

by most variations of the sFFT algorithm.

 Note that most of the memories used for storage of the various data sets produced during the execution

of the sFFT algorithm are each to be partitioned into eight equal-sized memory banks made up of fast dual-port

random access memory (RAM). This makes them consistent with the operation of the RFHT whose

performance has already been proven in silicon with a fixed-point implementation [24] using

field-programmable gate array (FPGA) technology [33] and with partitioned memory being used to facilitate an

eight-fold speed-up over a purely sequential solution to the real-data FFT.

 The validity of using the RFHT – which is simply a fast and highly-parallel solution to the real-valued

DHT – for computing the real-data DFT derives from the fact that the output data sets produced by the two

orthogonal transforms, the DFT, as given by Eqtn. 1, and the DHT, as given in its normalized form by the

expression

  





1N

0n

)H(N/nk2cas].n[x
N
1]k[X (3)

for k = 0,1,…,N-1, where the transform kernel is given by the ‘cas’ function

      N/nk2sinN/nk2cosN/nk2cas  , (4)

may each be simply obtained, one from the other, so that the class of fast algorithms typically used for solving

the DHT – referred to generically as the fast Hartley transform (FHT) [6] and for which the RFHT is a member

required NAT-ordered form. Such solutions to the real-data FFT, however, are not scalable (which refers to the

ease with which the solution may be modified in order to accommodate increasing or decreasing transform

sizes or parameter changes) so that larger transforms require proportionately longer pipelines and thus

increased latency as well as proportionately more resources for their implementation.

 The aim of this paper, therefore, is to produce a flexible (achieved through parameterization) and

scalable design for the real-data sFFT that is able, through maximization of the throughput per unit area of

silicon – referred to as the computational density [25] – to yield resource-efficient low-power solutions that are

also able to exploit directly the real-valued nature of the data, as produced by the ADC unit. This is achieved

through: 1) the extensive use of partitioned memory as this facilitates the parallel computation of the sFFT

which enables the clock rate, and thus the power consumption, to be minimized, and 2) the adoption of a

resource-efficient and scalable solution to the discrete Hartley transform (DHT) [6,18] – referred to as the

regularized fast Hartley transform (RFHT) [23-25] – for carrying out, in optimal fashion, the short dense real-

data FFTs – referred to as SDRD-FFTs – used for processing the multiple short randomly-generated (SRG)

data sets, as derived from the input data set via the use of a random (RND) number generator and as required

by most variations of the sFFT algorithm.

 Note that most of the memories used for storage of the various data sets produced during the execution

of the sFFT algorithm are each to be partitioned into eight equal-sized memory banks made up of fast dual-port

random access memory (RAM). This makes them consistent with the operation of the RFHT whose

performance has already been proven in silicon with a fixed-point implementation [24] using

field-programmable gate array (FPGA) technology [33] and with partitioned memory being used to facilitate an

eight-fold speed-up over a purely sequential solution to the real-data FFT.

 The validity of using the RFHT – which is simply a fast and highly-parallel solution to the real-valued

DHT – for computing the real-data DFT derives from the fact that the output data sets produced by the two

orthogonal transforms, the DFT, as given by Eqtn. 1, and the DHT, as given in its normalized form by the

expression

  





1N

0n

)H(N/nk2cas].n[x
N
1]k[X (3)

for k = 0,1,…,N-1, where the transform kernel is given by the ‘cas’ function

      N/nk2sinN/nk2cosN/nk2cas  , (4)

may each be simply obtained, one from the other, so that the class of fast algorithms typically used for solving

the DHT – referred to generically as the fast Hartley transform (FHT) [6] and for which the RFHT is a member

required NAT-ordered form. Such solutions to the real-data FFT, however, are not scalable (which refers to the

ease with which the solution may be modified in order to accommodate increasing or decreasing transform

sizes or parameter changes) so that larger transforms require proportionately longer pipelines and thus

increased latency as well as proportionately more resources for their implementation.

 The aim of this paper, therefore, is to produce a flexible (achieved through parameterization) and

scalable design for the real-data sFFT that is able, through maximization of the throughput per unit area of

silicon – referred to as the computational density [25] – to yield resource-efficient low-power solutions that are

also able to exploit directly the real-valued nature of the data, as produced by the ADC unit. This is achieved

through: 1) the extensive use of partitioned memory as this facilitates the parallel computation of the sFFT

which enables the clock rate, and thus the power consumption, to be minimized, and 2) the adoption of a

resource-efficient and scalable solution to the discrete Hartley transform (DHT) [6,18] – referred to as the

regularized fast Hartley transform (RFHT) [23-25] – for carrying out, in optimal fashion, the short dense real-

data FFTs – referred to as SDRD-FFTs – used for processing the multiple short randomly-generated (SRG)

data sets, as derived from the input data set via the use of a random (RND) number generator and as required

by most variations of the sFFT algorithm.

 Note that most of the memories used for storage of the various data sets produced during the execution

of the sFFT algorithm are each to be partitioned into eight equal-sized memory banks made up of fast dual-port

random access memory (RAM). This makes them consistent with the operation of the RFHT whose

performance has already been proven in silicon with a fixed-point implementation [24] using

field-programmable gate array (FPGA) technology [33] and with partitioned memory being used to facilitate an

eight-fold speed-up over a purely sequential solution to the real-data FFT.

 The validity of using the RFHT – which is simply a fast and highly-parallel solution to the real-valued

DHT – for computing the real-data DFT derives from the fact that the output data sets produced by the two

orthogonal transforms, the DFT, as given by Eqtn. 1, and the DHT, as given in its normalized form by the

expression

  





1N

0n

)H(N/nk2cas].n[x
N
1]k[X (3)

for k = 0,1,…,N-1, where the transform kernel is given by the ‘cas’ function

      N/nk2sinN/nk2cosN/nk2cas  , (4)

may each be simply obtained, one from the other, so that the class of fast algorithms typically used for solving

the DHT – referred to generically as the fast Hartley transform (FHT) [6] and for which the RFHT is a member

– may also be effectively used to solve the DFT, particularly when the input data set is known to be real-valued

in nature. To see the truth of this, note that the equality

      nk
N

nk
N WImWReN/nk2cas  (5)

(where ‘Re’ stands for real component and ‘Im’ stands for imaginary component) relates the kernels of the two

transformations. As a result

    ]k[XIm]k[XRe]k[X)F()F()H( , (6)

which expresses the DHT outputs in terms of the DFT outputs, whilst the equations

    ]k[X]k[X2
1]k[XRe)H()H()F( (7)

 &    ]k[X]k[X2
1]k[XIm)H()H()F( , (8)

express the real and imaginary components of the DFT outputs, respectively, in terms of the DHT outputs and

where, from transform periodicity, index ‘–k’ may be regarded as being equivalent to ‘N–k’. This enables the

PSD outputs to be expressed directly in terms of either DFT or DHT outputs via the expression

    ]k[XIm]k[XRe]k[PSD)F(2)F(2 

     




 

2)H(2)H(]k[X]k[X2
1 , (9)

as will be required when searching for the dominant SDRD-FFTs outputs, to be discussed in Section 5.

 Thus, following this introductory section, Section 2 provides a brief overview of the design process

which involves a description of the basic tasks needing to be performed together with a discussion of some of

the key design issues. Section 3 next discusses the first (or data-space) stage of the processing chain (see Fig.

1), which is concerned with the derivation of the windowed versions of the multiple SRG (referred to as

WSRG) data sets. This is followed in Section 4 with an account of the second stage of the processing chain

which converts the problem from data-space to transform-space and relates to how the RFHT may be

efficiently used for carrying out the SDRD-FFTs that operate upon the WSRG data sets. Section 5 next

discusses the third and final (or transform-space) stage of the processing chain (see Fig. 1), namely the

determination of: 1) the locations of the dominant frequency bins for each set of SDRD-FFT outputs – after

first converting the data from Hartley-space to Fourier-space and generating the PSD data, together with 2)

those signal frequencies appearing as frequencies of interest (FOI) within the dominant frequency bins of each

set of SDRD-FFT outputs and, finally, 3) the spectrum components for those identified signal frequencies. This

is followed in Section 6 with a discussion of the possible complexity trade-offs – in terms of both ‘space’ and

‘time’ complexities – to be considered in producing a resource-efficient parallel solution for the proposed real-

– may also be effectively used to solve the DFT, particularly when the input data set is known to be real-valued

in nature. To see the truth of this, note that the equality

      nk
N

nk
N WImWReN/nk2cas  (5)

(where ‘Re’ stands for real component and ‘Im’ stands for imaginary component) relates the kernels of the two

transformations. As a result

    ]k[XIm]k[XRe]k[X)F()F()H( , (6)

which expresses the DHT outputs in terms of the DFT outputs, whilst the equations

    ]k[X]k[X2
1]k[XRe)H()H()F( (7)

 &    ]k[X]k[X2
1]k[XIm)H()H()F( , (8)

express the real and imaginary components of the DFT outputs, respectively, in terms of the DHT outputs and

where, from transform periodicity, index ‘–k’ may be regarded as being equivalent to ‘N–k’. This enables the

PSD outputs to be expressed directly in terms of either DFT or DHT outputs via the expression

    ]k[XIm]k[XRe]k[PSD)F(2)F(2 

     




 

2)H(2)H(]k[X]k[X2
1 , (9)

as will be required when searching for the dominant SDRD-FFTs outputs, to be discussed in Section 5.

 Thus, following this introductory section, Section 2 provides a brief overview of the design process

which involves a description of the basic tasks needing to be performed together with a discussion of some of

the key design issues. Section 3 next discusses the first (or data-space) stage of the processing chain (see Fig.

1), which is concerned with the derivation of the windowed versions of the multiple SRG (referred to as

WSRG) data sets. This is followed in Section 4 with an account of the second stage of the processing chain

which converts the problem from data-space to transform-space and relates to how the RFHT may be

efficiently used for carrying out the SDRD-FFTs that operate upon the WSRG data sets. Section 5 next

discusses the third and final (or transform-space) stage of the processing chain (see Fig. 1), namely the

determination of: 1) the locations of the dominant frequency bins for each set of SDRD-FFT outputs – after

first converting the data from Hartley-space to Fourier-space and generating the PSD data, together with 2)

those signal frequencies appearing as frequencies of interest (FOI) within the dominant frequency bins of each

set of SDRD-FFT outputs and, finally, 3) the spectrum components for those identified signal frequencies. This

is followed in Section 6 with a discussion of the possible complexity trade-offs – in terms of both ‘space’ and

‘time’ complexities – to be considered in producing a resource-efficient parallel solution for the proposed real-

– may also be effectively used to solve the DFT, particularly when the input data set is known to be real-valued

in nature. To see the truth of this, note that the equality

      nk
N

nk
N WImWReN/nk2cas  (5)

(where ‘Re’ stands for real component and ‘Im’ stands for imaginary component) relates the kernels of the two

transformations. As a result

    ]k[XIm]k[XRe]k[X)F()F()H( , (6)

which expresses the DHT outputs in terms of the DFT outputs, whilst the equations

    ]k[X]k[X2
1]k[XRe)H()H()F( (7)

 &    ]k[X]k[X2
1]k[XIm)H()H()F( , (8)

express the real and imaginary components of the DFT outputs, respectively, in terms of the DHT outputs and

where, from transform periodicity, index ‘–k’ may be regarded as being equivalent to ‘N–k’. This enables the

PSD outputs to be expressed directly in terms of either DFT or DHT outputs via the expression

    ]k[XIm]k[XRe]k[PSD)F(2)F(2 

     




 

2)H(2)H(]k[X]k[X2
1 , (9)

as will be required when searching for the dominant SDRD-FFTs outputs, to be discussed in Section 5.

 Thus, following this introductory section, Section 2 provides a brief overview of the design process

which involves a description of the basic tasks needing to be performed together with a discussion of some of

the key design issues. Section 3 next discusses the first (or data-space) stage of the processing chain (see Fig.

1), which is concerned with the derivation of the windowed versions of the multiple SRG (referred to as

WSRG) data sets. This is followed in Section 4 with an account of the second stage of the processing chain

which converts the problem from data-space to transform-space and relates to how the RFHT may be

efficiently used for carrying out the SDRD-FFTs that operate upon the WSRG data sets. Section 5 next

discusses the third and final (or transform-space) stage of the processing chain (see Fig. 1), namely the

determination of: 1) the locations of the dominant frequency bins for each set of SDRD-FFT outputs – after

first converting the data from Hartley-space to Fourier-space and generating the PSD data, together with 2)

those signal frequencies appearing as frequencies of interest (FOI) within the dominant frequency bins of each

set of SDRD-FFT outputs and, finally, 3) the spectrum components for those identified signal frequencies. This

is followed in Section 6 with a discussion of the possible complexity trade-offs – in terms of both ‘space’ and

‘time’ complexities – to be considered in producing a resource-efficient parallel solution for the proposed real-

– may also be effectively used to solve the DFT, particularly when the input data set is known to be real-valued

in nature. To see the truth of this, note that the equality

      nk
N

nk
N WImWReN/nk2cas  (5)

(where ‘Re’ stands for real component and ‘Im’ stands for imaginary component) relates the kernels of the two

transformations. As a result

    ]k[XIm]k[XRe]k[X)F()F()H( , (6)

which expresses the DHT outputs in terms of the DFT outputs, whilst the equations

    ]k[X]k[X2
1]k[XRe)H()H()F( (7)

 &    ]k[X]k[X2
1]k[XIm)H()H()F( , (8)

express the real and imaginary components of the DFT outputs, respectively, in terms of the DHT outputs and

where, from transform periodicity, index ‘–k’ may be regarded as being equivalent to ‘N–k’. This enables the

PSD outputs to be expressed directly in terms of either DFT or DHT outputs via the expression

    ]k[XIm]k[XRe]k[PSD)F(2)F(2 

     




 

2)H(2)H(]k[X]k[X2
1 , (9)

as will be required when searching for the dominant SDRD-FFTs outputs, to be discussed in Section 5.

 Thus, following this introductory section, Section 2 provides a brief overview of the design process

which involves a description of the basic tasks needing to be performed together with a discussion of some of

the key design issues. Section 3 next discusses the first (or data-space) stage of the processing chain (see Fig.

1), which is concerned with the derivation of the windowed versions of the multiple SRG (referred to as

WSRG) data sets. This is followed in Section 4 with an account of the second stage of the processing chain

which converts the problem from data-space to transform-space and relates to how the RFHT may be

efficiently used for carrying out the SDRD-FFTs that operate upon the WSRG data sets. Section 5 next

discusses the third and final (or transform-space) stage of the processing chain (see Fig. 1), namely the

determination of: 1) the locations of the dominant frequency bins for each set of SDRD-FFT outputs – after

first converting the data from Hartley-space to Fourier-space and generating the PSD data, together with 2)

those signal frequencies appearing as frequencies of interest (FOI) within the dominant frequency bins of each

set of SDRD-FFT outputs and, finally, 3) the spectrum components for those identified signal frequencies. This

is followed in Section 6 with a discussion of the possible complexity trade-offs – in terms of both ‘space’ and

‘time’ complexities – to be considered in producing a resource-efficient parallel solution for the proposed real-

– may also be effectively used to solve the DFT, particularly when the input data set is known to be real-valued

in nature. To see the truth of this, note that the equality

      nk
N

nk
N WImWReN/nk2cas  (5)

(where ‘Re’ stands for real component and ‘Im’ stands for imaginary component) relates the kernels of the two

transformations. As a result

    ]k[XIm]k[XRe]k[X)F()F()H( , (6)

which expresses the DHT outputs in terms of the DFT outputs, whilst the equations

    ]k[X]k[X2
1]k[XRe)H()H()F( (7)

 &    ]k[X]k[X2
1]k[XIm)H()H()F( , (8)

express the real and imaginary components of the DFT outputs, respectively, in terms of the DHT outputs and

where, from transform periodicity, index ‘–k’ may be regarded as being equivalent to ‘N–k’. This enables the

PSD outputs to be expressed directly in terms of either DFT or DHT outputs via the expression

    ]k[XIm]k[XRe]k[PSD)F(2)F(2 

     




 

2)H(2)H(]k[X]k[X2
1 , (9)

as will be required when searching for the dominant SDRD-FFTs outputs, to be discussed in Section 5.

 Thus, following this introductory section, Section 2 provides a brief overview of the design process

which involves a description of the basic tasks needing to be performed together with a discussion of some of

the key design issues. Section 3 next discusses the first (or data-space) stage of the processing chain (see Fig.

1), which is concerned with the derivation of the windowed versions of the multiple SRG (referred to as

WSRG) data sets. This is followed in Section 4 with an account of the second stage of the processing chain

which converts the problem from data-space to transform-space and relates to how the RFHT may be

efficiently used for carrying out the SDRD-FFTs that operate upon the WSRG data sets. Section 5 next

discusses the third and final (or transform-space) stage of the processing chain (see Fig. 1), namely the

determination of: 1) the locations of the dominant frequency bins for each set of SDRD-FFT outputs – after

first converting the data from Hartley-space to Fourier-space and generating the PSD data, together with 2)

those signal frequencies appearing as frequencies of interest (FOI) within the dominant frequency bins of each

set of SDRD-FFT outputs and, finally, 3) the spectrum components for those identified signal frequencies. This

is followed in Section 6 with a discussion of the possible complexity trade-offs – in terms of both ‘space’ and

‘time’ complexities – to be considered in producing a resource-efficient parallel solution for the proposed real-

– may also be effectively used to solve the DFT, particularly when the input data set is known to be real-valued

in nature. To see the truth of this, note that the equality

      nk
N

nk
N WImWReN/nk2cas  (5)

(where ‘Re’ stands for real component and ‘Im’ stands for imaginary component) relates the kernels of the two

transformations. As a result

    ]k[XIm]k[XRe]k[X)F()F()H( , (6)

which expresses the DHT outputs in terms of the DFT outputs, whilst the equations

    ]k[X]k[X2
1]k[XRe)H()H()F( (7)

 &    ]k[X]k[X2
1]k[XIm)H()H()F( , (8)

express the real and imaginary components of the DFT outputs, respectively, in terms of the DHT outputs and

where, from transform periodicity, index ‘–k’ may be regarded as being equivalent to ‘N–k’. This enables the

PSD outputs to be expressed directly in terms of either DFT or DHT outputs via the expression

    ]k[XIm]k[XRe]k[PSD)F(2)F(2 

     




 

2)H(2)H(]k[X]k[X2
1 , (9)

as will be required when searching for the dominant SDRD-FFTs outputs, to be discussed in Section 5.

 Thus, following this introductory section, Section 2 provides a brief overview of the design process

which involves a description of the basic tasks needing to be performed together with a discussion of some of

the key design issues. Section 3 next discusses the first (or data-space) stage of the processing chain (see Fig.

1), which is concerned with the derivation of the windowed versions of the multiple SRG (referred to as

WSRG) data sets. This is followed in Section 4 with an account of the second stage of the processing chain

which converts the problem from data-space to transform-space and relates to how the RFHT may be

efficiently used for carrying out the SDRD-FFTs that operate upon the WSRG data sets. Section 5 next

discusses the third and final (or transform-space) stage of the processing chain (see Fig. 1), namely the

determination of: 1) the locations of the dominant frequency bins for each set of SDRD-FFT outputs – after

first converting the data from Hartley-space to Fourier-space and generating the PSD data, together with 2)

those signal frequencies appearing as frequencies of interest (FOI) within the dominant frequency bins of each

set of SDRD-FFT outputs and, finally, 3) the spectrum components for those identified signal frequencies. This

is followed in Section 6 with a discussion of the possible complexity trade-offs – in terms of both ‘space’ and

‘time’ complexities – to be considered in producing a resource-efficient parallel solution for the proposed real-

– may also be effectively used to solve the DFT, particularly when the input data set is known to be real-valued

in nature. To see the truth of this, note that the equality

      nk
N

nk
N WImWReN/nk2cas  (5)

(where ‘Re’ stands for real component and ‘Im’ stands for imaginary component) relates the kernels of the two

transformations. As a result

    ]k[XIm]k[XRe]k[X)F()F()H( , (6)

which expresses the DHT outputs in terms of the DFT outputs, whilst the equations

    ]k[X]k[X2
1]k[XRe)H()H()F( (7)

 &    ]k[X]k[X2
1]k[XIm)H()H()F( , (8)

express the real and imaginary components of the DFT outputs, respectively, in terms of the DHT outputs and

where, from transform periodicity, index ‘–k’ may be regarded as being equivalent to ‘N–k’. This enables the

PSD outputs to be expressed directly in terms of either DFT or DHT outputs via the expression

    ]k[XIm]k[XRe]k[PSD)F(2)F(2 

     




 

2)H(2)H(]k[X]k[X2
1 , (9)

as will be required when searching for the dominant SDRD-FFTs outputs, to be discussed in Section 5.

 Thus, following this introductory section, Section 2 provides a brief overview of the design process

which involves a description of the basic tasks needing to be performed together with a discussion of some of

the key design issues. Section 3 next discusses the first (or data-space) stage of the processing chain (see Fig.

1), which is concerned with the derivation of the windowed versions of the multiple SRG (referred to as

WSRG) data sets. This is followed in Section 4 with an account of the second stage of the processing chain

which converts the problem from data-space to transform-space and relates to how the RFHT may be

efficiently used for carrying out the SDRD-FFTs that operate upon the WSRG data sets. Section 5 next

discusses the third and final (or transform-space) stage of the processing chain (see Fig. 1), namely the

determination of: 1) the locations of the dominant frequency bins for each set of SDRD-FFT outputs – after

first converting the data from Hartley-space to Fourier-space and generating the PSD data, together with 2)

those signal frequencies appearing as frequencies of interest (FOI) within the dominant frequency bins of each

set of SDRD-FFT outputs and, finally, 3) the spectrum components for those identified signal frequencies. This

is followed in Section 6 with a discussion of the possible complexity trade-offs – in terms of both ‘space’ and

‘time’ complexities – to be considered in producing a resource-efficient parallel solution for the proposed real-

– may also be effectively used to solve the DFT, particularly when the input data set is known to be real-valued

in nature. To see the truth of this, note that the equality

      nk
N

nk
N WImWReN/nk2cas  (5)

(where ‘Re’ stands for real component and ‘Im’ stands for imaginary component) relates the kernels of the two

transformations. As a result

    ]k[XIm]k[XRe]k[X)F()F()H( , (6)

which expresses the DHT outputs in terms of the DFT outputs, whilst the equations

    ]k[X]k[X2
1]k[XRe)H()H()F( (7)

 &    ]k[X]k[X2
1]k[XIm)H()H()F( , (8)

express the real and imaginary components of the DFT outputs, respectively, in terms of the DHT outputs and

where, from transform periodicity, index ‘–k’ may be regarded as being equivalent to ‘N–k’. This enables the

PSD outputs to be expressed directly in terms of either DFT or DHT outputs via the expression

    ]k[XIm]k[XRe]k[PSD)F(2)F(2 

     




 

2)H(2)H(]k[X]k[X2
1 , (9)

as will be required when searching for the dominant SDRD-FFTs outputs, to be discussed in Section 5.

 Thus, following this introductory section, Section 2 provides a brief overview of the design process

which involves a description of the basic tasks needing to be performed together with a discussion of some of

the key design issues. Section 3 next discusses the first (or data-space) stage of the processing chain (see Fig.

1), which is concerned with the derivation of the windowed versions of the multiple SRG (referred to as

WSRG) data sets. This is followed in Section 4 with an account of the second stage of the processing chain

which converts the problem from data-space to transform-space and relates to how the RFHT may be

efficiently used for carrying out the SDRD-FFTs that operate upon the WSRG data sets. Section 5 next

discusses the third and final (or transform-space) stage of the processing chain (see Fig. 1), namely the

determination of: 1) the locations of the dominant frequency bins for each set of SDRD-FFT outputs – after

first converting the data from Hartley-space to Fourier-space and generating the PSD data, together with 2)

those signal frequencies appearing as frequencies of interest (FOI) within the dominant frequency bins of each

set of SDRD-FFT outputs and, finally, 3) the spectrum components for those identified signal frequencies. This

is followed in Section 6 with a discussion of the possible complexity trade-offs – in terms of both ‘space’ and

‘time’ complexities – to be considered in producing a resource-efficient parallel solution for the proposed real-

Volume 1 | Issue 2 | 71OA J Applied Sci Technol, 2023

space and generating the PSD data, together with 2) those signal
frequencies appearing as frequencies of interest (FOI) within the
dominant frequency bins of each set of SDRD FFT outputs and,
finally, 3) the spectrum components for those identified signal
frequencies. This is followed in Section 6 with a discussion of
the possible complexity trade offs – in terms of both ‘space’
and ‘time’ complexities – to be considered in producing a
resource-efficient parallel solution for the proposed real-data
sFFT algorithm, with a detailed illustration in Section 7 of a 2M
point multi GHz example. Finally, a summary and conclusions
is provided in Section 8.

2. Design Issues for Proposed Scheme
The problem to be addressed in this paper involves the design of
a fixed-point sFFT algorithm for carrying out the DFT of a large
real valued data set, of length ‘N’, where N is taken (for ease
of analysis) to be a radix-2 integer. The generic version of the
algorithm, as illustrated in Fig.1, involves repeatedly mapping
N frequencies into a much smaller number of frequency bins,
say ‘P’, this being achieved by carrying out an SDRD-FFT upon
multiple WSRG data sets, each of length P, where the window
(such as the Dolph Chebyshev function is designed to extract
just a subset of the input data set and possesses the attraction of
having a narrow support in both data space and transform space
[17,23-25]. The energy contained within any given frequency
bin is obtained as the sum of the spectrum components
corresponding to those N/P frequencies that are mapped into the
bin. By carefully choosing the P samples to be processed it is
possible to ensure that with each data set different frequencies
will map into different bins with a high probability. By repeating
this binning process, say ‘L’ times, each time using a WSRG
data set obtained with a different set of permuted input samples,
the algorithm is able to permute the spectrum components and to
randomize the mapping of frequencies to bins so that those signal
components that were initially closely spaced in frequency will,
with a high probability, become sufficiently isolated within the
permuted spectrum to allow for their unambiguous recovery.

Note, however, that when dealing with real-world data the recovery
of the individual frequency dependent signal components will be
heavily dependent upon the available signal-to-noise ratio (SNR),
where the lower the SNR the more difficult the problem of signal
detection becomes. However, the situation is improved somewhat
in that the detection is to be carried out in the frequency domain,
rather than the time domain, so that the SNR will benefit from
an increase provided by the coherent gain of the SDRD-FFT,
namely 10.log10P dB, so that the longer the SDRD-FFTs can be
made without adversely affecting the real-time capability of the
proposed sFFT algorithm the better the performance in terms
of both detection (due to reduced variance in the spectral data)
and false alarm rates (arising from reduced collisions where
multiple frequencies map to the same SDRD-FFT bin). This can
be achieved by having the SDRD FFTs carried out via the RFHT
given its already proven implementational attractions in terms of
both resource efficiency and scalability.

The speed at which the NAT-ordered input data samples are
to be produced by the ADC unit is typically equal to, or some

integer multiple of, the clock rate of the target computing device
– assumed here to be an FPGA. This sampling rate dictates
the value of the ‘data set refresh rate’, which is defined as the
rate at which each new input data set is transferred from the
ADC to the external data space memory (DSM). The DSM is
taken to be a partitioned memory – consisting of eight memory
banks with each memory bank containing N/8 samples – which
is maintained in double-buffered form in order to facilitate
continuous real-time operation. The associated time period is
referred to as the ‘update period’ and consecutive samples are
taken to be stored cyclically across the eight memory banks with
memory bank no 8 always being followed by memory bank no 1.
Clearly, with the multi GHz wide bandwidth signals of interest
it is evident that each clock cycle will yield multiple samples as
there is a clear need for the clock rate of the target FPGA device
(typically measured in MHz rather than GHz) to be kept as low
as possible in order that the power consumption be minimized.
This relationship is evident by noting that the dominant dynamic
power component, PD, may be expressed as

PD = C×V2×f		 (10)

where ‘C’ is the capacitance of the node switching, ‘V’ the supply
voltage and ‘f’ the clock or switching rate, so that reducing the
clock rate will lead to a reduction in the power consumption [25].

The objective of the research described in this paper is thus to
come up with a flexible and scalable design for the real-data
sFFT that’s able to produce solutions yielding a new sparse
spectrum with every update period and such that the required
silicon resources and the clock rate enable the associated costs
and power consumption to be minimized. As already stated,
the approach taken involves producing a design based upon the
maximizing of the computational density through the combined
use of partitioned memory, which is a key technique for enabling
the adoption of a low clock rate, and the RFHT, which is a resource
efficient and scalable means of carrying out the DHT and/or the
real data DFT. The solutions will be assessed in terms of their
space and time complexities where, for any given task, the ‘space
complexity’ is defined as comprising arithmetic and memory
components where the arithmetic component corresponds to
the numbers of fast multipliers and adders required to carry out
that task and the memory component to the required amount of
fast dual port RAM. The ‘time complexity’ corresponds to the
number of clock cycles required to carry out the task which, for a
realizable solution, needs clearly to be sufficiently less than that
corresponding to the update period.

3. Data-Space Processing Requirement
The first stage of the processing chain involves the derivation of
the multiple WSRG data sets, as obtained from the partitioned
DSM and the window function coefficients. The resulting data
sets will be subsequently used as inputs to the second stage,
namely that concerning the computation of the SDRD FFTs
via the RFHT. As already stated, emphasis is to be placed on
the exploitation of partitioned memory as this will facilitate the
parallel computation of the proposed solution and thus enable the
adoption of a lower clock rate for the target computing device –

Volume 1 | Issue 2 | 72OA J Applied Sci Technol, 2023

as required if the power consumption is to be minimized. Thus,
given the partitioning of each of the various memories into eight
equal sized banks, each eight sample data set (with at most two
samples per memory bank) will be referred to hereafter simply
as a ‘woctad’ (where ‘octad’ means set of eight objects so that
‘woctad’ is defined as meaning set of eight words where each
word holds either a single sample of data or a single coefficient
or a single data address) in order to avoid unnecessary verbiage.

3.1 Random Reordering of Input Data Set and its Spectrum
Suppose now that the NAT-ordered input data set, denoted {x[n]},
as stored in the partitioned DSM, is to be reordered or permuted
according to the RND-generated index mapping [5]

to yield a RND-reordered data set, {y[n]}, where

for n = 0 up to N-1, with 'σ' being an RND-generated (or pre-
selected) ‘invertible’ integer such that

This requires that the integer σ should be relatively prime [34] to
N which may be easily satisfied by simply selecting N to be an
even-valued integer (such as a radix-2 integer assumed here) and
σ to be an odd-valued integer.

Then, when viewed in Fourier-space, following the application
of an N-point dense FFT, it can be shown that the spectra
obtained from the processing of the NAT-ordered and RND-
reordered data sets, denoted {X[n]} and {Y[n]}, respectively,
will be related via the inverse index mapping [19]

with

so that the two spectra may be simply obtained, one from the
other.

Thus, for a given index of the RND-reordered spectrum,
{Y[n]}, the mapping Φ of Eqtn. 11 tells us to which index of
the NAT-ordered spectrum, {X[n]}, it corresponds. Conversely,
for a given index of the NAT-ordered spectrum, {X[n]}, the
inverse mapping	 of Eqtn. 14 tells us to which index of the
RND-reordered spectrum, {Y[n]}, it corresponds. As a result,
if the n’th element of the NAT ordered spectrum is f[n], then
after permutation by the n’th element of the resulting RND
reordered spectrum will be given by f [] and after this
spectrum is itself permuted by the n’th element of the resulting
spectrum will be given by 		 	
		
			 			 (16)

thereby enabling the original frequency to be recovered. Note,
from Eqtns. 11 and 14, that the index sequences, 	 and	
	 , are arithmetic sequences so that consecutive indices
may be simply expressed in recursive forms, under the modulo
operation, as

respectively, enabling the computation of successive indices
to be greatly simplified by having an integer multiplication
replaced by an integer addition – followed, in each case, by a
possible range reduction.

Suppose now that the length of the reordered data set is to be
reduced from N down to P, where P << N and P|N, prior to being
transformed to Fourier-space via the application of a P-point
SDRD-FFT. Then it can be shown that consecutive sets, each of
N/P RND reordered spectral samples, as obtained from the NAT
reordered spectrum via the inverse mapping , will map into
consecutive SDRD FFT bins with the n’th output of the N-point
spectrum, Y[n], mapping into where represents the P point
SDRD-FFT spectrum and is such that [19]

					 (19)

which, when N/P is a radix-2 integer (which may be guaranteed
through appropriate choice of the parameters N and P), may be
simply computed by means of a right-shift operation followed
by σ truncation of the result.

Now, for any valid pair of σ (odd-valued integer) and N (even-
valued integer), each woctad of SRG data samples retrieved
from the partitioned DSM will be such that one sample comes
from each of the eight memory banks, so that with dual port
RAM each woctad of data samples may be retrieved within a
single clock cycle – in fact, two woctads may be simultaneously
retrieved with such memory although we’ll restrict ourselves to
one woctad per clock cycle for compatibility with subsequent
processing. The set of indices required for each woctad of
SRG data samples retrieved from the partitioned DSM may be
replaced by a set of eight address pairs, [mn,tn], for n = 0 to 7,
where the first 3-bit number of each pair represents the memory
bank address of the n’th sample within the set and the second
log2(N/8) bit number of each pair represents the corresponding
time slot address within that memory bank. Thus, for a fixed
pre-chosen value of σ, by storing each address pair within a
single word of memory the P address pairs may be pre computed
and stored within the partitioned data address memory (DAM),
which consists of eight memory banks with each bank containing
Q = P/8 addresses, in order to simplify the task of producing L
SRG data sets, each of length P, from the original N sample input
data set and, in so doing, to reduce the associated addressing
complexity. Each address stored within the DAM consists of
a WA-bit word, with WA ≥ log2(N/8)+3, whilst each (integer-
valued) sample of data stored within the DSM consists of a WD-
bit word. For ease of analysis, however, all data samples and
addresses will be assumed hereafter to be of common length,

facilitate the parallel computation of the proposed solution and thus enable the adoption of a lower clock rate

for the target computing device – as required if the power consumption is to be minimized. Thus, given the

partitioning of each of the various memories into eight equal-sized banks, each eight-sample data set (with at

most two samples per memory bank) will be referred to hereafter simply as a ‘woctad’ (where ‘octad’ means

set of eight objects so that ‘woctad’ is defined as meaning set of eight words where each word holds either a

single sample of data or a single coefficient or a single data address) in order to avoid unnecessary verbiage.

3.1 Random Reordering of Input Data Set and its Spectrum
 Suppose now that the NAT-ordered input data set, denoted {x[n]}, as stored in the partitioned DSM, is

to be reordered or permuted [5] according to the RND-generated index mapping

 Nmodn],n[ (11)

to yield a RND-reordered data set, {y[n]}, where

 y[n] = x[],n[] (12)

for n = 0 up to N-1, with ‘ ’ being an RND-generated (or pre-selected) ‘invertible’ integer such that

 Nmod11   . (13)

This requires that the integer  should be relatively prime [34] to N which may be easily satisfied by simply

selecting N to be an even-valued integer (such as a radix-2 integer assumed here) and  to be an odd-valued

integer.

 Then, when viewed in Fourier-space, following the application of an N-point dense FFT, it can be

shown [19] that the spectra obtained from the processing of the NAT-ordered and RND-reordered data sets,

denoted {X[n]} and {Y[n]}, respectively, will be related via the inverse index mapping

 Nmodn],n[111   (14)

with

 Y[n] = X[],n[11  ], (15)

so that the two spectra may be simply obtained, one from the other.

 Thus, for a given index of the RND-reordered spectrum, {Y[n]}, the mapping  of Eqtn. 11 tells us to

which index of the NAT-ordered spectrum, {X[n]}, it corresponds. Conversely, for a given index of the NAT-

ordered spectrum, {X[n]}, the inverse mapping 1 of Eqtn. 14 tells us to which index of the RND-reordered

spectrum, {Y[n]}, it corresponds. As a result, if the n’th element of the NAT-ordered spectrum is f[n], then

facilitate the parallel computation of the proposed solution and thus enable the adoption of a lower clock rate

for the target computing device – as required if the power consumption is to be minimized. Thus, given the

partitioning of each of the various memories into eight equal-sized banks, each eight-sample data set (with at

most two samples per memory bank) will be referred to hereafter simply as a ‘woctad’ (where ‘octad’ means

set of eight objects so that ‘woctad’ is defined as meaning set of eight words where each word holds either a

single sample of data or a single coefficient or a single data address) in order to avoid unnecessary verbiage.

3.1 Random Reordering of Input Data Set and its Spectrum
 Suppose now that the NAT-ordered input data set, denoted {x[n]}, as stored in the partitioned DSM, is

to be reordered or permuted [5] according to the RND-generated index mapping

 Nmodn],n[ (11)

to yield a RND-reordered data set, {y[n]}, where

 y[n] = x[],n[] (12)

for n = 0 up to N-1, with ‘ ’ being an RND-generated (or pre-selected) ‘invertible’ integer such that

 Nmod11   . (13)

This requires that the integer  should be relatively prime [34] to N which may be easily satisfied by simply

selecting N to be an even-valued integer (such as a radix-2 integer assumed here) and  to be an odd-valued

integer.

 Then, when viewed in Fourier-space, following the application of an N-point dense FFT, it can be

shown [19] that the spectra obtained from the processing of the NAT-ordered and RND-reordered data sets,

denoted {X[n]} and {Y[n]}, respectively, will be related via the inverse index mapping

 Nmodn],n[111   (14)

with

 Y[n] = X[],n[11  ], (15)

so that the two spectra may be simply obtained, one from the other.

 Thus, for a given index of the RND-reordered spectrum, {Y[n]}, the mapping  of Eqtn. 11 tells us to

which index of the NAT-ordered spectrum, {X[n]}, it corresponds. Conversely, for a given index of the NAT-

ordered spectrum, {X[n]}, the inverse mapping 1 of Eqtn. 14 tells us to which index of the RND-reordered

spectrum, {Y[n]}, it corresponds. As a result, if the n’th element of the NAT-ordered spectrum is f[n], then

facilitate the parallel computation of the proposed solution and thus enable the adoption of a lower clock rate

for the target computing device – as required if the power consumption is to be minimized. Thus, given the

partitioning of each of the various memories into eight equal-sized banks, each eight-sample data set (with at

most two samples per memory bank) will be referred to hereafter simply as a ‘woctad’ (where ‘octad’ means

set of eight objects so that ‘woctad’ is defined as meaning set of eight words where each word holds either a

single sample of data or a single coefficient or a single data address) in order to avoid unnecessary verbiage.

3.1 Random Reordering of Input Data Set and its Spectrum
 Suppose now that the NAT-ordered input data set, denoted {x[n]}, as stored in the partitioned DSM, is

to be reordered or permuted [5] according to the RND-generated index mapping

 Nmodn],n[ (11)

to yield a RND-reordered data set, {y[n]}, where

 y[n] = x[],n[] (12)

for n = 0 up to N-1, with ‘ ’ being an RND-generated (or pre-selected) ‘invertible’ integer such that

 Nmod11   . (13)

This requires that the integer  should be relatively prime [34] to N which may be easily satisfied by simply

selecting N to be an even-valued integer (such as a radix-2 integer assumed here) and  to be an odd-valued

integer.

 Then, when viewed in Fourier-space, following the application of an N-point dense FFT, it can be

shown [19] that the spectra obtained from the processing of the NAT-ordered and RND-reordered data sets,

denoted {X[n]} and {Y[n]}, respectively, will be related via the inverse index mapping

 Nmodn],n[111   (14)

with

 Y[n] = X[],n[11  ], (15)

so that the two spectra may be simply obtained, one from the other.

 Thus, for a given index of the RND-reordered spectrum, {Y[n]}, the mapping  of Eqtn. 11 tells us to

which index of the NAT-ordered spectrum, {X[n]}, it corresponds. Conversely, for a given index of the NAT-

ordered spectrum, {X[n]}, the inverse mapping 1 of Eqtn. 14 tells us to which index of the RND-reordered

spectrum, {Y[n]}, it corresponds. As a result, if the n’th element of the NAT-ordered spectrum is f[n], then

facilitate the parallel computation of the proposed solution and thus enable the adoption of a lower clock rate

for the target computing device – as required if the power consumption is to be minimized. Thus, given the

partitioning of each of the various memories into eight equal-sized banks, each eight-sample data set (with at

most two samples per memory bank) will be referred to hereafter simply as a ‘woctad’ (where ‘octad’ means

set of eight objects so that ‘woctad’ is defined as meaning set of eight words where each word holds either a

single sample of data or a single coefficient or a single data address) in order to avoid unnecessary verbiage.

3.1 Random Reordering of Input Data Set and its Spectrum
 Suppose now that the NAT-ordered input data set, denoted {x[n]}, as stored in the partitioned DSM, is

to be reordered or permuted [5] according to the RND-generated index mapping

 Nmodn],n[ (11)

to yield a RND-reordered data set, {y[n]}, where

 y[n] = x[],n[] (12)

for n = 0 up to N-1, with ‘ ’ being an RND-generated (or pre-selected) ‘invertible’ integer such that

 Nmod11   . (13)

This requires that the integer  should be relatively prime [34] to N which may be easily satisfied by simply

selecting N to be an even-valued integer (such as a radix-2 integer assumed here) and  to be an odd-valued

integer.

 Then, when viewed in Fourier-space, following the application of an N-point dense FFT, it can be

shown [19] that the spectra obtained from the processing of the NAT-ordered and RND-reordered data sets,

denoted {X[n]} and {Y[n]}, respectively, will be related via the inverse index mapping

 Nmodn],n[111   (14)

with

 Y[n] = X[],n[11  ], (15)

so that the two spectra may be simply obtained, one from the other.

 Thus, for a given index of the RND-reordered spectrum, {Y[n]}, the mapping  of Eqtn. 11 tells us to

which index of the NAT-ordered spectrum, {X[n]}, it corresponds. Conversely, for a given index of the NAT-

ordered spectrum, {X[n]}, the inverse mapping 1 of Eqtn. 14 tells us to which index of the RND-reordered

spectrum, {Y[n]}, it corresponds. As a result, if the n’th element of the NAT-ordered spectrum is f[n], then

facilitate the parallel computation of the proposed solution and thus enable the adoption of a lower clock rate

for the target computing device – as required if the power consumption is to be minimized. Thus, given the

partitioning of each of the various memories into eight equal-sized banks, each eight-sample data set (with at

most two samples per memory bank) will be referred to hereafter simply as a ‘woctad’ (where ‘octad’ means

set of eight objects so that ‘woctad’ is defined as meaning set of eight words where each word holds either a

single sample of data or a single coefficient or a single data address) in order to avoid unnecessary verbiage.

3.1 Random Reordering of Input Data Set and its Spectrum
 Suppose now that the NAT-ordered input data set, denoted {x[n]}, as stored in the partitioned DSM, is

to be reordered or permuted [5] according to the RND-generated index mapping

 Nmodn],n[ (11)

to yield a RND-reordered data set, {y[n]}, where

 y[n] = x[],n[] (12)

for n = 0 up to N-1, with ‘ ’ being an RND-generated (or pre-selected) ‘invertible’ integer such that

 Nmod11   . (13)

This requires that the integer  should be relatively prime [34] to N which may be easily satisfied by simply

selecting N to be an even-valued integer (such as a radix-2 integer assumed here) and  to be an odd-valued

integer.

 Then, when viewed in Fourier-space, following the application of an N-point dense FFT, it can be

shown [19] that the spectra obtained from the processing of the NAT-ordered and RND-reordered data sets,

denoted {X[n]} and {Y[n]}, respectively, will be related via the inverse index mapping

 Nmodn],n[111   (14)

with

 Y[n] = X[],n[11  ], (15)

so that the two spectra may be simply obtained, one from the other.

 Thus, for a given index of the RND-reordered spectrum, {Y[n]}, the mapping  of Eqtn. 11 tells us to

which index of the NAT-ordered spectrum, {X[n]}, it corresponds. Conversely, for a given index of the NAT-

ordered spectrum, {X[n]}, the inverse mapping 1 of Eqtn. 14 tells us to which index of the RND-reordered

spectrum, {Y[n]}, it corresponds. As a result, if the n’th element of the NAT-ordered spectrum is f[n], then

facilitate the parallel computation of the proposed solution and thus enable the adoption of a lower clock rate

for the target computing device – as required if the power consumption is to be minimized. Thus, given the

partitioning of each of the various memories into eight equal-sized banks, each eight-sample data set (with at

most two samples per memory bank) will be referred to hereafter simply as a ‘woctad’ (where ‘octad’ means

set of eight objects so that ‘woctad’ is defined as meaning set of eight words where each word holds either a

single sample of data or a single coefficient or a single data address) in order to avoid unnecessary verbiage.

3.1 Random Reordering of Input Data Set and its Spectrum
 Suppose now that the NAT-ordered input data set, denoted {x[n]}, as stored in the partitioned DSM, is

to be reordered or permuted [5] according to the RND-generated index mapping

 Nmodn],n[ (11)

to yield a RND-reordered data set, {y[n]}, where

 y[n] = x[],n[] (12)

for n = 0 up to N-1, with ‘ ’ being an RND-generated (or pre-selected) ‘invertible’ integer such that

 Nmod11   . (13)

This requires that the integer  should be relatively prime [34] to N which may be easily satisfied by simply

selecting N to be an even-valued integer (such as a radix-2 integer assumed here) and  to be an odd-valued

integer.

 Then, when viewed in Fourier-space, following the application of an N-point dense FFT, it can be

shown [19] that the spectra obtained from the processing of the NAT-ordered and RND-reordered data sets,

denoted {X[n]} and {Y[n]}, respectively, will be related via the inverse index mapping

 Nmodn],n[111   (14)

with

 Y[n] = X[],n[11  ], (15)

so that the two spectra may be simply obtained, one from the other.

 Thus, for a given index of the RND-reordered spectrum, {Y[n]}, the mapping  of Eqtn. 11 tells us to

which index of the NAT-ordered spectrum, {X[n]}, it corresponds. Conversely, for a given index of the NAT-

ordered spectrum, {X[n]}, the inverse mapping 1 of Eqtn. 14 tells us to which index of the RND-reordered

spectrum, {Y[n]}, it corresponds. As a result, if the n’th element of the NAT-ordered spectrum is f[n], then

facilitate the parallel computation of the proposed solution and thus enable the adoption of a lower clock rate

for the target computing device – as required if the power consumption is to be minimized. Thus, given the

partitioning of each of the various memories into eight equal-sized banks, each eight-sample data set (with at

most two samples per memory bank) will be referred to hereafter simply as a ‘woctad’ (where ‘octad’ means

set of eight objects so that ‘woctad’ is defined as meaning set of eight words where each word holds either a

single sample of data or a single coefficient or a single data address) in order to avoid unnecessary verbiage.

3.1 Random Reordering of Input Data Set and its Spectrum
 Suppose now that the NAT-ordered input data set, denoted {x[n]}, as stored in the partitioned DSM, is

to be reordered or permuted [5] according to the RND-generated index mapping

 Nmodn],n[ (11)

to yield a RND-reordered data set, {y[n]}, where

 y[n] = x[],n[] (12)

for n = 0 up to N-1, with ‘ ’ being an RND-generated (or pre-selected) ‘invertible’ integer such that

 Nmod11   . (13)

This requires that the integer  should be relatively prime [34] to N which may be easily satisfied by simply

selecting N to be an even-valued integer (such as a radix-2 integer assumed here) and  to be an odd-valued

integer.

 Then, when viewed in Fourier-space, following the application of an N-point dense FFT, it can be

shown [19] that the spectra obtained from the processing of the NAT-ordered and RND-reordered data sets,

denoted {X[n]} and {Y[n]}, respectively, will be related via the inverse index mapping

 Nmodn],n[111   (14)

with

 Y[n] = X[],n[11  ], (15)

so that the two spectra may be simply obtained, one from the other.

 Thus, for a given index of the RND-reordered spectrum, {Y[n]}, the mapping  of Eqtn. 11 tells us to

which index of the NAT-ordered spectrum, {X[n]}, it corresponds. Conversely, for a given index of the NAT-

ordered spectrum, {X[n]}, the inverse mapping 1 of Eqtn. 14 tells us to which index of the RND-reordered

spectrum, {Y[n]}, it corresponds. As a result, if the n’th element of the NAT-ordered spectrum is f[n], then

facilitate the parallel computation of the proposed solution and thus enable the adoption of a lower clock rate

for the target computing device – as required if the power consumption is to be minimized. Thus, given the

partitioning of each of the various memories into eight equal-sized banks, each eight-sample data set (with at

most two samples per memory bank) will be referred to hereafter simply as a ‘woctad’ (where ‘octad’ means

set of eight objects so that ‘woctad’ is defined as meaning set of eight words where each word holds either a

single sample of data or a single coefficient or a single data address) in order to avoid unnecessary verbiage.

3.1 Random Reordering of Input Data Set and its Spectrum
 Suppose now that the NAT-ordered input data set, denoted {x[n]}, as stored in the partitioned DSM, is

to be reordered or permuted [5] according to the RND-generated index mapping

 Nmodn],n[ (11)

to yield a RND-reordered data set, {y[n]}, where

 y[n] = x[],n[] (12)

for n = 0 up to N-1, with ‘ ’ being an RND-generated (or pre-selected) ‘invertible’ integer such that

 Nmod11   . (13)

This requires that the integer  should be relatively prime [34] to N which may be easily satisfied by simply

selecting N to be an even-valued integer (such as a radix-2 integer assumed here) and  to be an odd-valued

integer.

 Then, when viewed in Fourier-space, following the application of an N-point dense FFT, it can be

shown [19] that the spectra obtained from the processing of the NAT-ordered and RND-reordered data sets,

denoted {X[n]} and {Y[n]}, respectively, will be related via the inverse index mapping

 Nmodn],n[111   (14)

with

 Y[n] = X[],n[11  ], (15)

so that the two spectra may be simply obtained, one from the other.

 Thus, for a given index of the RND-reordered spectrum, {Y[n]}, the mapping  of Eqtn. 11 tells us to

which index of the NAT-ordered spectrum, {X[n]}, it corresponds. Conversely, for a given index of the NAT-

ordered spectrum, {X[n]}, the inverse mapping 1 of Eqtn. 14 tells us to which index of the RND-reordered

spectrum, {Y[n]}, it corresponds. As a result, if the n’th element of the NAT-ordered spectrum is f[n], then

facilitate the parallel computation of the proposed solution and thus enable the adoption of a lower clock rate

for the target computing device – as required if the power consumption is to be minimized. Thus, given the

partitioning of each of the various memories into eight equal-sized banks, each eight-sample data set (with at

most two samples per memory bank) will be referred to hereafter simply as a ‘woctad’ (where ‘octad’ means

set of eight objects so that ‘woctad’ is defined as meaning set of eight words where each word holds either a

single sample of data or a single coefficient or a single data address) in order to avoid unnecessary verbiage.

3.1 Random Reordering of Input Data Set and its Spectrum
 Suppose now that the NAT-ordered input data set, denoted {x[n]}, as stored in the partitioned DSM, is

to be reordered or permuted [5] according to the RND-generated index mapping

 Nmodn],n[ (11)

to yield a RND-reordered data set, {y[n]}, where

 y[n] = x[],n[] (12)

for n = 0 up to N-1, with ‘ ’ being an RND-generated (or pre-selected) ‘invertible’ integer such that

 Nmod11   . (13)

This requires that the integer  should be relatively prime [34] to N which may be easily satisfied by simply

selecting N to be an even-valued integer (such as a radix-2 integer assumed here) and  to be an odd-valued

integer.

 Then, when viewed in Fourier-space, following the application of an N-point dense FFT, it can be

shown [19] that the spectra obtained from the processing of the NAT-ordered and RND-reordered data sets,

denoted {X[n]} and {Y[n]}, respectively, will be related via the inverse index mapping

 Nmodn],n[111   (14)

with

 Y[n] = X[],n[11  ], (15)

so that the two spectra may be simply obtained, one from the other.

 Thus, for a given index of the RND-reordered spectrum, {Y[n]}, the mapping  of Eqtn. 11 tells us to

which index of the NAT-ordered spectrum, {X[n]}, it corresponds. Conversely, for a given index of the NAT-

ordered spectrum, {X[n]}, the inverse mapping 1 of Eqtn. 14 tells us to which index of the RND-reordered

spectrum, {Y[n]}, it corresponds. As a result, if the n’th element of the NAT-ordered spectrum is f[n], then

facilitate the parallel computation of the proposed solution and thus enable the adoption of a lower clock rate

for the target computing device – as required if the power consumption is to be minimized. Thus, given the

partitioning of each of the various memories into eight equal-sized banks, each eight-sample data set (with at

most two samples per memory bank) will be referred to hereafter simply as a ‘woctad’ (where ‘octad’ means

set of eight objects so that ‘woctad’ is defined as meaning set of eight words where each word holds either a

single sample of data or a single coefficient or a single data address) in order to avoid unnecessary verbiage.

3.1 Random Reordering of Input Data Set and its Spectrum
 Suppose now that the NAT-ordered input data set, denoted {x[n]}, as stored in the partitioned DSM, is

to be reordered or permuted [5] according to the RND-generated index mapping

 Nmodn],n[ (11)

to yield a RND-reordered data set, {y[n]}, where

 y[n] = x[],n[] (12)

for n = 0 up to N-1, with ‘ ’ being an RND-generated (or pre-selected) ‘invertible’ integer such that

 Nmod11   . (13)

This requires that the integer  should be relatively prime [34] to N which may be easily satisfied by simply

selecting N to be an even-valued integer (such as a radix-2 integer assumed here) and  to be an odd-valued

integer.

 Then, when viewed in Fourier-space, following the application of an N-point dense FFT, it can be

shown [19] that the spectra obtained from the processing of the NAT-ordered and RND-reordered data sets,

denoted {X[n]} and {Y[n]}, respectively, will be related via the inverse index mapping

 Nmodn],n[111   (14)

with

 Y[n] = X[],n[11  ], (15)

so that the two spectra may be simply obtained, one from the other.

 Thus, for a given index of the RND-reordered spectrum, {Y[n]}, the mapping  of Eqtn. 11 tells us to

which index of the NAT-ordered spectrum, {X[n]}, it corresponds. Conversely, for a given index of the NAT-

ordered spectrum, {X[n]}, the inverse mapping 1 of Eqtn. 14 tells us to which index of the RND-reordered

spectrum, {Y[n]}, it corresponds. As a result, if the n’th element of the NAT-ordered spectrum is f[n], then
1−Φ

1−Φ

1−Φ

1−Φ
),n(11 −− σΦafter permutation by 1 the n’th element of the resulting RND-reordered spectrum will be given by

f[),n(11  ] and after this spectrum is itself permuted by  the n’th element of the resulting spectrum will

be given by]Nmod)n[(f]]],,n[[[f 111  

 ,]n[f (16)

thereby enabling the original frequency to be recovered. Note, from Eqtns. 11 and 14, that the index sequences,

]},n[{  and]},n[{ 11   , are arithmetic sequences so that consecutive indices may be simply expressed in

recursive forms, under the modulo operation, as

 Nmod],n[],1n[ (17)

 & Nmod],n[],1n[11111   (18)

respectively, enabling the computation of successive indices to be greatly simplified by having an integer

multiplication replaced by an integer addition – followed, in each case, by a possible range reduction.

 Suppose now that the length of the reordered data set is to be reduced from N down to P, where P <<

N and P|N, prior to being transformed to Fourier-space via the application of a P-point SDRD-FFT. Then it can

be shown [19] that consecutive sets, each of N/P RND-reordered spectral samples, as obtained from the

NAT-reordered spectrum via the inverse mapping 1 , will map into consecutive SDRD-FFT bins with the

n’th output of the N-point spectrum, Y[n], mapping into]n~[Y~ where Y~ represents the P-point SDRD-FFT

spectrum and n~ is such that

 



)P/N(

nn~ (19)

which, when N/P is a radix-2 integer (which may be guaranteed through appropriate choice of the parameters N

and P), may be simply computed by means of a right-shift operation followed by truncation of the result.

 Now, for any valid pair of  (odd-valued integer) and N (even-valued integer), each woctad of SRG

data samples retrieved from the partitioned DSM will be such that one sample comes from each of the eight

memory banks, so that with dual-port RAM each woctad of data samples may be retrieved within a single

clock cycle – in fact, two woctads may be simultaneously retrieved with such memory although we’ll restrict

ourselves to one woctad per clock cycle for compatibility with subsequent processing. The set of indices

required for each woctad of SRG data samples retrieved from the partitioned DSM may be replaced by a set of

eight address pairs, [mn,tn], for n = 0 to 7, where the first 3-bit number of each pair represents the memory bank

address of the n’th sample within the set and the second log2(N/8)-bit number of each pair represents the

corresponding time slot address within that memory bank. Thus, for a fixed pre-chosen value of  , by storing

after permutation by 1 the n’th element of the resulting RND-reordered spectrum will be given by

f[),n(11  ] and after this spectrum is itself permuted by  the n’th element of the resulting spectrum will

be given by]Nmod)n[(f]]],,n[[[f 111  

 ,]n[f (16)

thereby enabling the original frequency to be recovered. Note, from Eqtns. 11 and 14, that the index sequences,

]},n[{  and]},n[{ 11   , are arithmetic sequences so that consecutive indices may be simply expressed in

recursive forms, under the modulo operation, as

 Nmod],n[],1n[ (17)

 & Nmod],n[],1n[11111   (18)

respectively, enabling the computation of successive indices to be greatly simplified by having an integer

multiplication replaced by an integer addition – followed, in each case, by a possible range reduction.

 Suppose now that the length of the reordered data set is to be reduced from N down to P, where P <<

N and P|N, prior to being transformed to Fourier-space via the application of a P-point SDRD-FFT. Then it can

be shown [19] that consecutive sets, each of N/P RND-reordered spectral samples, as obtained from the

NAT-reordered spectrum via the inverse mapping 1 , will map into consecutive SDRD-FFT bins with the

n’th output of the N-point spectrum, Y[n], mapping into]n~[Y~ where Y~ represents the P-point SDRD-FFT

spectrum and n~ is such that

 



)P/N(

nn~ (19)

which, when N/P is a radix-2 integer (which may be guaranteed through appropriate choice of the parameters N

and P), may be simply computed by means of a right-shift operation followed by truncation of the result.

 Now, for any valid pair of  (odd-valued integer) and N (even-valued integer), each woctad of SRG

data samples retrieved from the partitioned DSM will be such that one sample comes from each of the eight

memory banks, so that with dual-port RAM each woctad of data samples may be retrieved within a single

clock cycle – in fact, two woctads may be simultaneously retrieved with such memory although we’ll restrict

ourselves to one woctad per clock cycle for compatibility with subsequent processing. The set of indices

required for each woctad of SRG data samples retrieved from the partitioned DSM may be replaced by a set of

eight address pairs, [mn,tn], for n = 0 to 7, where the first 3-bit number of each pair represents the memory bank

address of the n’th sample within the set and the second log2(N/8)-bit number of each pair represents the

corresponding time slot address within that memory bank. Thus, for a fixed pre-chosen value of  , by storing

after permutation by 1 the n’th element of the resulting RND-reordered spectrum will be given by

f[),n(11  ] and after this spectrum is itself permuted by  the n’th element of the resulting spectrum will

be given by]Nmod)n[(f]]],,n[[[f 111  

 ,]n[f (16)

thereby enabling the original frequency to be recovered. Note, from Eqtns. 11 and 14, that the index sequences,

]},n[{  and]},n[{ 11   , are arithmetic sequences so that consecutive indices may be simply expressed in

recursive forms, under the modulo operation, as

 Nmod],n[],1n[ (17)

 & Nmod],n[],1n[11111   (18)

respectively, enabling the computation of successive indices to be greatly simplified by having an integer

multiplication replaced by an integer addition – followed, in each case, by a possible range reduction.

 Suppose now that the length of the reordered data set is to be reduced from N down to P, where P <<

N and P|N, prior to being transformed to Fourier-space via the application of a P-point SDRD-FFT. Then it can

be shown [19] that consecutive sets, each of N/P RND-reordered spectral samples, as obtained from the

NAT-reordered spectrum via the inverse mapping 1 , will map into consecutive SDRD-FFT bins with the

n’th output of the N-point spectrum, Y[n], mapping into]n~[Y~ where Y~ represents the P-point SDRD-FFT

spectrum and n~ is such that

 



)P/N(

nn~ (19)

which, when N/P is a radix-2 integer (which may be guaranteed through appropriate choice of the parameters N

and P), may be simply computed by means of a right-shift operation followed by truncation of the result.

 Now, for any valid pair of  (odd-valued integer) and N (even-valued integer), each woctad of SRG

data samples retrieved from the partitioned DSM will be such that one sample comes from each of the eight

memory banks, so that with dual-port RAM each woctad of data samples may be retrieved within a single

clock cycle – in fact, two woctads may be simultaneously retrieved with such memory although we’ll restrict

ourselves to one woctad per clock cycle for compatibility with subsequent processing. The set of indices

required for each woctad of SRG data samples retrieved from the partitioned DSM may be replaced by a set of

eight address pairs, [mn,tn], for n = 0 to 7, where the first 3-bit number of each pair represents the memory bank

address of the n’th sample within the set and the second log2(N/8)-bit number of each pair represents the

corresponding time slot address within that memory bank. Thus, for a fixed pre-chosen value of  , by storing

after permutation by 1 the n’th element of the resulting RND-reordered spectrum will be given by

f[),n(11  ] and after this spectrum is itself permuted by  the n’th element of the resulting spectrum will

be given by]Nmod)n[(f]]],,n[[[f 111  

 ,]n[f (16)

thereby enabling the original frequency to be recovered. Note, from Eqtns. 11 and 14, that the index sequences,

]},n[{  and]},n[{ 11   , are arithmetic sequences so that consecutive indices may be simply expressed in

recursive forms, under the modulo operation, as

 Nmod],n[],1n[ (17)

 & Nmod],n[],1n[11111   (18)

respectively, enabling the computation of successive indices to be greatly simplified by having an integer

multiplication replaced by an integer addition – followed, in each case, by a possible range reduction.

 Suppose now that the length of the reordered data set is to be reduced from N down to P, where P <<

N and P|N, prior to being transformed to Fourier-space via the application of a P-point SDRD-FFT. Then it can

be shown [19] that consecutive sets, each of N/P RND-reordered spectral samples, as obtained from the

NAT-reordered spectrum via the inverse mapping 1 , will map into consecutive SDRD-FFT bins with the

n’th output of the N-point spectrum, Y[n], mapping into]n~[Y~ where Y~ represents the P-point SDRD-FFT

spectrum and n~ is such that

 



)P/N(

nn~ (19)

which, when N/P is a radix-2 integer (which may be guaranteed through appropriate choice of the parameters N

and P), may be simply computed by means of a right-shift operation followed by truncation of the result.

 Now, for any valid pair of  (odd-valued integer) and N (even-valued integer), each woctad of SRG

data samples retrieved from the partitioned DSM will be such that one sample comes from each of the eight

memory banks, so that with dual-port RAM each woctad of data samples may be retrieved within a single

clock cycle – in fact, two woctads may be simultaneously retrieved with such memory although we’ll restrict

ourselves to one woctad per clock cycle for compatibility with subsequent processing. The set of indices

required for each woctad of SRG data samples retrieved from the partitioned DSM may be replaced by a set of

eight address pairs, [mn,tn], for n = 0 to 7, where the first 3-bit number of each pair represents the memory bank

address of the n’th sample within the set and the second log2(N/8)-bit number of each pair represents the

corresponding time slot address within that memory bank. Thus, for a fixed pre-chosen value of  , by storing

after permutation by 1 the n’th element of the resulting RND-reordered spectrum will be given by

f[),n(11  ] and after this spectrum is itself permuted by  the n’th element of the resulting spectrum will

be given by]Nmod)n[(f]]],,n[[[f 111  

 ,]n[f (16)

thereby enabling the original frequency to be recovered. Note, from Eqtns. 11 and 14, that the index sequences,

]},n[{  and]},n[{ 11   , are arithmetic sequences so that consecutive indices may be simply expressed in

recursive forms, under the modulo operation, as

 Nmod],n[],1n[ (17)

 & Nmod],n[],1n[11111   (18)

respectively, enabling the computation of successive indices to be greatly simplified by having an integer

multiplication replaced by an integer addition – followed, in each case, by a possible range reduction.

 Suppose now that the length of the reordered data set is to be reduced from N down to P, where P <<

N and P|N, prior to being transformed to Fourier-space via the application of a P-point SDRD-FFT. Then it can

be shown [19] that consecutive sets, each of N/P RND-reordered spectral samples, as obtained from the

NAT-reordered spectrum via the inverse mapping 1 , will map into consecutive SDRD-FFT bins with the

n’th output of the N-point spectrum, Y[n], mapping into]n~[Y~ where Y~ represents the P-point SDRD-FFT

spectrum and n~ is such that

 



)P/N(

nn~ (19)

which, when N/P is a radix-2 integer (which may be guaranteed through appropriate choice of the parameters N

and P), may be simply computed by means of a right-shift operation followed by truncation of the result.

 Now, for any valid pair of  (odd-valued integer) and N (even-valued integer), each woctad of SRG

data samples retrieved from the partitioned DSM will be such that one sample comes from each of the eight

memory banks, so that with dual-port RAM each woctad of data samples may be retrieved within a single

clock cycle – in fact, two woctads may be simultaneously retrieved with such memory although we’ll restrict

ourselves to one woctad per clock cycle for compatibility with subsequent processing. The set of indices

required for each woctad of SRG data samples retrieved from the partitioned DSM may be replaced by a set of

eight address pairs, [mn,tn], for n = 0 to 7, where the first 3-bit number of each pair represents the memory bank

address of the n’th sample within the set and the second log2(N/8)-bit number of each pair represents the

corresponding time slot address within that memory bank. Thus, for a fixed pre-chosen value of  , by storing

after permutation by 1 the n’th element of the resulting RND-reordered spectrum will be given by

f[),n(11  ] and after this spectrum is itself permuted by  the n’th element of the resulting spectrum will

be given by]Nmod)n[(f]]],,n[[[f 111  

 ,]n[f (16)

thereby enabling the original frequency to be recovered. Note, from Eqtns. 11 and 14, that the index sequences,

]},n[{  and]},n[{ 11   , are arithmetic sequences so that consecutive indices may be simply expressed in

recursive forms, under the modulo operation, as

 Nmod],n[],1n[ (17)

 & Nmod],n[],1n[11111   (18)

respectively, enabling the computation of successive indices to be greatly simplified by having an integer

multiplication replaced by an integer addition – followed, in each case, by a possible range reduction.

 Suppose now that the length of the reordered data set is to be reduced from N down to P, where P <<

N and P|N, prior to being transformed to Fourier-space via the application of a P-point SDRD-FFT. Then it can

be shown [19] that consecutive sets, each of N/P RND-reordered spectral samples, as obtained from the

NAT-reordered spectrum via the inverse mapping 1 , will map into consecutive SDRD-FFT bins with the

n’th output of the N-point spectrum, Y[n], mapping into]n~[Y~ where Y~ represents the P-point SDRD-FFT

spectrum and n~ is such that

 



)P/N(

nn~ (19)

which, when N/P is a radix-2 integer (which may be guaranteed through appropriate choice of the parameters N

and P), may be simply computed by means of a right-shift operation followed by truncation of the result.

 Now, for any valid pair of  (odd-valued integer) and N (even-valued integer), each woctad of SRG

data samples retrieved from the partitioned DSM will be such that one sample comes from each of the eight

memory banks, so that with dual-port RAM each woctad of data samples may be retrieved within a single

clock cycle – in fact, two woctads may be simultaneously retrieved with such memory although we’ll restrict

ourselves to one woctad per clock cycle for compatibility with subsequent processing. The set of indices

required for each woctad of SRG data samples retrieved from the partitioned DSM may be replaced by a set of

eight address pairs, [mn,tn], for n = 0 to 7, where the first 3-bit number of each pair represents the memory bank

address of the n’th sample within the set and the second log2(N/8)-bit number of each pair represents the

corresponding time slot address within that memory bank. Thus, for a fixed pre-chosen value of  , by storing

after permutation by 1 the n’th element of the resulting RND-reordered spectrum will be given by

f[),n(11  ] and after this spectrum is itself permuted by  the n’th element of the resulting spectrum will

be given by]Nmod)n[(f]]],,n[[[f 111  

 ,]n[f (16)

thereby enabling the original frequency to be recovered. Note, from Eqtns. 11 and 14, that the index sequences,

]},n[{  and]},n[{ 11   , are arithmetic sequences so that consecutive indices may be simply expressed in

recursive forms, under the modulo operation, as

 Nmod],n[],1n[ (17)

 & Nmod],n[],1n[11111   (18)

respectively, enabling the computation of successive indices to be greatly simplified by having an integer

multiplication replaced by an integer addition – followed, in each case, by a possible range reduction.

 Suppose now that the length of the reordered data set is to be reduced from N down to P, where P <<

N and P|N, prior to being transformed to Fourier-space via the application of a P-point SDRD-FFT. Then it can

be shown [19] that consecutive sets, each of N/P RND-reordered spectral samples, as obtained from the

NAT-reordered spectrum via the inverse mapping 1 , will map into consecutive SDRD-FFT bins with the

n’th output of the N-point spectrum, Y[n], mapping into]n~[Y~ where Y~ represents the P-point SDRD-FFT

spectrum and n~ is such that

 



)P/N(

nn~ (19)

which, when N/P is a radix-2 integer (which may be guaranteed through appropriate choice of the parameters N

and P), may be simply computed by means of a right-shift operation followed by truncation of the result.

 Now, for any valid pair of  (odd-valued integer) and N (even-valued integer), each woctad of SRG

data samples retrieved from the partitioned DSM will be such that one sample comes from each of the eight

memory banks, so that with dual-port RAM each woctad of data samples may be retrieved within a single

clock cycle – in fact, two woctads may be simultaneously retrieved with such memory although we’ll restrict

ourselves to one woctad per clock cycle for compatibility with subsequent processing. The set of indices

required for each woctad of SRG data samples retrieved from the partitioned DSM may be replaced by a set of

eight address pairs, [mn,tn], for n = 0 to 7, where the first 3-bit number of each pair represents the memory bank

address of the n’th sample within the set and the second log2(N/8)-bit number of each pair represents the

corresponding time slot address within that memory bank. Thus, for a fixed pre-chosen value of  , by storing

]n~[Y~

]n~[Y~
]n~[Y~

Volume 1 | Issue 2 | 73OA J Applied Sci Technol, 2023

namely W bits, where W is such that W ≥ max (WA,WD).

Thus, ignoring the memory requirement for the external storage
of the initial NAT-ordered input data set within the partitioned
and double-buffered DSM, if L SRG data sets are to be produced,
where distinct values of σ are required to be generated and used
according to the constraint of being odd-valued, then the space
complexity required for carrying out the RND reordering of data
in a fine-grained parallel (i.e. exploiting partitioned memory),
coarse-grained sequential (i.e. SRG data sets processed one at
a time) fashion will involve a zero arithmetic component and a
memory component consisting of: 1) L×P words for the storage
of the resulting SRG data sets within the partitioned transform
space memory (TSM), with each data set being assigned its own
version of the memory consisting of eight memory banks with
each bank containing Q samples, together with 2) L×P words
for the storage of the pre computed sample addresses within the
partitioned DAM, with each address set being assigned its own
version of the memory consisting of eight memory banks with
each bank containing Q addresses. This results in a total memory
component, denoted MRND, of

words, whilst the associated time complexity, denoted TRND, for
carrying out these tasks in such a fashion will involve Q clock
cycles for producing each SRG data set, resulting in a total for
all L data sets of

clock cycles, where one woctad of data is written to the TSM
whilst the next woctad of data and its addresses are being read
from the DSM and the DAM, respectively. However, before
being written to the TSM, there is another task that must first be
performed.

3.2 Windowing of Randomly-Generated Data Sets
The next task in the processing chain is concerned with the
application of a window function, of length P, to each of the SRG
data sets with the resulting WSRG data sets being written to the
partitioned TSM. Each of the SRG data sets uses its own set of
pre-computed window coefficients which are stored within its
own partitioned window coefficient memory (WCM). Each set
of coefficients is obtained from an N-point NAT-ordered version
of the full window function (which does not need to be computed
and stored) via the same sets of addresses, obtained from the
DAM, as used for accessing the data from the partitioned DSM.
For the task to be efficiently carried out in a parallel fashion a
set of eight fast multipliers is provided which enables the latest
SRG data woctad retrieved from the DSM to be multiplied,
sample-by-sample, by the appropriate elements of the coefficient
woctad, obtained from the WCM, before being written to the
TSM – see Fig. 2. This task takes place whilst the next data
and coefficient woctads are being retrieved from the DSM and
WCM, respectively. By overlapping the two processing steps in
this way, the set of eight fast multipliers – which each typically
operates in a pipelined fashion over several clock cycles – may
be fed continuously with new data and coefficient woctads every
clock cycle.

each address pair within a single word of memory the P address pairs may be pre-computed and stored within

the partitioned data address memory (DAM), which consists of eight memory banks with each bank containing

Q = P/8 addresses, in order to simplify the task of producing L SRG data sets, each of length P, from the

original N-sample input data set and, in so doing, to reduce the associated addressing complexity. Each address

stored within the DAM consists of a WA-bit word, with WA ≥ log2(N/8)+3, whilst each (integer-valued) sample

of data stored within the DSM consists of a WD-bit word. For ease of analysis, however, all data samples and

addresses will be assumed hereafter to be of common length, namely W bits, where W is such that W ≥ max

(WA,WD).

 Thus, ignoring the memory requirement for the external storage of the initial NAT-ordered input data

set within the partitioned and double-buffered DSM, if L SRG data sets are to be produced, where distinct

values of  are required to be generated and used according to the constraint of being odd-valued, then the

space-complexity required for carrying out the RND-reordering of data in a fine-grained parallel (i.e. exploiting

partitioned memory), coarse-grained sequential (i.e. SRG data sets processed one at a time) fashion will

involve a zero arithmetic component and a memory component consisting of: 1) L×P words for the storage of

the resulting SRG data sets within the partitioned transform-space memory (TSM), with each data set being

assigned its own version of the memory consisting of eight memory banks with each bank containing Q

samples, together with 2) L×P words for the storage of the pre-computed sample addresses within the

partitioned DAM, with each address set being assigned its own version of the memory consisting of eight

memory banks with each bank containing Q addresses. This results in a total memory component, denoted

MRND, of

 MRND ≈  PL2  (20)

words, whilst the associated time-complexity, denoted TRND, for carrying out these tasks in such a fashion will

involve Q clock cycles for producing each SRG data set, resulting in a total for all L data sets of

 TRND ≈ QL  PL8
1  (21)

clock cycles, where one woctad of data is written to the TSM whilst the next woctad of data and its addresses

are being read from the DSM and the DAM, respectively. However, before being written to the TSM, there is

another task that must first be performed.

3.2 Windowing of Randomly-Generated Data Sets
 The next task in the processing chain is concerned with the application of a window function, of length

P, to each of the SRG data sets with the resulting WSRG data sets being written to the partitioned TSM. Each

of the SRG data sets uses its own set of pre-computed window coefficients which are stored within its own

each address pair within a single word of memory the P address pairs may be pre-computed and stored within

the partitioned data address memory (DAM), which consists of eight memory banks with each bank containing

Q = P/8 addresses, in order to simplify the task of producing L SRG data sets, each of length P, from the

original N-sample input data set and, in so doing, to reduce the associated addressing complexity. Each address

stored within the DAM consists of a WA-bit word, with WA ≥ log2(N/8)+3, whilst each (integer-valued) sample

of data stored within the DSM consists of a WD-bit word. For ease of analysis, however, all data samples and

addresses will be assumed hereafter to be of common length, namely W bits, where W is such that W ≥ max

(WA,WD).

 Thus, ignoring the memory requirement for the external storage of the initial NAT-ordered input data

set within the partitioned and double-buffered DSM, if L SRG data sets are to be produced, where distinct

values of  are required to be generated and used according to the constraint of being odd-valued, then the

space-complexity required for carrying out the RND-reordering of data in a fine-grained parallel (i.e. exploiting

partitioned memory), coarse-grained sequential (i.e. SRG data sets processed one at a time) fashion will

involve a zero arithmetic component and a memory component consisting of: 1) L×P words for the storage of

the resulting SRG data sets within the partitioned transform-space memory (TSM), with each data set being

assigned its own version of the memory consisting of eight memory banks with each bank containing Q

samples, together with 2) L×P words for the storage of the pre-computed sample addresses within the

partitioned DAM, with each address set being assigned its own version of the memory consisting of eight

memory banks with each bank containing Q addresses. This results in a total memory component, denoted

MRND, of

 MRND ≈  PL2  (20)

words, whilst the associated time-complexity, denoted TRND, for carrying out these tasks in such a fashion will

involve Q clock cycles for producing each SRG data set, resulting in a total for all L data sets of

 TRND ≈ QL  PL8
1  (21)

clock cycles, where one woctad of data is written to the TSM whilst the next woctad of data and its addresses

are being read from the DSM and the DAM, respectively. However, before being written to the TSM, there is

another task that must first be performed.

3.2 Windowing of Randomly-Generated Data Sets
 The next task in the processing chain is concerned with the application of a window function, of length

P, to each of the SRG data sets with the resulting WSRG data sets being written to the partitioned TSM. Each

of the SRG data sets uses its own set of pre-computed window coefficients which are stored within its own

each address pair within a single word of memory the P address pairs may be pre-computed and stored within

the partitioned data address memory (DAM), which consists of eight memory banks with each bank containing

Q = P/8 addresses, in order to simplify the task of producing L SRG data sets, each of length P, from the

original N-sample input data set and, in so doing, to reduce the associated addressing complexity. Each address

stored within the DAM consists of a WA-bit word, with WA ≥ log2(N/8)+3, whilst each (integer-valued) sample

of data stored within the DSM consists of a WD-bit word. For ease of analysis, however, all data samples and

addresses will be assumed hereafter to be of common length, namely W bits, where W is such that W ≥ max

(WA,WD).

 Thus, ignoring the memory requirement for the external storage of the initial NAT-ordered input data

set within the partitioned and double-buffered DSM, if L SRG data sets are to be produced, where distinct

values of  are required to be generated and used according to the constraint of being odd-valued, then the

space-complexity required for carrying out the RND-reordering of data in a fine-grained parallel (i.e. exploiting

partitioned memory), coarse-grained sequential (i.e. SRG data sets processed one at a time) fashion will

involve a zero arithmetic component and a memory component consisting of: 1) L×P words for the storage of

the resulting SRG data sets within the partitioned transform-space memory (TSM), with each data set being

assigned its own version of the memory consisting of eight memory banks with each bank containing Q

samples, together with 2) L×P words for the storage of the pre-computed sample addresses within the

partitioned DAM, with each address set being assigned its own version of the memory consisting of eight

memory banks with each bank containing Q addresses. This results in a total memory component, denoted

MRND, of

 MRND ≈  PL2  (20)

words, whilst the associated time-complexity, denoted TRND, for carrying out these tasks in such a fashion will

involve Q clock cycles for producing each SRG data set, resulting in a total for all L data sets of

 TRND ≈ QL  PL8
1  (21)

clock cycles, where one woctad of data is written to the TSM whilst the next woctad of data and its addresses

are being read from the DSM and the DAM, respectively. However, before being written to the TSM, there is

another task that must first be performed.

3.2 Windowing of Randomly-Generated Data Sets
 The next task in the processing chain is concerned with the application of a window function, of length

P, to each of the SRG data sets with the resulting WSRG data sets being written to the partitioned TSM. Each

of the SRG data sets uses its own set of pre-computed window coefficients which are stored within its own

each address pair within a single word of memory the P address pairs may be pre-computed and stored within

the partitioned data address memory (DAM), which consists of eight memory banks with each bank containing

Q = P/8 addresses, in order to simplify the task of producing L SRG data sets, each of length P, from the

original N-sample input data set and, in so doing, to reduce the associated addressing complexity. Each address

stored within the DAM consists of a WA-bit word, with WA ≥ log2(N/8)+3, whilst each (integer-valued) sample

of data stored within the DSM consists of a WD-bit word. For ease of analysis, however, all data samples and

addresses will be assumed hereafter to be of common length, namely W bits, where W is such that W ≥ max

(WA,WD).

 Thus, ignoring the memory requirement for the external storage of the initial NAT-ordered input data

set within the partitioned and double-buffered DSM, if L SRG data sets are to be produced, where distinct

values of  are required to be generated and used according to the constraint of being odd-valued, then the

space-complexity required for carrying out the RND-reordering of data in a fine-grained parallel (i.e. exploiting

partitioned memory), coarse-grained sequential (i.e. SRG data sets processed one at a time) fashion will

involve a zero arithmetic component and a memory component consisting of: 1) L×P words for the storage of

the resulting SRG data sets within the partitioned transform-space memory (TSM), with each data set being

assigned its own version of the memory consisting of eight memory banks with each bank containing Q

samples, together with 2) L×P words for the storage of the pre-computed sample addresses within the

partitioned DAM, with each address set being assigned its own version of the memory consisting of eight

memory banks with each bank containing Q addresses. This results in a total memory component, denoted

MRND, of

 MRND ≈  PL2  (20)

words, whilst the associated time-complexity, denoted TRND, for carrying out these tasks in such a fashion will

involve Q clock cycles for producing each SRG data set, resulting in a total for all L data sets of

 TRND ≈ QL  PL8
1  (21)

clock cycles, where one woctad of data is written to the TSM whilst the next woctad of data and its addresses

are being read from the DSM and the DAM, respectively. However, before being written to the TSM, there is

another task that must first be performed.

3.2 Windowing of Randomly-Generated Data Sets
 The next task in the processing chain is concerned with the application of a window function, of length

P, to each of the SRG data sets with the resulting WSRG data sets being written to the partitioned TSM. Each

of the SRG data sets uses its own set of pre-computed window coefficients which are stored within its own

Figure 2: Scheme for Generation and Windowing of Reordered Samples Selected from Input Data Set Figure 2: Scheme for Generation and Windowing of Reordered Samples Selected from Input Data Set

The space-complexity required for carrying out the windowing
of the multiple SRG data sets in a fine grained parallel, coarse-
grained sequential fashion involves an arithmetic component,
denoted AWND, of

AWND = 8 multipliers & 0 adders 	 (22)

together with a memory component, denoted MWND, of

MWND ≈ L×P		 (23)

words. Due to the overlapping of: 1) the retrieval of the data and
coefficient woctads, with 2) the application of the coefficients
to the data samples, the associated time complexity, denoted
TWND, for carrying out the windowing in such a fashion will be
‘effectively’ zero, apart from that involving the small start-up
delay required for the pipelining of the fast multipliers.	

3.3 Summary of Complexity Requirements
At this point L WSRG data sets, each of length P and stored
within its own version of the TSM, are available for input to

Volume 1 | Issue 2 | 74OA J Applied Sci Technol, 2023

the next stage of the processing chain concerning the use of
the RFHT, the outputs of which will also be stored within the
TSM (by simply over-writing the WSRG data) for subsequent
conversion from Hartley-space to Fourier-space. From the
complexity results provided in this and the previous sections
it is evident that the space complexity for the first stage of the
processing chain involving the production of the multiple WSRG
data sets in a fine grained parallel, coarse-grained sequential
fashion possesses an arithmetic component, denoted ASTG1, of

ASTG1 = ARND+WND
= 8 multipliers & 0 adders	 (24)

together with a memory component, denoted MSTG1, of

words, whilst the associated time-complexity, denoted TSTG1,
for carrying out the combined task in such a fashion may be
expressed as

clock cycles, after taking into account the overlapping of their
operations.
	
Note that although the memory component of the space-
complexity has been increased in order to cater for the storage
of the pre-computed sample addresses and window coefficients
associated with each WSRG data set, the time complexity has
been considerably reduced as their pre computation and storage
avoids the need for their costly on-the-fly computation.

4. Data-Space to Transform-Space Conversion
The second stage of the processing chain is concerned with the
computation of low-resolution spectral samples via the L SDRD
FFTs, this being achieved by applying the RFHT to the WSRG
data sets produced by the first stage. Note, however, that the
conversion routine for transferring the data from Hartley space
to Fourier space – as described by Eqtns. 7 and 8 – is omitted
at this stage as it may be included more naturally as part of the
transform-space processing of Section 5.

4.1 Parallel Data Reordering via Dibit-Reversal Mapping
Being a radix-4 decimation-in-time (DIT) algorithm the input
data to the RFHT – as stored within the partitioned TSM –
needs first to be reordered according to the dibit-reversal
(DBR) mapping which is a radix-4 digit reversal permutation
in which the radix-4 digits of the index of each element are
reversed in order to obtain the permuted index [25,31]. The DBR
reordered input data set may then be transferred from the TSM
to the partitioned memory used for the storage of the RFHT
input/output data with consecutive data samples being stored
cyclically within consecutive memory banks. On completion of
the RFHT, the NAT ordered output data set may be read out from
the partitioned memory with consecutive data samples being
retrieved cyclically from consecutive memory banks. With each
partitioned memory made up of dual-port RAM and comprising

eight memory banks it can be shown that the DBR reordered
samples may be transferred from one set of memory banks to
another at the rate of two woctads (with two samples from each
memory bank) per clock cycle, so that the time complexity,
denoted TDBR, for the construction and transfer of each DBR
reordered data set of length P may be expressed as [25]

clock cycles, whilst the associated space-complexity – apart from
a small fixed amount of intermediate memory – is insignificant.

A number of alternative implementations of the digit reversal
mapping – as required for those fixed-radix FFTs where the
radix is a power of two – have been produced in recent years,
such as those pipelined implementations described in which are
designed for consistency with the streaming operation of the
pipelined FFT [8,29]. With the DBR mapping and the adoption
of four-fold parallelism that is, processing four samples at a time
for the corresponding radix-4 real-data FFT – such solutions
are able to achieve, for the case of large P, a latency of ~ P/4
clock cycles at the expense of ~ P words of additional memory.
Such solutions, however, are not scalable with larger transforms
(and digit-reversal routines) requiring proportionately longer
pipelines and thus increased latency as well as proportionately
more resources for their implementation.

4.2 The Regularized Fast Hartley Transform – A Summary
The correctness of operation of the RFHT – which has shown
itself ideally suited to block based rather than streaming
operation – has already been proven in silicon with a fixed point
implementation using FPGA technology where the storage of
the data and the trigonometric coefficients was carried out in
each case using dual port RAM [24]. A brief overview of the
algorithm is now provided in order to highlight the merits of its
application to the current problem, namely the computation of
multiple SDRD FFTs where the length P of each transform may
be freely chosen to be a radix-4 integer.

4.2.1 Overview
The RFHT is a resource efficient and scalable means of carrying
out the DHT in a highly parallel fashion, whilst it’s being
‘regularized’ refers to the fact that the algorithm structure has
been made regular (by maximizing the amount of repetition
and symmetry present in the design) so that the conventional
need for two separate butterfly designs for the fixed-radix FHT
is thus avoided [25]. The design includes two key features: 1) an
architecture based upon the use of a single processing element
(PE), as shown in Fig. 3, which exploits partitioned memory to
facilitate the parallel computation of the butterfly operation, and
2) conflict free and in place parallel memory addressing schemes
for both the data, as stored in the PE’s internal data memory
(PDM), and the trigonometric coefficients (or twiddle factors),
as stored in the PE’s internal coefficient memory (PCM). These
features, when combined with pipelining techniques for the
internal operation of the PE, enable the generic double butterfly
– the large computational engine used by the RFHT – to produce
output woctads at the rate of one per clock cycle.

 MSTG1 = MRND+WND

 ≈   PL3  (25)

words, whilst the associated time-complexity, denoted TSTG1, for carrying out the combined task in such a

fashion may be expressed as

 TSTG1 = TRND+WND

 ≈    PL8
1QL  (26)

clock cycles, after taking into account the overlapping of their operations.

 Note that although the memory component of the space-complexity has been increased in order to cater

for the storage of the pre-computed sample addresses and window coefficients associated with each WSRG

data set, the time-complexity has been considerably reduced as their pre-computation and storage avoids the

need for their costly on-the-fly computation.

4. Data-Space to Transform-Space Conversion
 The second stage of the processing chain is concerned with the computation of low-resolution spectral

samples via the L SDRD-FFTs, this being achieved by applying the RFHT to the WSRG data sets produced by

the first stage. Note, however, that the conversion routine for transferring the data from Hartley-space to

Fourier-space – as described by Eqtns. 7 and 8 – is omitted at this stage as it may be included more naturally as

part of the transform-space processing of Section 5.

4.1 Parallel Data Reordering via Dibit-Reversal Mapping
 Being a radix-4 decimation-in-time (DIT) algorithm [31], the input data to the RFHT – as stored within

the partitioned TSM – needs first to be reordered according to the dibit-reversal (DBR) mapping [25], which is

a radix-4 digit-reversal permutation in which the radix-4 digits of the index of each element are reversed in

order to obtain the permuted index. The DBR-reordered input data set may then be transferred from the TSM to

the partitioned memory used for the storage of the RFHT input/output data with consecutive data samples

being stored cyclically within consecutive memory banks. On completion of the RFHT, the NAT-ordered

output data set may be read out from the partitioned memory with consecutive data samples being retrieved

cyclically from consecutive memory banks. With each partitioned memory made up of dual-port RAM and

comprising eight memory banks it can be shown [25] that the DBR-reordered samples may be transferred from

one set of memory banks to another at the rate of two woctads (with two samples from each memory bank) per

clock cycle, so that the time-complexity, denoted TDBR, for the construction and transfer of each

DBR-reordered data set of length P may be expressed as

 MSTG1 = MRND+WND

 ≈   PL3  (25)

words, whilst the associated time-complexity, denoted TSTG1, for carrying out the combined task in such a

fashion may be expressed as

 TSTG1 = TRND+WND

 ≈    PL8
1QL  (26)

clock cycles, after taking into account the overlapping of their operations.

 Note that although the memory component of the space-complexity has been increased in order to cater

for the storage of the pre-computed sample addresses and window coefficients associated with each WSRG

data set, the time-complexity has been considerably reduced as their pre-computation and storage avoids the

need for their costly on-the-fly computation.

4. Data-Space to Transform-Space Conversion
 The second stage of the processing chain is concerned with the computation of low-resolution spectral

samples via the L SDRD-FFTs, this being achieved by applying the RFHT to the WSRG data sets produced by

the first stage. Note, however, that the conversion routine for transferring the data from Hartley-space to

Fourier-space – as described by Eqtns. 7 and 8 – is omitted at this stage as it may be included more naturally as

part of the transform-space processing of Section 5.

4.1 Parallel Data Reordering via Dibit-Reversal Mapping
 Being a radix-4 decimation-in-time (DIT) algorithm [31], the input data to the RFHT – as stored within

the partitioned TSM – needs first to be reordered according to the dibit-reversal (DBR) mapping [25], which is

a radix-4 digit-reversal permutation in which the radix-4 digits of the index of each element are reversed in

order to obtain the permuted index. The DBR-reordered input data set may then be transferred from the TSM to

the partitioned memory used for the storage of the RFHT input/output data with consecutive data samples

being stored cyclically within consecutive memory banks. On completion of the RFHT, the NAT-ordered

output data set may be read out from the partitioned memory with consecutive data samples being retrieved

cyclically from consecutive memory banks. With each partitioned memory made up of dual-port RAM and

comprising eight memory banks it can be shown [25] that the DBR-reordered samples may be transferred from

one set of memory banks to another at the rate of two woctads (with two samples from each memory bank) per

clock cycle, so that the time-complexity, denoted TDBR, for the construction and transfer of each

DBR-reordered data set of length P may be expressed as

 MSTG1 = MRND+WND

 ≈   PL3  (25)

words, whilst the associated time-complexity, denoted TSTG1, for carrying out the combined task in such a

fashion may be expressed as

 TSTG1 = TRND+WND

 ≈    PL8
1QL  (26)

clock cycles, after taking into account the overlapping of their operations.

 Note that although the memory component of the space-complexity has been increased in order to cater

for the storage of the pre-computed sample addresses and window coefficients associated with each WSRG

data set, the time-complexity has been considerably reduced as their pre-computation and storage avoids the

need for their costly on-the-fly computation.

4. Data-Space to Transform-Space Conversion
 The second stage of the processing chain is concerned with the computation of low-resolution spectral

samples via the L SDRD-FFTs, this being achieved by applying the RFHT to the WSRG data sets produced by

the first stage. Note, however, that the conversion routine for transferring the data from Hartley-space to

Fourier-space – as described by Eqtns. 7 and 8 – is omitted at this stage as it may be included more naturally as

part of the transform-space processing of Section 5.

4.1 Parallel Data Reordering via Dibit-Reversal Mapping
 Being a radix-4 decimation-in-time (DIT) algorithm [31], the input data to the RFHT – as stored within

the partitioned TSM – needs first to be reordered according to the dibit-reversal (DBR) mapping [25], which is

a radix-4 digit-reversal permutation in which the radix-4 digits of the index of each element are reversed in

order to obtain the permuted index. The DBR-reordered input data set may then be transferred from the TSM to

the partitioned memory used for the storage of the RFHT input/output data with consecutive data samples

being stored cyclically within consecutive memory banks. On completion of the RFHT, the NAT-ordered

output data set may be read out from the partitioned memory with consecutive data samples being retrieved

cyclically from consecutive memory banks. With each partitioned memory made up of dual-port RAM and

comprising eight memory banks it can be shown [25] that the DBR-reordered samples may be transferred from

one set of memory banks to another at the rate of two woctads (with two samples from each memory bank) per

clock cycle, so that the time-complexity, denoted TDBR, for the construction and transfer of each

DBR-reordered data set of length P may be expressed as

 MSTG1 = MRND+WND

 ≈   PL3  (25)

words, whilst the associated time-complexity, denoted TSTG1, for carrying out the combined task in such a

fashion may be expressed as

 TSTG1 = TRND+WND

 ≈    PL8
1QL  (26)

clock cycles, after taking into account the overlapping of their operations.

 Note that although the memory component of the space-complexity has been increased in order to cater

for the storage of the pre-computed sample addresses and window coefficients associated with each WSRG

data set, the time-complexity has been considerably reduced as their pre-computation and storage avoids the

need for their costly on-the-fly computation.

4. Data-Space to Transform-Space Conversion
 The second stage of the processing chain is concerned with the computation of low-resolution spectral

samples via the L SDRD-FFTs, this being achieved by applying the RFHT to the WSRG data sets produced by

the first stage. Note, however, that the conversion routine for transferring the data from Hartley-space to

Fourier-space – as described by Eqtns. 7 and 8 – is omitted at this stage as it may be included more naturally as

part of the transform-space processing of Section 5.

4.1 Parallel Data Reordering via Dibit-Reversal Mapping
 Being a radix-4 decimation-in-time (DIT) algorithm [31], the input data to the RFHT – as stored within

the partitioned TSM – needs first to be reordered according to the dibit-reversal (DBR) mapping [25], which is

a radix-4 digit-reversal permutation in which the radix-4 digits of the index of each element are reversed in

order to obtain the permuted index. The DBR-reordered input data set may then be transferred from the TSM to

the partitioned memory used for the storage of the RFHT input/output data with consecutive data samples

being stored cyclically within consecutive memory banks. On completion of the RFHT, the NAT-ordered

output data set may be read out from the partitioned memory with consecutive data samples being retrieved

cyclically from consecutive memory banks. With each partitioned memory made up of dual-port RAM and

comprising eight memory banks it can be shown [25] that the DBR-reordered samples may be transferred from

one set of memory banks to another at the rate of two woctads (with two samples from each memory bank) per

clock cycle, so that the time-complexity, denoted TDBR, for the construction and transfer of each

DBR-reordered data set of length P may be expressed as

 TDBR ≈ 16
P (27)

clock cycles, whilst the associated space-complexity – apart from a small fixed amount of intermediate

memory – is insignificant.

 A number of alternative implementations of the digit-reversal mapping – as required for those fixed-

radix FFTs where the radix is a power of two – have been produced in recent years, such as those pipelined

implementations described in [8,29], which are designed for consistency with the streaming operation of the

pipelined FFT. With the DBR mapping and the adoption of four-fold parallelism – that is, processing four

samples at a time for the corresponding radix-4 real-data FFT – such solutions are able to achieve, for the case

of large P, a latency of ~ P/4 clock cycles at the expense of ~ P words of additional memory. Such solutions,

however, are not scalable with larger transforms (and digit-reversal routines) requiring proportionately longer

pipelines and thus increased latency as well as proportionately more resources for their implementation.

4.2 The Regularized Fast Hartley Transform – A Summary
 The correctness of operation of the RFHT – which has shown itself ideally suited to block-based rather

than streaming operation – has already been proven in silicon with a fixed-point implementation [24] using

FPGA technology where the storage of the data and the trigonometric coefficients was carried out in each case

using dual-port RAM. A brief overview of the algorithm is now provided in order to highlight the merits of its

application to the current problem, namely the computation of multiple SDRD-FFTs where the length P of each

transform may be freely chosen to be a radix-4 integer.

4.2.1 Overview
 The RFHT is a resource-efficient and scalable means of carrying out the DHT in a highly parallel

fashion, whilst it’s being ‘regularized’ refers to the fact that the algorithm structure has been made regular (by

maximizing the amount of repetition and symmetry present in the design) so that the conventional need for two

separate butterfly designs for the fixed-radix FHT is thus avoided [25]. The design includes two key features:

1) an architecture based upon the use of a single processing element (PE), as shown in Fig. 3, which exploits

partitioned memory to facilitate the parallel computation of the butterfly operation, and 2) conflict-free and

in-place parallel memory addressing schemes for both the data, as stored in the PE’s internal data memory

(PDM), and the trigonometric coefficients (or twiddle factors), as stored in the PE’s internal coefficient

memory (PCM). These features, when combined with pipelining techniques for the internal operation of the

PE, enable the generic double butterfly – the large computational engine used by the RFHT – to produce output

woctads at the rate of one per clock cycle.

 TDBR ≈ 16
P (27)

clock cycles, whilst the associated space-complexity – apart from a small fixed amount of intermediate

memory – is insignificant.

 A number of alternative implementations of the digit-reversal mapping – as required for those fixed-

radix FFTs where the radix is a power of two – have been produced in recent years, such as those pipelined

implementations described in [8,29], which are designed for consistency with the streaming operation of the

pipelined FFT. With the DBR mapping and the adoption of four-fold parallelism – that is, processing four

samples at a time for the corresponding radix-4 real-data FFT – such solutions are able to achieve, for the case

of large P, a latency of ~ P/4 clock cycles at the expense of ~ P words of additional memory. Such solutions,

however, are not scalable with larger transforms (and digit-reversal routines) requiring proportionately longer

pipelines and thus increased latency as well as proportionately more resources for their implementation.

4.2 The Regularized Fast Hartley Transform – A Summary
 The correctness of operation of the RFHT – which has shown itself ideally suited to block-based rather

than streaming operation – has already been proven in silicon with a fixed-point implementation [24] using

FPGA technology where the storage of the data and the trigonometric coefficients was carried out in each case

using dual-port RAM. A brief overview of the algorithm is now provided in order to highlight the merits of its

application to the current problem, namely the computation of multiple SDRD-FFTs where the length P of each

transform may be freely chosen to be a radix-4 integer.

4.2.1 Overview
 The RFHT is a resource-efficient and scalable means of carrying out the DHT in a highly parallel

fashion, whilst it’s being ‘regularized’ refers to the fact that the algorithm structure has been made regular (by

maximizing the amount of repetition and symmetry present in the design) so that the conventional need for two

separate butterfly designs for the fixed-radix FHT is thus avoided [25]. The design includes two key features:

1) an architecture based upon the use of a single processing element (PE), as shown in Fig. 3, which exploits

partitioned memory to facilitate the parallel computation of the butterfly operation, and 2) conflict-free and

in-place parallel memory addressing schemes for both the data, as stored in the PE’s internal data memory

(PDM), and the trigonometric coefficients (or twiddle factors), as stored in the PE’s internal coefficient

memory (PCM). These features, when combined with pipelining techniques for the internal operation of the

PE, enable the generic double butterfly – the large computational engine used by the RFHT – to produce output

woctads at the rate of one per clock cycle.

Volume 1 | Issue 2 | 75OA J Applied Sci Technol, 2023

 Figure 3: Single-PE Recursive Architecture for Regularized FHT

Pa
rti

tio
ne

d
Co

ef
fic

ie
nt

 M
em

or
y

 × 9

 × 6

× 8

n
DM - nth data memory bank

n
CM - nth coefficient memory bank

Trigonometric

Coefficient
Generator

Generic
Radix-4

Double Butterfly

Partitioned Data Memory

1
DM 2

DM

5
DM 6

DM

3
DM 4

DM

7
DM 8

DM

1
CM

2
CM

3
CM

Address

Generator

Figure 3: Single-PE Recursive Architecture for Regularized FHT

Figure 4: Signal Flow Graph for Twelve-Multiplier Version of Generic Double Butterfly

 trigonometric
 coefficients

The original design [23] required 12 multipliers and 22 adders
for carrying out the double butterfly operation, as shown in Fig.
4, with: 1) each woctad (as obtained from four or eight memory
banks) being read/written in parallel from/to the partitioned
PDM, configurable as an array of eight memory banks, and 2)
the trigonometric coefficients being read in parallel from the
partitioned PCM, configurable as an array of three one-level look
up tables (LUTs), with each LUT storing a single quadrant of the
sine function [23]. The PDM addressing, over two consecutive
clock cycles, enables all those samples required by consecutive
instances of the double butterfly operation to be read from the

PDM, processed and then written back to the PDM in a conflict
free and in place manner at the rate of one woctad per clock
cycle [25].	
	
4.2.2 Resource-Constrained Design Variations
Three additional versions of the PE have been subsequently
derived which enable the arithmetic component of the space-
complexity to be traded off against the memory component,
which varies according to the use of either one level or two level
LUTs for the PCM [25]. The use of two level LUTs results in a
reduced memory requirement of O() words, as opposed to the)P(O

Volume 1 | Issue 2 | 76OA J Applied Sci Technol, 2023

O(P) requirement of the one level LUTs, this reduction being
obtained at the expense of increased addressing complexity
through the need for the combined use of both coarse resolution
and fine resolution LUTs. A theoretical performance/resource
comparison of all four versions of the RFHT is provided in Table
1, although it should be noted that a fifth version using a PE
based upon the use of Co Ordinate Rotation DIgital Computer

(CORDIC) arithmetic has also been successfully produced
[25,36]. With each version, the RFHT achieves an O(P×logP)
time complexity which corresponds, in clock cycles, to the
total number of double butterflies to be executed per transform,
namely 1/8(P×log4P). The adoption of Version II of the RFHT is
to be assumed hereafter when assessing space-complexity. 	

Version

of

Solution

Arithmetic-Complexity Memory Requirement
(words)

Time-Complexity
(clock cycles)

Processing Element Coefficient Generator Data Memory

(Single-Buffer)

Coefficient

Memory

Update Time /

Latency Multipliers Adders Multipliers Adders

I 12 22 0 0 N N4
3 Nlog.N8

1
4

II 9 25 0 6 N N4
3 Nlog.N8

1
4

III 12 22 7 8 N N2
3 Nlog.N8

1
4

IV 9 25 7 14 N N2
3 Nlog.N8

1
4

 Table 1: Performance/Resource Comparison for Fast Multiplier Versions of N-Point Regularized FHT Table 1: Performance/Resource Comparison for Fast Multiplier Versions of N-Point Regularized FHT

4.3 Summary of Complexity Requirements
The space complexity for carrying out the second stage of the
processing chain involving the construction and transfer of the L
DBR reordered data sets followed by the corresponding P point
RFHTs, in a fine grained parallel, coarse-grained sequential
fashion, possesses an arithmetic component, denoted ASTG2, of

ASTG2 = ADBR+FHT
= 9 multipliers & 31 adders	 (28)

together with a memory component, denoted MSTG2, of
		

words, whilst the associated time complexity, denoted TSTG2, for
carrying out the task in such a fashion may be expressed as
		

clock cycles. Note, however, that each TSM may be used for
the storage of both the input and the output data sets to/from the
RFHT, as the input data woctads may be simply overwritten by
the corresponding output data woctads given that the input data

set is accessed by the PE from the PDM rather than the TSM.

The reasoning behind the RFHT design was that a solution
should be found to the problem of computing the DHT and/or
the real data DFT which possessed a regular structure, for ease
of implementation, and met with a given latency constraint –
namely that the throughput rate should be able to keep up with
the data set refresh rate of P clock cycles for each length P data
set – whilst using minimal silicon resources. When applied to the
real data radix-4 FFT, the RFHT-based solution showed itself
able to achieve the computational density of the most advanced
commercially available FFT solutions for just a fraction of the
silicon resources with the arithmetic requirement of the generic
double butterfly being equivalent to that achievable for the
butterfly of an optimally designed complex data radix 4 FFT [24].

5. Transform-Space Processing Requirement
The third and final stage of the processing chain involves the
identification of the signal’s dominant frequencies together with
the subsequent computation of the sparse spectrum for those
particular frequencies. Before proceeding, however, it is first
necessary that each RFHT output data set – as produced from
the second stage of the processing chain – is converted from
Hartley-space to Fourier space so that it’s in the required form for
subsequent processing. The squared magnitudes of the Fourier-
space outputs – representing the PSD – are also computed for

 = 9 multipliers & 31 adders (28)

together with a memory component, denoted MSTG2, of

 MSTG2 = MDBR+FHT

 ≈ P4
7 (29)

words, whilst the associated time-complexity, denoted TSTG2, for carrying out the task in such a fashion may be

expressed as

 TSTG2 = TDBR+FHT

    1Plog2PL16
1

4  (30)

clock cycles. Note, however, that each TSM may be used for the storage of both the input and the output data

sets to/from the RFHT, as the input data woctads may be simply overwritten by the corresponding output data

woctads given that the input data set is accessed by the PE from the PDM rather than the TSM.

 The reasoning behind the RFHT design was that a solution should be found to the problem of

computing the DHT and/or the real-data DFT which possessed a regular structure, for ease of implementation,

and met with a given latency constraint – namely that the throughput rate should be able to keep up with the

data set refresh rate of P clock cycles for each length P data set – whilst using minimal silicon resources. When

applied to the real-data radix-4 FFT, the RFHT-based solution showed itself able to achieve the computational

density of the most advanced commercially-available FFT solutions for just a fraction of the silicon resources

[24], with the arithmetic requirement of the generic double butterfly being equivalent to that achievable for the

butterfly of an optimally designed complex-data radix-4 FFT.

5. Transform-Space Processing Requirement

 The third and final stage of the processing chain involves the identification of the signal’s dominant

frequencies together with the subsequent computation of the sparse spectrum for those particular frequencies.

Before proceeding, however, it is first necessary that each RFHT output data set – as produced from the second

stage of the processing chain – is converted from Hartley-space to Fourier-space so that it’s in the required

form for subsequent processing. The squared-magnitudes of the Fourier-space outputs – representing the PSD –

are also computed for use in determining the locations of the dominant FFT bins.

5.1 Hartley-Space to Fourier-Space Conversion and PSD Estimation
 From Eqtns. 7 and 8 it was seen how the real and imaginary components of the DFT outputs could be

obtained straightforwardly from the DHT outputs, with the construction of each set of four consecutive

complex-valued DFT outputs needing access to eight real-valued DHT outputs – four with consecutive positive

 = 9 multipliers & 31 adders (28)

together with a memory component, denoted MSTG2, of

 MSTG2 = MDBR+FHT

 ≈ P4
7 (29)

words, whilst the associated time-complexity, denoted TSTG2, for carrying out the task in such a fashion may be

expressed as

 TSTG2 = TDBR+FHT

    1Plog2PL16
1

4  (30)

clock cycles. Note, however, that each TSM may be used for the storage of both the input and the output data

sets to/from the RFHT, as the input data woctads may be simply overwritten by the corresponding output data

woctads given that the input data set is accessed by the PE from the PDM rather than the TSM.

 The reasoning behind the RFHT design was that a solution should be found to the problem of

computing the DHT and/or the real-data DFT which possessed a regular structure, for ease of implementation,

and met with a given latency constraint – namely that the throughput rate should be able to keep up with the

data set refresh rate of P clock cycles for each length P data set – whilst using minimal silicon resources. When

applied to the real-data radix-4 FFT, the RFHT-based solution showed itself able to achieve the computational

density of the most advanced commercially-available FFT solutions for just a fraction of the silicon resources

[24], with the arithmetic requirement of the generic double butterfly being equivalent to that achievable for the

butterfly of an optimally designed complex-data radix-4 FFT.

5. Transform-Space Processing Requirement

 The third and final stage of the processing chain involves the identification of the signal’s dominant

frequencies together with the subsequent computation of the sparse spectrum for those particular frequencies.

Before proceeding, however, it is first necessary that each RFHT output data set – as produced from the second

stage of the processing chain – is converted from Hartley-space to Fourier-space so that it’s in the required

form for subsequent processing. The squared-magnitudes of the Fourier-space outputs – representing the PSD –

are also computed for use in determining the locations of the dominant FFT bins.

5.1 Hartley-Space to Fourier-Space Conversion and PSD Estimation
 From Eqtns. 7 and 8 it was seen how the real and imaginary components of the DFT outputs could be

obtained straightforwardly from the DHT outputs, with the construction of each set of four consecutive

complex-valued DFT outputs needing access to eight real-valued DHT outputs – four with consecutive positive

 = 9 multipliers & 31 adders (28)

together with a memory component, denoted MSTG2, of

 MSTG2 = MDBR+FHT

 ≈ P4
7 (29)

words, whilst the associated time-complexity, denoted TSTG2, for carrying out the task in such a fashion may be

expressed as

 TSTG2 = TDBR+FHT

    1Plog2PL16
1

4  (30)

clock cycles. Note, however, that each TSM may be used for the storage of both the input and the output data

sets to/from the RFHT, as the input data woctads may be simply overwritten by the corresponding output data

woctads given that the input data set is accessed by the PE from the PDM rather than the TSM.

 The reasoning behind the RFHT design was that a solution should be found to the problem of

computing the DHT and/or the real-data DFT which possessed a regular structure, for ease of implementation,

and met with a given latency constraint – namely that the throughput rate should be able to keep up with the

data set refresh rate of P clock cycles for each length P data set – whilst using minimal silicon resources. When

applied to the real-data radix-4 FFT, the RFHT-based solution showed itself able to achieve the computational

density of the most advanced commercially-available FFT solutions for just a fraction of the silicon resources

[24], with the arithmetic requirement of the generic double butterfly being equivalent to that achievable for the

butterfly of an optimally designed complex-data radix-4 FFT.

5. Transform-Space Processing Requirement

 The third and final stage of the processing chain involves the identification of the signal’s dominant

frequencies together with the subsequent computation of the sparse spectrum for those particular frequencies.

Before proceeding, however, it is first necessary that each RFHT output data set – as produced from the second

stage of the processing chain – is converted from Hartley-space to Fourier-space so that it’s in the required

form for subsequent processing. The squared-magnitudes of the Fourier-space outputs – representing the PSD –

are also computed for use in determining the locations of the dominant FFT bins.

5.1 Hartley-Space to Fourier-Space Conversion and PSD Estimation
 From Eqtns. 7 and 8 it was seen how the real and imaginary components of the DFT outputs could be

obtained straightforwardly from the DHT outputs, with the construction of each set of four consecutive

complex-valued DFT outputs needing access to eight real-valued DHT outputs – four with consecutive positive

 = 9 multipliers & 31 adders (28)

together with a memory component, denoted MSTG2, of

 MSTG2 = MDBR+FHT

 ≈ P4
7 (29)

words, whilst the associated time-complexity, denoted TSTG2, for carrying out the task in such a fashion may be

expressed as

 TSTG2 = TDBR+FHT

    1Plog2PL16
1

4  (30)

clock cycles. Note, however, that each TSM may be used for the storage of both the input and the output data

sets to/from the RFHT, as the input data woctads may be simply overwritten by the corresponding output data

woctads given that the input data set is accessed by the PE from the PDM rather than the TSM.

 The reasoning behind the RFHT design was that a solution should be found to the problem of

computing the DHT and/or the real-data DFT which possessed a regular structure, for ease of implementation,

and met with a given latency constraint – namely that the throughput rate should be able to keep up with the

data set refresh rate of P clock cycles for each length P data set – whilst using minimal silicon resources. When

applied to the real-data radix-4 FFT, the RFHT-based solution showed itself able to achieve the computational

density of the most advanced commercially-available FFT solutions for just a fraction of the silicon resources

[24], with the arithmetic requirement of the generic double butterfly being equivalent to that achievable for the

butterfly of an optimally designed complex-data radix-4 FFT.

5. Transform-Space Processing Requirement

 The third and final stage of the processing chain involves the identification of the signal’s dominant

frequencies together with the subsequent computation of the sparse spectrum for those particular frequencies.

Before proceeding, however, it is first necessary that each RFHT output data set – as produced from the second

stage of the processing chain – is converted from Hartley-space to Fourier-space so that it’s in the required

form for subsequent processing. The squared-magnitudes of the Fourier-space outputs – representing the PSD –

are also computed for use in determining the locations of the dominant FFT bins.

5.1 Hartley-Space to Fourier-Space Conversion and PSD Estimation
 From Eqtns. 7 and 8 it was seen how the real and imaginary components of the DFT outputs could be

obtained straightforwardly from the DHT outputs, with the construction of each set of four consecutive

complex-valued DFT outputs needing access to eight real-valued DHT outputs – four with consecutive positive

Volume 1 | Issue 2 | 77OA J Applied Sci Technol, 2023

use in determining the locations of the dominant FFT bins.

5.1 Hartley-Space to Fourier-Space Conversion and PSD
Estimation
From Eqtns. 7 and 8 it was seen how the real and imaginary
components of the DFT outputs could be obtained
straightforwardly from the DHT outputs, with the construction
of each set of four consecutive complex-valued DFT outputs
needing access to eight real-valued DHT outputs – four with
consecutive positive indices and four with consecutive negative
indices. Given that each RFHT may have its output data set stored
within its own version of the TSM each of the eight memory
banks will contain at most two of the required eight samples
from the RFHT output data set, one corresponding to the positive
index and the other corresponding to the negative index. Given
the dual-port nature of the memory, this means that the RFHT
output data required for the construction of each set of four DFT
outputs, as given by Eqtns. 7 and 8, may be obtained within a
single clock cycle. Thus, with fine-grained pipelined processing,
it is possible that with eight adders operating in parallel upon the
RFHT outputs, each set of four consecutive SDRD-FFT outputs
may be constructed whilst the next set of eight RFHT outputs
is being accessed, so that each set of complex-valued SDRD-
FFT outputs (there are P/2 of these produced from each set of
P RFHT outputs) may be produced from the set of real-valued
RFHT outputs in just P/8 clock cycles.

Note that to maintain this computational throughput in an
efficient manner it is necessary, for each RFHT, that the
subsequent SDRD-FFT outputs are efficiently stored, as they are
produced, in the existing TSM. This may be achieved by having,
for each RFHT output woctad, the set of four positive index
outputs overwritten by the real components of the corresponding
set of four SDRD-FFT outputs and the set of four negative index

outputs overwritten by the imaginary components.

The space-complexity required for carrying out the conversion of
all L sets of the transform outputs from Hartley-space to Fourier-
space in a fine-grained parallel, coarse-grained sequential
fashion, involves an arithmetic component, denoted ACON, of
	
ACON = 0 multipliers & 8 adders (31)

together with a zero memory component. The associated time
complexity, denoted TCON, for carrying out the conversion
routine for all L Hartley-space data sets in such a fashion may
be expressed as

clock cycles.

Turning to the PSD estimation, it was seen from Eqtn. 9 how
the PSD estimates could be obtained straightforwardly in terms
of either the DHT or the DFT outputs. Thus, with fine grained
pipelined processing, it is possible that with eight multipliers
operating in parallel upon the real and imaginary components
of the DFT outputs followed by four adders operating in parallel
upon the resulting squared terms, each set of four consecutive
PSD outputs may be constructed and stored within its own
partitioned power spectrum memory (PSM) – which consists
of eight equal sized memory banks each comprising Q/2 words
– whilst the next set of four SDRD-FFT outputs are being
produced, as illustrated in Fig. 5, so that apart from a short start-
up delay for the computational pipeline, the sets of complex-
valued SDRD-FFT outputs and real-valued PSD outputs, each of
length P/2, may both be produced in just P/8 clock cycles.

indices and four with consecutive negative indices. Given that each RFHT may have its output data set stored

within its own version of the TSM each of the eight memory banks will contain at most two of the required

eight samples from the RFHT output data set, one corresponding to the positive index and the other

corresponding to the negative index. Given the dual-port nature of the memory, this means that the RFHT

output data required for the construction of each set of four DFT outputs, as given by Eqtns. 7 and 8, may be

obtained within a single clock cycle. Thus, with fine-grained pipelined processing, it is possible that with eight

adders operating in parallel upon the RFHT outputs, each set of four consecutive SDRD-FFT outputs may be

constructed whilst the next set of eight RFHT outputs is being accessed, so that each set of complex-valued

SDRD-FFT outputs (there are P/2 of these produced from each set of P RFHT outputs) may be produced from

the set of real-valued RFHT outputs in just P/8 clock cycles.

 Note that to maintain this computational throughput in an efficient manner it is necessary, for each

RFHT, that the subsequent SDRD-FFT outputs are efficiently stored, as they are produced, in the existing

TSM. This may be achieved by having, for each RFHT output woctad, the set of four positive index outputs

overwritten by the real components of the corresponding set of four SDRD-FFT outputs and the set of four

negative index outputs overwritten by the imaginary components.

 The space-complexity required for carrying out the conversion of all L sets of the transform outputs

from Hartley-space to Fourier-space in a fine-grained parallel, coarse-grained sequential fashion, involves an

arithmetic component, denoted ACON, of

 ACON = 0 multipliers & 8 adders (31)

together with a zero memory component. The associated time-complexity, denoted TCON, for carrying out the

conversion routine for all L Hartley-space data sets in such a fashion may be expressed as

 TCON ≈  PL8
1  (32)

clock cycles.

 Turning to the PSD estimation, it was seen from Eqtn. 9 how the PSD estimates could be obtained

straightforwardly in terms of either the DHT or the DFT outputs. Thus, with fine-grained pipelined processing,

it is possible that with eight multipliers operating in parallel upon the real and imaginary components of the

DFT outputs followed by four adders operating in parallel upon the resulting squared terms, each set of four

consecutive PSD outputs may be constructed and stored within its own partitioned power spectrum memory

(PSM) – which consists of eight equal-sized memory banks each comprising Q/2 words – whilst the next set of

four SDRD-FFT outputs are being produced, as illustrated in Fig. 5, so that apart from a short start-up delay for

indices and four with consecutive negative indices. Given that each RFHT may have its output data set stored

within its own version of the TSM each of the eight memory banks will contain at most two of the required

eight samples from the RFHT output data set, one corresponding to the positive index and the other

corresponding to the negative index. Given the dual-port nature of the memory, this means that the RFHT

output data required for the construction of each set of four DFT outputs, as given by Eqtns. 7 and 8, may be

obtained within a single clock cycle. Thus, with fine-grained pipelined processing, it is possible that with eight

adders operating in parallel upon the RFHT outputs, each set of four consecutive SDRD-FFT outputs may be

constructed whilst the next set of eight RFHT outputs is being accessed, so that each set of complex-valued

SDRD-FFT outputs (there are P/2 of these produced from each set of P RFHT outputs) may be produced from

the set of real-valued RFHT outputs in just P/8 clock cycles.

 Note that to maintain this computational throughput in an efficient manner it is necessary, for each

RFHT, that the subsequent SDRD-FFT outputs are efficiently stored, as they are produced, in the existing

TSM. This may be achieved by having, for each RFHT output woctad, the set of four positive index outputs

overwritten by the real components of the corresponding set of four SDRD-FFT outputs and the set of four

negative index outputs overwritten by the imaginary components.

 The space-complexity required for carrying out the conversion of all L sets of the transform outputs

from Hartley-space to Fourier-space in a fine-grained parallel, coarse-grained sequential fashion, involves an

arithmetic component, denoted ACON, of

 ACON = 0 multipliers & 8 adders (31)

together with a zero memory component. The associated time-complexity, denoted TCON, for carrying out the

conversion routine for all L Hartley-space data sets in such a fashion may be expressed as

 TCON ≈  PL8
1  (32)

clock cycles.

 Turning to the PSD estimation, it was seen from Eqtn. 9 how the PSD estimates could be obtained

straightforwardly in terms of either the DHT or the DFT outputs. Thus, with fine-grained pipelined processing,

it is possible that with eight multipliers operating in parallel upon the real and imaginary components of the

DFT outputs followed by four adders operating in parallel upon the resulting squared terms, each set of four

consecutive PSD outputs may be constructed and stored within its own partitioned power spectrum memory

(PSM) – which consists of eight equal-sized memory banks each comprising Q/2 words – whilst the next set of

four SDRD-FFT outputs are being produced, as illustrated in Fig. 5, so that apart from a short start-up delay for

Figure 4: Signal Flow Graph for Twelve-Multiplier Version of Generic Double Butterfly

Figure 5: Signal Flow Graph for Derivation of Fourier-Space and Power
Spectrum Data + Dominant Bin Location Using Four Modules Operating In

PO
W

ER
 S

PE
CT

RU
M

 M
EM

O
RY

 Y[k4]

 Y[k3]

 Y[k2]

 Y[k1]

Real(X(F)[kn]), Imag(X(F)[kn]) for n = 1 to 4

TRANSFORM-SPACE MEMORY

X(H)[+k1]

X(H)[–k1]

 +
 +

 +

–

X(H)[+k2]

X(H)[–k2]

 +
 +

 +

–

X(H)[+k3]

X(H)[–k3]

 +
 +

 +

–

X(H)[+k4]

X(H)[–k4]

 +
 +

 +

–

Note: kn = kn-1 + 1

Dominant
Bin Location

Dominant
Bin Location

Dominant
Bin Location

Dominant
Bin Location

Figure 5: Signal Flow Graph for Derivation of Fourier-Space and Power Spectrum Data + Dominant Bin Location Using Four
Modules Operating In Parallel

Volume 1 | Issue 2 | 78OA J Applied Sci Technol, 2023

The space-complexity required for carrying out the PSD
estimation for all L Fourier-space data sets in a fine-grained
parallel, coarse-grained sequential fashion, involves an
arithmetic component, denoted APSD, of

APSD = 8 multipliers & 4 adders		 (33)

together with a memory component, denoted MPSD, of

words for the partitioned PSMs. Due to the pipelining of the
operations required for carrying out both the conversion routine
and the PSD estimation, the associated time complexity for
carrying out the PSD estimation for all L Fourier-space data sets
will be ‘effectively’ zero, apart from that involving the small
start-up delay required for the pipelining of the fast multipliers.

At this point L sets of both Fourier-space and PSD data are
available within the partitioned TSMs and PSMs, respectively,
for input to the remaining key tasks required of this final
stage of the processing chain concerning the derivation of the
individual components of the sparse spectrum. The overall space
complexity required for obtaining these two data sets in a fine-
grained parallel, coarse grained sequential fashion, is given by
an arithmetic component of
	

together with a memory component of

words, whilst the associated time-complexity for carrying out
the combined task for all L data sets in such a fashion may be
expressed as

clock cycles, where each of the above data sets is stored within
its own partitioned memory.

5.2 Location of Dominant SDRD-FFT Bins
Given that the maximum number of SDRD-FFT bins, ‘KD’,
considered to contain a detectable signal component is such that
KD << P << N and KD|P, the task now is to determine the locations
of those dominant SDRD-FFT bins, for each of the L spectral
data sets, from examination of the associated PSD outputs – as
illustrated in Fig. 5. To achieve this, a full sort routine could
simply be used, but this would involve a time complexity of
O(P×log2P) clock cycles which would be unnecessarily complex
for the problem being addressed [10,22]. A partial sort routine
would be a more appropriate solution for the problem at hand
with an attractive means of achieving this being to create a ‘Heap’
data structure – or, more specifically, a ‘Min Heap’ data structure
– which for every iteration would keep track of the largest KD
values and their addresses from the currently processed PSD
set and would enable the time complexity to be reduced to just
O(P×log2KD) clock cycles – a reduction of O(log2P/log2KD) [4].

The approach is thus to create a Min-Heap data structure
which will yield the largest KD PSD outputs using the two
heap operations of ‘insert’ and ‘delete’, each of which may be
assumed to involve up to log2KD exchanges yielding a time-
complexity of O(log2KD) clock cycles. After initializing the
heap with the first KD PSD outputs using the insert operation,
the partial sort algorithm iterates through the remaining P/2–KD
outputs comparing each new value with the existing minimum
value of the heap. If the value is less than the existing minimum
value then the processing for that iteration terminates, whereas
if the value is greater than the existing minimum value then that
minimum value is deleted and the new value inserted into the
heap. After all the iterations have been completed the Min-Heap
will contain the values of the KD largest PSD outputs, together
with the corresponding PSD addresses within the PSM – noting
that the corresponding SDRD-FFT output has the same address
within the TSM as the PSD output within the PSM. The heap
data – which is updated and stored within the dominant bin
memory (DBM) – consists of KD pairs of numbers where the
first number of each pair is the value of a dominant PSD output
whilst the second number is its address within the PSM. The
addresses are then used to set up a binary indicator array (BIA),
of length P/2, where the presence/absence of a ‘1’ indicates the
presence/absence of a dominant signal component residing at
that SDRD-FFT index.

Thus, with a sequential approach, where the insert and delete
operations are each assumed to be achievable in at most
α×log2KD clock cycles, for some factor ‘α’, the initialization
of the heap may be carried out in at most α×KD×log2KD clock
cycles, whilst the remaining P/2–KD iterations of the partial sort
algorithm may be carried out in at most 2α×(P/2–KD)×log2KD
clock cycles, although this figure will only be realized with the
pathological situation where successive PSD outputs occur in
a monotonically increasing fashion whereby each new iteration
requires that the existing minimum value be deleted from the heap
and the new value inserted. A more realistic situation involves
using randomly generated values for the PSD outputs so that the
KD maximum values may be assumed to be randomly distributed
across the spectrum, as anticipated with the permuted spectral
data. This situation has been modelled in Monte-Carlo fashion
using parameter values of P = 16K (where 1K = 1024) and KD
= 512, with the results showing that the maximum number of
inserts and deletes to be made in the second iterative phase of the
algorithm never exceeded 20% of the maximum number possible
(which is 1536 for the chosen parameter set), suggesting that
an attractive low-complexity solution would be to terminate the
processing once such a limit has been reached. The occasional
loss of a detectable signal component would seem a reasonable
compromise to make in order to ensure a realizable solution
and could be overcome through the subsequent averaging over
several consecutive sparse spectral output data sets, a commonly
adopted practice used to reduce the variance.

As a result, the space-complexity for carrying out this task for all
L sets of PSD outputs in a fine grained sequential, coarse-grained
sequential fashion, possesses a zero arithmetic component
together with a memory component, denoted MLOC, of

the computational pipeline, the sets of complex-valued SDRD-FFT outputs and real-valued PSD outputs, each

of length P/2, may both be produced in just P/8 clock cycles.

Figure 5 insert here

 The space-complexity required for carrying out the PSD estimation for all L Fourier-space data sets in

a fine-grained parallel, coarse-grained sequential fashion, involves an arithmetic component, denoted APSD, of

 APSD = 8 multipliers & 4 adders (33)

together with a memory component, denoted MPSD, of

 MPSD ≈  PL2
1  (34)

words for the partitioned PSMs. Due to the pipelining of the operations required for carrying out both the

conversion routine and the PSD estimation, the associated time-complexity for carrying out the PSD estimation

for all L Fourier-space data sets will be ‘effectively’ zero, apart from that involving the small start-up delay

required for the pipelining of the fast multipliers.

 At this point L sets of both Fourier-space and PSD data are available within the partitioned TSMs and

PSMs, respectively, for input to the remaining key tasks required of this final stage of the processing chain

concerning the derivation of the individual components of the sparse spectrum. The overall space-complexity

required for obtaining these two data sets in a fine-grained parallel, coarse-grained sequential fashion, is given

by an arithmetic component of

 ACON+PSD = 8 multipliers & 12 adders (35)

together with a memory component of

 MCON+PSD ≈   PL2
1  (36)

words, whilst the associated time-complexity for carrying out the combined task for all L data sets in such a

fashion may be expressed as

 TCON+PSD ≈  PL8
1  (37)

clock cycles, where each of the above data sets is stored within its own partitioned memory.

5.2 Location of Dominant SDRD-FFT Bins
 Given that the maximum number of SDRD-FFT bins, ‘KD’, considered to contain a detectable signal

component is such that KD << P << N and KD|P, the task now is to determine the locations of those dominant

SDRD-FFT bins, for each of the L spectral data sets, from examination of the associated PSD outputs – as

illustrated in Fig. 5. To achieve this, a full sort routine [10,22] could simply be used, but this would involve a

the computational pipeline, the sets of complex-valued SDRD-FFT outputs and real-valued PSD outputs, each

of length P/2, may both be produced in just P/8 clock cycles.

Figure 5 insert here

 The space-complexity required for carrying out the PSD estimation for all L Fourier-space data sets in

a fine-grained parallel, coarse-grained sequential fashion, involves an arithmetic component, denoted APSD, of

 APSD = 8 multipliers & 4 adders (33)

together with a memory component, denoted MPSD, of

 MPSD ≈  PL2
1  (34)

words for the partitioned PSMs. Due to the pipelining of the operations required for carrying out both the

conversion routine and the PSD estimation, the associated time-complexity for carrying out the PSD estimation

for all L Fourier-space data sets will be ‘effectively’ zero, apart from that involving the small start-up delay

required for the pipelining of the fast multipliers.

 At this point L sets of both Fourier-space and PSD data are available within the partitioned TSMs and

PSMs, respectively, for input to the remaining key tasks required of this final stage of the processing chain

concerning the derivation of the individual components of the sparse spectrum. The overall space-complexity

required for obtaining these two data sets in a fine-grained parallel, coarse-grained sequential fashion, is given

by an arithmetic component of

 ACON+PSD = 8 multipliers & 12 adders (35)

together with a memory component of

 MCON+PSD ≈   PL2
1  (36)

words, whilst the associated time-complexity for carrying out the combined task for all L data sets in such a

fashion may be expressed as

 TCON+PSD ≈  PL8
1  (37)

clock cycles, where each of the above data sets is stored within its own partitioned memory.

5.2 Location of Dominant SDRD-FFT Bins
 Given that the maximum number of SDRD-FFT bins, ‘KD’, considered to contain a detectable signal

component is such that KD << P << N and KD|P, the task now is to determine the locations of those dominant

SDRD-FFT bins, for each of the L spectral data sets, from examination of the associated PSD outputs – as

illustrated in Fig. 5. To achieve this, a full sort routine [10,22] could simply be used, but this would involve a

the computational pipeline, the sets of complex-valued SDRD-FFT outputs and real-valued PSD outputs, each

of length P/2, may both be produced in just P/8 clock cycles.

Figure 5 insert here

 The space-complexity required for carrying out the PSD estimation for all L Fourier-space data sets in

a fine-grained parallel, coarse-grained sequential fashion, involves an arithmetic component, denoted APSD, of

 APSD = 8 multipliers & 4 adders (33)

together with a memory component, denoted MPSD, of

 MPSD ≈  PL2
1  (34)

words for the partitioned PSMs. Due to the pipelining of the operations required for carrying out both the

conversion routine and the PSD estimation, the associated time-complexity for carrying out the PSD estimation

for all L Fourier-space data sets will be ‘effectively’ zero, apart from that involving the small start-up delay

required for the pipelining of the fast multipliers.

 At this point L sets of both Fourier-space and PSD data are available within the partitioned TSMs and

PSMs, respectively, for input to the remaining key tasks required of this final stage of the processing chain

concerning the derivation of the individual components of the sparse spectrum. The overall space-complexity

required for obtaining these two data sets in a fine-grained parallel, coarse-grained sequential fashion, is given

by an arithmetic component of

 ACON+PSD = 8 multipliers & 12 adders (35)

together with a memory component of

 MCON+PSD ≈   PL2
1  (36)

words, whilst the associated time-complexity for carrying out the combined task for all L data sets in such a

fashion may be expressed as

 TCON+PSD ≈  PL8
1  (37)

clock cycles, where each of the above data sets is stored within its own partitioned memory.

5.2 Location of Dominant SDRD-FFT Bins
 Given that the maximum number of SDRD-FFT bins, ‘KD’, considered to contain a detectable signal

component is such that KD << P << N and KD|P, the task now is to determine the locations of those dominant

SDRD-FFT bins, for each of the L spectral data sets, from examination of the associated PSD outputs – as

illustrated in Fig. 5. To achieve this, a full sort routine [10,22] could simply be used, but this would involve a

the computational pipeline, the sets of complex-valued SDRD-FFT outputs and real-valued PSD outputs, each

of length P/2, may both be produced in just P/8 clock cycles.

Figure 5 insert here

 The space-complexity required for carrying out the PSD estimation for all L Fourier-space data sets in

a fine-grained parallel, coarse-grained sequential fashion, involves an arithmetic component, denoted APSD, of

 APSD = 8 multipliers & 4 adders (33)

together with a memory component, denoted MPSD, of

 MPSD ≈  PL2
1  (34)

words for the partitioned PSMs. Due to the pipelining of the operations required for carrying out both the

conversion routine and the PSD estimation, the associated time-complexity for carrying out the PSD estimation

for all L Fourier-space data sets will be ‘effectively’ zero, apart from that involving the small start-up delay

required for the pipelining of the fast multipliers.

 At this point L sets of both Fourier-space and PSD data are available within the partitioned TSMs and

PSMs, respectively, for input to the remaining key tasks required of this final stage of the processing chain

concerning the derivation of the individual components of the sparse spectrum. The overall space-complexity

required for obtaining these two data sets in a fine-grained parallel, coarse-grained sequential fashion, is given

by an arithmetic component of

 ACON+PSD = 8 multipliers & 12 adders (35)

together with a memory component of

 MCON+PSD ≈   PL2
1  (36)

words, whilst the associated time-complexity for carrying out the combined task for all L data sets in such a

fashion may be expressed as

 TCON+PSD ≈  PL8
1  (37)

clock cycles, where each of the above data sets is stored within its own partitioned memory.

5.2 Location of Dominant SDRD-FFT Bins
 Given that the maximum number of SDRD-FFT bins, ‘KD’, considered to contain a detectable signal

component is such that KD << P << N and KD|P, the task now is to determine the locations of those dominant

SDRD-FFT bins, for each of the L spectral data sets, from examination of the associated PSD outputs – as

illustrated in Fig. 5. To achieve this, a full sort routine [10,22] could simply be used, but this would involve a

the computational pipeline, the sets of complex-valued SDRD-FFT outputs and real-valued PSD outputs, each

of length P/2, may both be produced in just P/8 clock cycles.

Figure 5 insert here

 The space-complexity required for carrying out the PSD estimation for all L Fourier-space data sets in

a fine-grained parallel, coarse-grained sequential fashion, involves an arithmetic component, denoted APSD, of

 APSD = 8 multipliers & 4 adders (33)

together with a memory component, denoted MPSD, of

 MPSD ≈  PL2
1  (34)

words for the partitioned PSMs. Due to the pipelining of the operations required for carrying out both the

conversion routine and the PSD estimation, the associated time-complexity for carrying out the PSD estimation

for all L Fourier-space data sets will be ‘effectively’ zero, apart from that involving the small start-up delay

required for the pipelining of the fast multipliers.

 At this point L sets of both Fourier-space and PSD data are available within the partitioned TSMs and

PSMs, respectively, for input to the remaining key tasks required of this final stage of the processing chain

concerning the derivation of the individual components of the sparse spectrum. The overall space-complexity

required for obtaining these two data sets in a fine-grained parallel, coarse-grained sequential fashion, is given

by an arithmetic component of

 ACON+PSD = 8 multipliers & 12 adders (35)

together with a memory component of

 MCON+PSD ≈   PL2
1  (36)

words, whilst the associated time-complexity for carrying out the combined task for all L data sets in such a

fashion may be expressed as

 TCON+PSD ≈  PL8
1  (37)

clock cycles, where each of the above data sets is stored within its own partitioned memory.

5.2 Location of Dominant SDRD-FFT Bins
 Given that the maximum number of SDRD-FFT bins, ‘KD’, considered to contain a detectable signal

component is such that KD << P << N and KD|P, the task now is to determine the locations of those dominant

SDRD-FFT bins, for each of the L spectral data sets, from examination of the associated PSD outputs – as

illustrated in Fig. 5. To achieve this, a full sort routine [10,22] could simply be used, but this would involve a

the computational pipeline, the sets of complex-valued SDRD-FFT outputs and real-valued PSD outputs, each

of length P/2, may both be produced in just P/8 clock cycles.

Figure 5 insert here

 The space-complexity required for carrying out the PSD estimation for all L Fourier-space data sets in

a fine-grained parallel, coarse-grained sequential fashion, involves an arithmetic component, denoted APSD, of

 APSD = 8 multipliers & 4 adders (33)

together with a memory component, denoted MPSD, of

 MPSD ≈  PL2
1  (34)

words for the partitioned PSMs. Due to the pipelining of the operations required for carrying out both the

conversion routine and the PSD estimation, the associated time-complexity for carrying out the PSD estimation

for all L Fourier-space data sets will be ‘effectively’ zero, apart from that involving the small start-up delay

required for the pipelining of the fast multipliers.

 At this point L sets of both Fourier-space and PSD data are available within the partitioned TSMs and

PSMs, respectively, for input to the remaining key tasks required of this final stage of the processing chain

concerning the derivation of the individual components of the sparse spectrum. The overall space-complexity

required for obtaining these two data sets in a fine-grained parallel, coarse-grained sequential fashion, is given

by an arithmetic component of

 ACON+PSD = 8 multipliers & 12 adders (35)

together with a memory component of

 MCON+PSD ≈   PL2
1  (36)

words, whilst the associated time-complexity for carrying out the combined task for all L data sets in such a

fashion may be expressed as

 TCON+PSD ≈  PL8
1  (37)

clock cycles, where each of the above data sets is stored within its own partitioned memory.

5.2 Location of Dominant SDRD-FFT Bins
 Given that the maximum number of SDRD-FFT bins, ‘KD’, considered to contain a detectable signal

component is such that KD << P << N and KD|P, the task now is to determine the locations of those dominant

SDRD-FFT bins, for each of the L spectral data sets, from examination of the associated PSD outputs – as

illustrated in Fig. 5. To achieve this, a full sort routine [10,22] could simply be used, but this would involve a

the computational pipeline, the sets of complex-valued SDRD-FFT outputs and real-valued PSD outputs, each

of length P/2, may both be produced in just P/8 clock cycles.

Figure 5 insert here

 The space-complexity required for carrying out the PSD estimation for all L Fourier-space data sets in

a fine-grained parallel, coarse-grained sequential fashion, involves an arithmetic component, denoted APSD, of

 APSD = 8 multipliers & 4 adders (33)

together with a memory component, denoted MPSD, of

 MPSD ≈  PL2
1  (34)

words for the partitioned PSMs. Due to the pipelining of the operations required for carrying out both the

conversion routine and the PSD estimation, the associated time-complexity for carrying out the PSD estimation

for all L Fourier-space data sets will be ‘effectively’ zero, apart from that involving the small start-up delay

required for the pipelining of the fast multipliers.

 At this point L sets of both Fourier-space and PSD data are available within the partitioned TSMs and

PSMs, respectively, for input to the remaining key tasks required of this final stage of the processing chain

concerning the derivation of the individual components of the sparse spectrum. The overall space-complexity

required for obtaining these two data sets in a fine-grained parallel, coarse-grained sequential fashion, is given

by an arithmetic component of

 ACON+PSD = 8 multipliers & 12 adders (35)

together with a memory component of

 MCON+PSD ≈   PL2
1  (36)

words, whilst the associated time-complexity for carrying out the combined task for all L data sets in such a

fashion may be expressed as

 TCON+PSD ≈  PL8
1  (37)

clock cycles, where each of the above data sets is stored within its own partitioned memory.

5.2 Location of Dominant SDRD-FFT Bins
 Given that the maximum number of SDRD-FFT bins, ‘KD’, considered to contain a detectable signal

component is such that KD << P << N and KD|P, the task now is to determine the locations of those dominant

SDRD-FFT bins, for each of the L spectral data sets, from examination of the associated PSD outputs – as

illustrated in Fig. 5. To achieve this, a full sort routine [10,22] could simply be used, but this would involve a

the computational pipeline, the sets of complex-valued SDRD-FFT outputs and real-valued PSD outputs, each

of length P/2, may both be produced in just P/8 clock cycles.

Figure 5 insert here

 The space-complexity required for carrying out the PSD estimation for all L Fourier-space data sets in

a fine-grained parallel, coarse-grained sequential fashion, involves an arithmetic component, denoted APSD, of

 APSD = 8 multipliers & 4 adders (33)

together with a memory component, denoted MPSD, of

 MPSD ≈  PL2
1  (34)

words for the partitioned PSMs. Due to the pipelining of the operations required for carrying out both the

conversion routine and the PSD estimation, the associated time-complexity for carrying out the PSD estimation

for all L Fourier-space data sets will be ‘effectively’ zero, apart from that involving the small start-up delay

required for the pipelining of the fast multipliers.

 At this point L sets of both Fourier-space and PSD data are available within the partitioned TSMs and

PSMs, respectively, for input to the remaining key tasks required of this final stage of the processing chain

concerning the derivation of the individual components of the sparse spectrum. The overall space-complexity

required for obtaining these two data sets in a fine-grained parallel, coarse-grained sequential fashion, is given

by an arithmetic component of

 ACON+PSD = 8 multipliers & 12 adders (35)

together with a memory component of

 MCON+PSD ≈   PL2
1  (36)

words, whilst the associated time-complexity for carrying out the combined task for all L data sets in such a

fashion may be expressed as

 TCON+PSD ≈  PL8
1  (37)

clock cycles, where each of the above data sets is stored within its own partitioned memory.

5.2 Location of Dominant SDRD-FFT Bins
 Given that the maximum number of SDRD-FFT bins, ‘KD’, considered to contain a detectable signal

component is such that KD << P << N and KD|P, the task now is to determine the locations of those dominant

SDRD-FFT bins, for each of the L spectral data sets, from examination of the associated PSD outputs – as

illustrated in Fig. 5. To achieve this, a full sort routine [10,22] could simply be used, but this would involve a

Volume 1 | Issue 2 | 79OA J Applied Sci Technol, 2023

words, where the dominant PSD values and addresses occur
in pairs within each DBM. The associated (worst-case) time
complexity, denoted TLOC, (where maximum allowable number
of inserts and deletes to be made in second phase of the algorithm
– at which point the processing is terminated – is taken to be
20% of maximum possible) for carrying out the task in such a
fashion may be expressed as

clock cycles, where the set of addresses for each set of dominant
PSD outputs is stored within its own BIA.

5.3 Determination of Dominant Signal Frequencies
At this point the locations of the KD dominant bins are now
known for each of the L sets of SDRD FFTs outputs where, for
each such bin, there corresponds a set of N/P FOIs whose indices
within the full N/2 point NAT reordered spectrum – which thus
correspond to actual frequencies – are as given by Eqtn. 11. The
task now is to determine, in a computationally efficient manner,
the best frequency estimates from those available that correspond
to the presence of detectable signal components in all of the L
SDRD FFT output data sets – where each set is stored within its
own version of the TSM. This equates, in ‘set theoretic’ terms,
to finding the intersection of the L sets where each set contains
the indices of KD×N/P FOIs, with a total of just KD frequency
indices being actually sought. Processing all combinations of
FOIs across all L sets of N/P indices in a brute-force set theoretic
manner would however be computationally unrealistic as the
time complexity involved would prove prohibitively large. The
task is thus to produce a simplified solution able to identify and

discard invalid FOIs (namely, those that do not correspond to
valid signal components) as soon as they are encountered so as
to avoid unnecessary frequency comparisons.

One way to achieve this would be to successively compute,
using the recursive form of the mapping of Eqtn. 17, the
FOIs corresponding to the KD sets of N/P permuted frequency
indices for the first SDRD FFT and to test whether each FOI,
as it is produced, lies within a dominant bin for each of the
remaining L-1 SDRD FFT output sets. This testing process
may be achieved, for each SDRD FFT, through the application
of the inverse mapping of Eqtn. 14 to each FOI using the
appropriate versions of the parameter (given that each SDRD
FFT output set will have been derived using a different value for
the parameter σ and may be carried out in a pipelined fashion by
means of an (L-1)-stage filter as illustrated in Fig. 6, where the
m’th stage of the filter/pipeline uses the function	 together
with the parameter to determine within which SDRD-
FFT bin, if any, the FOI belongs [2]. As soon as an FOI fails
to fall within a dominant bin for a given SDRD FFT output
set – as determined through comparison with the appropriate
element of its BIA – it is discarded so that only KD FOIs should
manage to pass successfully through all L-1 stages of the filter
with most FOIs being discarded after passing through the first
stage of the filter. Each stage of the filter that is successfully
traversed forwards the address of the dominant SDRD-FFT bin
(as yielded by its BIA), together with previously forwarded
addresses followed by the FOI, so that if and when the final stage
is successfully traversed all L dominant bin addresses will be
available for storage in the frequency address memory (FAM)
followed by the corresponding FOI.

possible (which is 1536 for the chosen parameter set), suggesting that an attractive low-complexity solution

would be to terminate the processing once such a limit has been reached. The occasional loss of a detectable

signal component would seem a reasonable compromise to make in order to ensure a realizable solution and

could be overcome through the subsequent averaging over several consecutive sparse spectral output data sets,

a commonly adopted practice used to reduce the variance.

 As a result, the space-complexity for carrying out this task for all L sets of PSD outputs in a

fine-grained sequential, coarse-grained sequential fashion, possesses a zero arithmetic component together with

a memory component, denoted MLOC, of

 MLOC ≈  DKL2  +  W2/PL (38)

words, where the dominant PSD values and addresses occur in pairs within each DBM. The associated (worst-

case) time-complexity, denoted TLOC, (where maximum allowable number of inserts and deletes to be made in

second phase of the algorithm – at which point the processing is terminated – is taken to be 20% of maximum

possible) for carrying out the task in such a fashion may be expressed as

 TLOC ≈   D2D Klog)K3P(L5  (39)

clock cycles, where the set of addresses for each set of dominant PSD outputs is stored within its own BIA.

5.3 Determination of Dominant Signal Frequencies

 At this point the locations of the KD dominant bins are now known for each of the L sets of

SDRD-FFTs outputs where, for each such bin, there corresponds a set of N/P FOIs whose indices within the

full N/2-point NAT-reordered spectrum – which thus correspond to actual frequencies – are as given by Eqtn.

11. The task now is to determine, in a computationally efficient manner, the best frequency estimates from

those available that correspond to the presence of detectable signal components in all of the L SDRD-FFT

output data sets – where each set is stored within its own version of the TSM. This equates, in ‘set-theoretic’

terms, to finding the intersection of the L sets where each set contains the indices of KD×N/P FOIs, with a total

of just KD frequency indices being actually sought. Processing all combinations of FOIs across all L sets of N/P

indices in a brute-force set-theoretic manner would however be computationally unrealistic as the

time-complexity involved would prove prohibitively large. The task is thus to produce a simplified solution

able to identify and discard invalid FOIs (namely, those that do not correspond to valid signal components) as

soon as they are encountered so as to avoid unnecessary frequency comparisons.

 One way to achieve this would be to successively compute, using the recursive form of the mapping 

of Eqtn. 17, the FOIs corresponding to the KD sets of N/P permuted frequency indices for the first SDRD-FFT

possible (which is 1536 for the chosen parameter set), suggesting that an attractive low-complexity solution

would be to terminate the processing once such a limit has been reached. The occasional loss of a detectable

signal component would seem a reasonable compromise to make in order to ensure a realizable solution and

could be overcome through the subsequent averaging over several consecutive sparse spectral output data sets,

a commonly adopted practice used to reduce the variance.

 As a result, the space-complexity for carrying out this task for all L sets of PSD outputs in a

fine-grained sequential, coarse-grained sequential fashion, possesses a zero arithmetic component together with

a memory component, denoted MLOC, of

 MLOC ≈  DKL2  +  W2/PL (38)

words, where the dominant PSD values and addresses occur in pairs within each DBM. The associated (worst-

case) time-complexity, denoted TLOC, (where maximum allowable number of inserts and deletes to be made in

second phase of the algorithm – at which point the processing is terminated – is taken to be 20% of maximum

possible) for carrying out the task in such a fashion may be expressed as

 TLOC ≈   D2D Klog)K3P(L5  (39)

clock cycles, where the set of addresses for each set of dominant PSD outputs is stored within its own BIA.

5.3 Determination of Dominant Signal Frequencies

 At this point the locations of the KD dominant bins are now known for each of the L sets of

SDRD-FFTs outputs where, for each such bin, there corresponds a set of N/P FOIs whose indices within the

full N/2-point NAT-reordered spectrum – which thus correspond to actual frequencies – are as given by Eqtn.

11. The task now is to determine, in a computationally efficient manner, the best frequency estimates from

those available that correspond to the presence of detectable signal components in all of the L SDRD-FFT

output data sets – where each set is stored within its own version of the TSM. This equates, in ‘set-theoretic’

terms, to finding the intersection of the L sets where each set contains the indices of KD×N/P FOIs, with a total

of just KD frequency indices being actually sought. Processing all combinations of FOIs across all L sets of N/P

indices in a brute-force set-theoretic manner would however be computationally unrealistic as the

time-complexity involved would prove prohibitively large. The task is thus to produce a simplified solution

able to identify and discard invalid FOIs (namely, those that do not correspond to valid signal components) as

soon as they are encountered so as to avoid unnecessary frequency comparisons.

 One way to achieve this would be to successively compute, using the recursive form of the mapping 

of Eqtn. 17, the FOIs corresponding to the KD sets of N/P permuted frequency indices for the first SDRD-FFT

possible (which is 1536 for the chosen parameter set), suggesting that an attractive low-complexity solution

would be to terminate the processing once such a limit has been reached. The occasional loss of a detectable

signal component would seem a reasonable compromise to make in order to ensure a realizable solution and

could be overcome through the subsequent averaging over several consecutive sparse spectral output data sets,

a commonly adopted practice used to reduce the variance.

 As a result, the space-complexity for carrying out this task for all L sets of PSD outputs in a

fine-grained sequential, coarse-grained sequential fashion, possesses a zero arithmetic component together with

a memory component, denoted MLOC, of

 MLOC ≈  DKL2  +  W2/PL (38)

words, where the dominant PSD values and addresses occur in pairs within each DBM. The associated (worst-

case) time-complexity, denoted TLOC, (where maximum allowable number of inserts and deletes to be made in

second phase of the algorithm – at which point the processing is terminated – is taken to be 20% of maximum

possible) for carrying out the task in such a fashion may be expressed as

 TLOC ≈   D2D Klog)K3P(L5  (39)

clock cycles, where the set of addresses for each set of dominant PSD outputs is stored within its own BIA.

5.3 Determination of Dominant Signal Frequencies

 At this point the locations of the KD dominant bins are now known for each of the L sets of

SDRD-FFTs outputs where, for each such bin, there corresponds a set of N/P FOIs whose indices within the

full N/2-point NAT-reordered spectrum – which thus correspond to actual frequencies – are as given by Eqtn.

11. The task now is to determine, in a computationally efficient manner, the best frequency estimates from

those available that correspond to the presence of detectable signal components in all of the L SDRD-FFT

output data sets – where each set is stored within its own version of the TSM. This equates, in ‘set-theoretic’

terms, to finding the intersection of the L sets where each set contains the indices of KD×N/P FOIs, with a total

of just KD frequency indices being actually sought. Processing all combinations of FOIs across all L sets of N/P

indices in a brute-force set-theoretic manner would however be computationally unrealistic as the

time-complexity involved would prove prohibitively large. The task is thus to produce a simplified solution

able to identify and discard invalid FOIs (namely, those that do not correspond to valid signal components) as

soon as they are encountered so as to avoid unnecessary frequency comparisons.

 One way to achieve this would be to successively compute, using the recursive form of the mapping 

of Eqtn. 17, the FOIs corresponding to the KD sets of N/P permuted frequency indices for the first SDRD-FFT

possible (which is 1536 for the chosen parameter set), suggesting that an attractive low-complexity solution

would be to terminate the processing once such a limit has been reached. The occasional loss of a detectable

signal component would seem a reasonable compromise to make in order to ensure a realizable solution and

could be overcome through the subsequent averaging over several consecutive sparse spectral output data sets,

a commonly adopted practice used to reduce the variance.

 As a result, the space-complexity for carrying out this task for all L sets of PSD outputs in a

fine-grained sequential, coarse-grained sequential fashion, possesses a zero arithmetic component together with

a memory component, denoted MLOC, of

 MLOC ≈  DKL2  +  W2/PL (38)

words, where the dominant PSD values and addresses occur in pairs within each DBM. The associated (worst-

case) time-complexity, denoted TLOC, (where maximum allowable number of inserts and deletes to be made in

second phase of the algorithm – at which point the processing is terminated – is taken to be 20% of maximum

possible) for carrying out the task in such a fashion may be expressed as

 TLOC ≈   D2D Klog)K3P(L5  (39)

clock cycles, where the set of addresses for each set of dominant PSD outputs is stored within its own BIA.

5.3 Determination of Dominant Signal Frequencies

 At this point the locations of the KD dominant bins are now known for each of the L sets of

SDRD-FFTs outputs where, for each such bin, there corresponds a set of N/P FOIs whose indices within the

full N/2-point NAT-reordered spectrum – which thus correspond to actual frequencies – are as given by Eqtn.

11. The task now is to determine, in a computationally efficient manner, the best frequency estimates from

those available that correspond to the presence of detectable signal components in all of the L SDRD-FFT

output data sets – where each set is stored within its own version of the TSM. This equates, in ‘set-theoretic’

terms, to finding the intersection of the L sets where each set contains the indices of KD×N/P FOIs, with a total

of just KD frequency indices being actually sought. Processing all combinations of FOIs across all L sets of N/P

indices in a brute-force set-theoretic manner would however be computationally unrealistic as the

time-complexity involved would prove prohibitively large. The task is thus to produce a simplified solution

able to identify and discard invalid FOIs (namely, those that do not correspond to valid signal components) as

soon as they are encountered so as to avoid unnecessary frequency comparisons.

 One way to achieve this would be to successively compute, using the recursive form of the mapping 

of Eqtn. 17, the FOIs corresponding to the KD sets of N/P permuted frequency indices for the first SDRD-FFT

Φ

1−Φ

1−Φ

1−σ

1
1m

−
+σ

Volume 1 | Issue 2 | 80OA J Applied Sci Technol, 2023

Figure 6: Multi-Stage Filter Used for Determining Dominant Signal
Frequencies

 match => FOI + L bin addresses

match => FOI + 3 bin addresses

 match => FOI + 2 bin addresses

Set of Stored Dominant Bin Addresses
for First SDRD-FFT

Generate Next FOI from Set of Stored
Dominant Bin Addresses

Compute Dominant Bin Address for
Second SDRD-FFT & Check

Against its BIA Entry

Compute Dominant Bin Address for
Third SDRD-FFT & Check

Against its BIA Entry

Compute Dominant Bin Address for
Lth SDRD-FFT & Check

Against its BIA Entry

× (KD×N/P)

FOI + bin address

L-1 matches => Store results in FAM

Filter Stage 1

Filter Stage 2

Filter Stage L-1

Figure 6: Multi-Stage Filter Used for Determining Dominant Signal Frequencies

The space-complexity for carrying out this multi-stage filtering
task comprises an arithmetic component, denoted AFRQ, of

AFRQ = L-1 multipliers & L adders (40)

with the dominant bin address offsets (which are multiples of
N/P, a radix-2 integer) being computed via simple left shift
operations and each multiplier involving a fixed multiplicand,
together with a memory component, denoted MFRQ, of

MFRQ ≈ KD×(L+1)	 	 (41)

words, with L addresses and one FOI being allocated to each

of the KD dominant signal components. The associated time
complexity, denoted TFRQ, for carrying out the task in such a
fashion may be expressed as

clock cycles, where the first part of the expression corresponds
to the recursive generation of the FOIs (Eqtn. 17) and the
second part to the filter delay. The term ‘ β’ is a small integer
that represents the length of each filter stage’s internal pipeline,
as required for computing the dominant bin address via the
inverse mapping of Eqtn.14 followed by the looking up of the
appropriate element of the BIA and the subsequent forwarding
(where appropriate) of the dominant bin addresses.

and to test whether each FOI, as it is produced, lies within a dominant bin for each of the remaining L-1

SDRD-FFT output sets. This testing process may be achieved, for each SDRD-FFT, through the application of

the inverse mapping 1 of Eqtn. 14 to each FOI using the appropriate versions of the parameter 1 (given

that each SDRD-FFT output set will have been derived using a different value for the parameter ) and may

be carried out in a pipelined fashion by means of an (L-1)-stage filter [2], as illustrated in Fig. 6, where the

m’th stage of the filter/pipeline uses the function 1 together with the parameter 1
1m


 to determine within

which SDRD-FFT bin, if any, the FOI belongs. As soon as an FOI fails to fall within a dominant bin for a

given SDRD-FFT output set – as determined through comparison with the appropriate element of its BIA – it is

discarded so that only KD FOIs should manage to pass successfully through all L-1 stages of the filter with

most FOIs being discarded after passing through the first stage of the filter. Each stage of the filter that is

successfully traversed forwards the address of the dominant SDRD-FFT bin (as yielded by its BIA), together

with previously forwarded addresses followed by the FOI, so that if and when the final stage is successfully

traversed all L dominant bin addresses will be available for storage in the frequency address memory (FAM)

followed by the corresponding FOI.

Figure 6 insert here

 The space-complexity for carrying out this multi-stage filtering task comprises an arithmetic

component, denoted AFRQ, of

 AFRQ = L-1 multipliers & L adders (40)

with the dominant bin address offsets (which are multiples of N/P, a radix-2 integer) being computed via

simple left-shift operations and each multiplier involving a fixed multiplicand, together with a memory

component, denoted MFRQ, of

 MFRQ ≈ KD×(L+1) (41)

words, with L addresses and one FOI being allocated to each of the KD dominant signal components. The

associated time-complexity, denoted TFRQ, for carrying out the task in such a fashion may be expressed as

 TFRQ ≈ 1)-(L N/P)(KD  (42)

clock cycles, where the first part of the expression corresponds to the recursive generation of the FOIs (Eqtn.

17) and the second part to the filter delay. The term ‘ ’ is a small integer that represents the length of each

filter stage’s internal pipeline, as required for computing the dominant bin address via the inverse mapping of

Eqtn.14 followed by the looking up of the appropriate element of the BIA and the subsequent forwarding

(where appropriate) of the dominant bin addresses.

and to test whether each FOI, as it is produced, lies within a dominant bin for each of the remaining L-1

SDRD-FFT output sets. This testing process may be achieved, for each SDRD-FFT, through the application of

the inverse mapping 1 of Eqtn. 14 to each FOI using the appropriate versions of the parameter 1 (given

that each SDRD-FFT output set will have been derived using a different value for the parameter ) and may

be carried out in a pipelined fashion by means of an (L-1)-stage filter [2], as illustrated in Fig. 6, where the

m’th stage of the filter/pipeline uses the function 1 together with the parameter 1
1m


 to determine within

which SDRD-FFT bin, if any, the FOI belongs. As soon as an FOI fails to fall within a dominant bin for a

given SDRD-FFT output set – as determined through comparison with the appropriate element of its BIA – it is

discarded so that only KD FOIs should manage to pass successfully through all L-1 stages of the filter with

most FOIs being discarded after passing through the first stage of the filter. Each stage of the filter that is

successfully traversed forwards the address of the dominant SDRD-FFT bin (as yielded by its BIA), together

with previously forwarded addresses followed by the FOI, so that if and when the final stage is successfully

traversed all L dominant bin addresses will be available for storage in the frequency address memory (FAM)

followed by the corresponding FOI.

Figure 6 insert here

 The space-complexity for carrying out this multi-stage filtering task comprises an arithmetic

component, denoted AFRQ, of

 AFRQ = L-1 multipliers & L adders (40)

with the dominant bin address offsets (which are multiples of N/P, a radix-2 integer) being computed via

simple left-shift operations and each multiplier involving a fixed multiplicand, together with a memory

component, denoted MFRQ, of

 MFRQ ≈ KD×(L+1) (41)

words, with L addresses and one FOI being allocated to each of the KD dominant signal components. The

associated time-complexity, denoted TFRQ, for carrying out the task in such a fashion may be expressed as

 TFRQ ≈ 1)-(L N/P)(KD  (42)

clock cycles, where the first part of the expression corresponds to the recursive generation of the FOIs (Eqtn.

17) and the second part to the filter delay. The term ‘ ’ is a small integer that represents the length of each

filter stage’s internal pipeline, as required for computing the dominant bin address via the inverse mapping of

Eqtn.14 followed by the looking up of the appropriate element of the BIA and the subsequent forwarding

(where appropriate) of the dominant bin addresses.

Volume 1 | Issue 2 | 81OA J Applied Sci Technol, 2023

5.4 Determination of Sparse Spectrum Components
At this point in the processing chain: 1) L sets of complex-
valued SDRD-FFT outputs have been produced and stored in the
partitioned TSMs (as described in Section 5.1), each set being
of length P/2, together with 2) the spectral locations of the KD
dominant outputs, as stored in the BIAs, for each such set (as
described in Section 5.2) and 3) the values of the corresponding
KD signal frequencies together with, for each, the associated
set of L spectrum addresses, one per SDRD-FFT output set,
as stored in the FAM (as described in Section 5.3). Thus, the
value (both real and imaginary components) and frequency
index of the KD dominant signal components for each of the L
spectral data sets are now available for further processing. For
each frequency index, the L addresses preceding it within the

FAM are used to access the SDRD FFT outputs stored within
the TSMs. The L real components are then averaged to yield a
representative value for the real component of the sFFT at that
frequency, whilst in similar fashion the L imaginary components
are averaged to yield a representative value for the imaginary
component. The processing scheme for carrying out the task
may be expressed via a computational pipeline, as illustrated
in Fig. 7 for the case where the parameter L has a value of 8
so that the pipeline is of length log2L = 3. The KD pairs of real
and imaginary spectral components produced by the pipeline are
then stored in the sparse spectrum memory (SSM), together with
the frequency index specifying its position within the idealized
NAT ordered N/2 point spectrum – as would be obtained with a
dense real-data FFT of length N.

Figure 7: Computational Pipeline for Determining Spectrum Components for Case Where L = 8 Figure 7: Computational Pipeline for Determining Spectrum Components for Case Where L = 8

The space-complexity for carrying out this task in a pipelined
fashion possesses an arithmetic component, denoted ASSP, of

ASSP = 0 multipliers & L-1 adders		 (43)

together with a memory component, denoted MSSP, of

MSSP ≈ 3KD 	 	 (44)

words, this involving real and imaginary components of the
sFFT output together with the associated spectrum address for
each of the KD dominant spectral components. The associated

time complexity, denoted TSSP, for carrying out the task in such a
fashion may be expressed as

TSSP ≈ 2KD + log2L 	 (45)

clock cycles – for the simple case where L is a radix-2 integer.

5.5 Summary of Complexity Requirements
The overall space complexity for carrying out the third and final
stage of the processing chain involving: 1) the conversion of
data from Hartley-space to Fourier space, 2) the PSD estimation,
3) the determination of the dominant signal frequencies, and 4)

Volume 1 | Issue 2 | 82OA J Applied Sci Technol, 2023

the determination of the corresponding spectrum components,
involves an arithmetic component, denoted ASTG3, of
ASTG3 = ACON+PSD+ALOC+AFRQ+ASSP

= L+7 multipliers & 2L+11 adders	 (46)

together with a memory component, denoted MSTG3, of

words, whilst the overall time-complexity, denoted TSTG3, may
be expressed as

clock cycles, these results based (for the most part) upon the
processing being carried out in a fine-grained parallel, coarse-
grained sequential fashion.

6. Trading off Latency Against Silicon Resources
The previous three sections have provided descriptions of the
individual tasks needing to be carried out by the proposed real-
data sFFT algorithm, together with their respective space and
time complexities when the multiple data sets are processed
sequentially. Complexity trade-offs are now considered
including how multiple instances of certain tasks might best be
carried out in parallel, via the adoption of the single instruction,
multiple-data (SIMD) approach which uses multiple identical
memories and processing streams to process multiple data sets
simultaneously [3]. This will facilitate coarse-grained parallel
processing which, together with the fine grained parallelism
already achieved via the adoption of partitioned memory and
pipelining, will enable latency to be traded off against silicon
resources.

6.1 Data-Space Processing + Short Dense Real-Data FFTs
Suppose that the outputs of the first stage of the processing chain,
the L WSRG data sets, are produced prior to the execution of the
second stage concerning the execution of the RFHTs. Then the
time complexity for carrying out the first two stages is simply
derived from the combined timing figures of Eqtns. 26 and 30,
which may be expressed as TSTG1+STG2 = TSTG1 + TSTG2. In reality,
however, the first of the RFHTs (bearing in mind that multiple
RFHT modules might be used) may commence processing as
soon as there is sufficient data available to process which, if each
WSRG data set is stored within its own version of partitioned
TSM, is as soon as the first such data set has been produced,
namely after P/8 clock cycles, which from the contents of
Table 1 is considerably less than the latency of the RFHT for
all transform sizes of interest. The last WSRG data set, in turn,
will be available for processing after L×P/8 clock cycles, so that
TSTG1+STG2 ≠ TSTG1+TSTG2 and the processing for the two stages may
be overlapped in order to reduce the overall time complexity.

Suppose, in addition, that the time-complexity is further reduced
through the parallel operation of multiple processing streams

where each stream involves the processing, via the RFHT, of one
or more of the WSRG data sets, so that there would be between
1 and L such processing streams operating independently of
each other in an SIMD fashion. The exact number of streams
is denoted by parameter ‘S1’, where S1|L, so that each stream
is assigned the processing of exactly L/S1 WSRG data sets in
an interleaved fashion so that with the case of two streams, for
example, one stream might deal with the processing of the even
addressed data sets whilst the other deals with the processing of
the odd addressed data sets. This enables the time complexity to
be expressed via the more general expression

clock cycles, where the superscript ‘P’ refers to the fact that the
complexity now reflects the adoption of coarse-grained parallel
computation techniques.

The corresponding space-complexity figures for carrying out the
first two stages of the processing chain will as a consequence
increase to account for the scaling up of the second stage by a
factor of S1, so that
	

and

words.		

6.2 Transform-Space Processing
The parallelization is now extended to cater for the third and
final stage of the processing chain, with the space-complexity
for the initial conversion of all L sets of RFHT outputs from
Hartley space to Fourier-space and of the subsequent production
of the PSD data – and using the same level of parallelism as
for the computation of the multiple RFHTs – involving a total
arithmetic component of

together with a total memory component of

words, whilst the associated time-complexity for the combined
task may be expressed as

clock cycles, where S1 processes are now assumed to be operating
in parallel in SIMD fashion upon the L sets of Hartley space data
with L/S1 data sets being assigned to each process.

determination of the dominant signal frequencies, and 4) the determination of the corresponding spectrum

components, involves an arithmetic component, denoted ASTG3, of

 ASTG3 = ACON+PSD+ALOC+AFRQ+ASSP

 = L+7 multipliers & 2L+11 adders (46)

together with a memory component, denoted MSTG3, of

 MSTG3 = MCON+PSD+MLOC+MFRQ+MSSP

 ≈      W/PL4)(3LK PL 2
1

D  (47)

words, whilst the overall time-complexity, denoted TSTG3, may be expressed as

 TSTG3 = TCON+PSD+TLOC+TFRQ+TSSP
 ≈   D2D Klog)K3P(L5 

 +  )8P(L8
1  +   P/N2KD  (48)

clock cycles, these results based (for the most part) upon the processing being carried out in a fine-grained

parallel, coarse-grained sequential fashion.

6. Trading off Latency Against Silicon Resources

 The previous three sections have provided descriptions of the individual tasks needing to be carried out

by the proposed real-data sFFT algorithm, together with their respective space and time complexities when the

multiple data sets are processed sequentially. Complexity trade-offs are now considered including how multiple

instances of certain tasks might best be carried out in parallel, via the adoption of the single-instruction,

multiple-data (SIMD) approach [3], which uses multiple identical memories and processing streams to process

multiple data sets simultaneously. This will facilitate coarse-grained parallel processing which, together with

the fine-grained parallelism already achieved via the adoption of partitioned memory and pipelining, will

enable latency to be traded off against silicon resources.

6.1 Data-Space Processing + Short Dense Real-Data FFTs
 Suppose that the outputs of the first stage of the processing chain, the L WSRG data sets, are produced

prior to the execution of the second stage concerning the execution of the RFHTs. Then the time-complexity

for carrying out the first two stages is simply derived from the combined timing figures of Eqtns. 26 and 30,

which may be expressed as TSTG1+STG2 = TSTG1 + TSTG2. In reality, however, the first of the RFHTs (bearing in

mind that multiple RFHT modules might be used) may commence processing as soon as there is sufficient data

available to process which, if each WSRG data set is stored within its own version of partitioned TSM, is as

soon as the first such data set has been produced, namely after P/8 clock cycles, which from the contents of

Table 1 is considerably less than the latency of the RFHT for all transform sizes of interest. The last WSRG

determination of the dominant signal frequencies, and 4) the determination of the corresponding spectrum

components, involves an arithmetic component, denoted ASTG3, of

 ASTG3 = ACON+PSD+ALOC+AFRQ+ASSP

 = L+7 multipliers & 2L+11 adders (46)

together with a memory component, denoted MSTG3, of

 MSTG3 = MCON+PSD+MLOC+MFRQ+MSSP

 ≈      W/PL4)(3LK PL 2
1

D  (47)

words, whilst the overall time-complexity, denoted TSTG3, may be expressed as

 TSTG3 = TCON+PSD+TLOC+TFRQ+TSSP
 ≈   D2D Klog)K3P(L5 

 +  )8P(L8
1  +   P/N2KD  (48)

clock cycles, these results based (for the most part) upon the processing being carried out in a fine-grained

parallel, coarse-grained sequential fashion.

6. Trading off Latency Against Silicon Resources

 The previous three sections have provided descriptions of the individual tasks needing to be carried out

by the proposed real-data sFFT algorithm, together with their respective space and time complexities when the

multiple data sets are processed sequentially. Complexity trade-offs are now considered including how multiple

instances of certain tasks might best be carried out in parallel, via the adoption of the single-instruction,

multiple-data (SIMD) approach [3], which uses multiple identical memories and processing streams to process

multiple data sets simultaneously. This will facilitate coarse-grained parallel processing which, together with

the fine-grained parallelism already achieved via the adoption of partitioned memory and pipelining, will

enable latency to be traded off against silicon resources.

6.1 Data-Space Processing + Short Dense Real-Data FFTs
 Suppose that the outputs of the first stage of the processing chain, the L WSRG data sets, are produced

prior to the execution of the second stage concerning the execution of the RFHTs. Then the time-complexity

for carrying out the first two stages is simply derived from the combined timing figures of Eqtns. 26 and 30,

which may be expressed as TSTG1+STG2 = TSTG1 + TSTG2. In reality, however, the first of the RFHTs (bearing in

mind that multiple RFHT modules might be used) may commence processing as soon as there is sufficient data

available to process which, if each WSRG data set is stored within its own version of partitioned TSM, is as

soon as the first such data set has been produced, namely after P/8 clock cycles, which from the contents of

Table 1 is considerably less than the latency of the RFHT for all transform sizes of interest. The last WSRG

determination of the dominant signal frequencies, and 4) the determination of the corresponding spectrum

components, involves an arithmetic component, denoted ASTG3, of

 ASTG3 = ACON+PSD+ALOC+AFRQ+ASSP

 = L+7 multipliers & 2L+11 adders (46)

together with a memory component, denoted MSTG3, of

 MSTG3 = MCON+PSD+MLOC+MFRQ+MSSP

 ≈      W/PL4)(3LK PL 2
1

D  (47)

words, whilst the overall time-complexity, denoted TSTG3, may be expressed as

 TSTG3 = TCON+PSD+TLOC+TFRQ+TSSP
 ≈   D2D Klog)K3P(L5 

 +  )8P(L8
1  +   P/N2KD  (48)

clock cycles, these results based (for the most part) upon the processing being carried out in a fine-grained

parallel, coarse-grained sequential fashion.

6. Trading off Latency Against Silicon Resources

 The previous three sections have provided descriptions of the individual tasks needing to be carried out

by the proposed real-data sFFT algorithm, together with their respective space and time complexities when the

multiple data sets are processed sequentially. Complexity trade-offs are now considered including how multiple

instances of certain tasks might best be carried out in parallel, via the adoption of the single-instruction,

multiple-data (SIMD) approach [3], which uses multiple identical memories and processing streams to process

multiple data sets simultaneously. This will facilitate coarse-grained parallel processing which, together with

the fine-grained parallelism already achieved via the adoption of partitioned memory and pipelining, will

enable latency to be traded off against silicon resources.

6.1 Data-Space Processing + Short Dense Real-Data FFTs
 Suppose that the outputs of the first stage of the processing chain, the L WSRG data sets, are produced

prior to the execution of the second stage concerning the execution of the RFHTs. Then the time-complexity

for carrying out the first two stages is simply derived from the combined timing figures of Eqtns. 26 and 30,

which may be expressed as TSTG1+STG2 = TSTG1 + TSTG2. In reality, however, the first of the RFHTs (bearing in

mind that multiple RFHT modules might be used) may commence processing as soon as there is sufficient data

available to process which, if each WSRG data set is stored within its own version of partitioned TSM, is as

soon as the first such data set has been produced, namely after P/8 clock cycles, which from the contents of

Table 1 is considerably less than the latency of the RFHT for all transform sizes of interest. The last WSRG

determination of the dominant signal frequencies, and 4) the determination of the corresponding spectrum

components, involves an arithmetic component, denoted ASTG3, of

 ASTG3 = ACON+PSD+ALOC+AFRQ+ASSP

 = L+7 multipliers & 2L+11 adders (46)

together with a memory component, denoted MSTG3, of

 MSTG3 = MCON+PSD+MLOC+MFRQ+MSSP

 ≈      W/PL4)(3LK PL 2
1

D  (47)

words, whilst the overall time-complexity, denoted TSTG3, may be expressed as

 TSTG3 = TCON+PSD+TLOC+TFRQ+TSSP
 ≈   D2D Klog)K3P(L5 

 +  )8P(L8
1  +   P/N2KD  (48)

clock cycles, these results based (for the most part) upon the processing being carried out in a fine-grained

parallel, coarse-grained sequential fashion.

6. Trading off Latency Against Silicon Resources

 The previous three sections have provided descriptions of the individual tasks needing to be carried out

by the proposed real-data sFFT algorithm, together with their respective space and time complexities when the

multiple data sets are processed sequentially. Complexity trade-offs are now considered including how multiple

instances of certain tasks might best be carried out in parallel, via the adoption of the single-instruction,

multiple-data (SIMD) approach [3], which uses multiple identical memories and processing streams to process

multiple data sets simultaneously. This will facilitate coarse-grained parallel processing which, together with

the fine-grained parallelism already achieved via the adoption of partitioned memory and pipelining, will

enable latency to be traded off against silicon resources.

6.1 Data-Space Processing + Short Dense Real-Data FFTs
 Suppose that the outputs of the first stage of the processing chain, the L WSRG data sets, are produced

prior to the execution of the second stage concerning the execution of the RFHTs. Then the time-complexity

for carrying out the first two stages is simply derived from the combined timing figures of Eqtns. 26 and 30,

which may be expressed as TSTG1+STG2 = TSTG1 + TSTG2. In reality, however, the first of the RFHTs (bearing in

mind that multiple RFHT modules might be used) may commence processing as soon as there is sufficient data

available to process which, if each WSRG data set is stored within its own version of partitioned TSM, is as

soon as the first such data set has been produced, namely after P/8 clock cycles, which from the contents of

Table 1 is considerably less than the latency of the RFHT for all transform sizes of interest. The last WSRG

data set, in turn, will be available for processing after L×P/8 clock cycles, so that TSTG1+STG2 ≠ TSTG1+TSTG2 and

the processing for the two stages may be overlapped in order to reduce the overall time-complexity.

 Suppose, in addition, that the time-complexity is further reduced through the parallel operation of

multiple processing streams where each stream involves the processing, via the RFHT, of one or more of the

WSRG data sets, so that there would be between 1 and L such processing streams operating independently of

each other in an SIMD fashion. The exact number of streams is denoted by parameter ‘S1’, where S1|L, so that

each stream is assigned the processing of exactly L/S1 WSRG data sets in an interleaved fashion so that with

the case of two streams, for example, one stream might deal with the processing of the even-addressed data sets

whilst the other deals with the processing of the odd-addressed data sets. This enables the time-complexity to

be expressed via the more general expression

)P(
2STG1STGT  ≈   2STG

1
1STG1 TS

1TSL
1  =  PS8

1
1  +    1Plog2PLS16

1
4

1
 (49)

clock cycles, where the superscript ‘P’ refers to the fact that the complexity now reflects the adoption of

coarse-grained parallel computation techniques.

 The corresponding space-complexity figures for carrying out the first two stages of the processing

chain will as a consequence increase to account for the scaling up of the second stage by a factor of S1, so that

)P(
2STG1STGA  =  2STG11STG ASA 

 = 8+9S1 multipliers & 31S1 adders (50)

and

)P(
2STG1STGM  =)MS(M 2STG11STG 

 ≈   PS7L124
1

1  (51)

words.

6.2 Transform-Space Processing

 The parallelization is now extended to cater for the third and final stage of the processing chain, with

the space-complexity for the initial conversion of all L sets of RFHT outputs from Hartley-space to Fourier-

space and of the subsequent production of the PSD data – and using the same level of parallelism as for the

computation of the multiple RFHTs – involving a total arithmetic component of

)P(
PSDCONA  = 8S1 multipliers & 12S1 adders (52)

together with a total memory component of

)P(
PSDCONM  ≈   PL2

1  (53)

data set, in turn, will be available for processing after L×P/8 clock cycles, so that TSTG1+STG2 ≠ TSTG1+TSTG2 and

the processing for the two stages may be overlapped in order to reduce the overall time-complexity.

 Suppose, in addition, that the time-complexity is further reduced through the parallel operation of

multiple processing streams where each stream involves the processing, via the RFHT, of one or more of the

WSRG data sets, so that there would be between 1 and L such processing streams operating independently of

each other in an SIMD fashion. The exact number of streams is denoted by parameter ‘S1’, where S1|L, so that

each stream is assigned the processing of exactly L/S1 WSRG data sets in an interleaved fashion so that with

the case of two streams, for example, one stream might deal with the processing of the even-addressed data sets

whilst the other deals with the processing of the odd-addressed data sets. This enables the time-complexity to

be expressed via the more general expression

)P(
2STG1STGT  ≈   2STG

1
1STG1 TS

1TSL
1  =  PS8

1
1  +    1Plog2PLS16

1
4

1
 (49)

clock cycles, where the superscript ‘P’ refers to the fact that the complexity now reflects the adoption of

coarse-grained parallel computation techniques.

 The corresponding space-complexity figures for carrying out the first two stages of the processing

chain will as a consequence increase to account for the scaling up of the second stage by a factor of S1, so that

)P(
2STG1STGA  =  2STG11STG ASA 

 = 8+9S1 multipliers & 31S1 adders (50)

and

)P(
2STG1STGM  =)MS(M 2STG11STG 

 ≈   PS7L124
1

1  (51)

words.

6.2 Transform-Space Processing

 The parallelization is now extended to cater for the third and final stage of the processing chain, with

the space-complexity for the initial conversion of all L sets of RFHT outputs from Hartley-space to Fourier-

space and of the subsequent production of the PSD data – and using the same level of parallelism as for the

computation of the multiple RFHTs – involving a total arithmetic component of

)P(
PSDCONA  = 8S1 multipliers & 12S1 adders (52)

together with a total memory component of

)P(
PSDCONM  ≈   PL2

1  (53)

data set, in turn, will be available for processing after L×P/8 clock cycles, so that TSTG1+STG2 ≠ TSTG1+TSTG2 and

the processing for the two stages may be overlapped in order to reduce the overall time-complexity.

 Suppose, in addition, that the time-complexity is further reduced through the parallel operation of

multiple processing streams where each stream involves the processing, via the RFHT, of one or more of the

WSRG data sets, so that there would be between 1 and L such processing streams operating independently of

each other in an SIMD fashion. The exact number of streams is denoted by parameter ‘S1’, where S1|L, so that

each stream is assigned the processing of exactly L/S1 WSRG data sets in an interleaved fashion so that with

the case of two streams, for example, one stream might deal with the processing of the even-addressed data sets

whilst the other deals with the processing of the odd-addressed data sets. This enables the time-complexity to

be expressed via the more general expression

)P(
2STG1STGT  ≈   2STG

1
1STG1 TS

1TSL
1  =  PS8

1
1  +    1Plog2PLS16

1
4

1
 (49)

clock cycles, where the superscript ‘P’ refers to the fact that the complexity now reflects the adoption of

coarse-grained parallel computation techniques.

 The corresponding space-complexity figures for carrying out the first two stages of the processing

chain will as a consequence increase to account for the scaling up of the second stage by a factor of S1, so that

)P(
2STG1STGA  =  2STG11STG ASA 

 = 8+9S1 multipliers & 31S1 adders (50)

and

)P(
2STG1STGM  =)MS(M 2STG11STG 

 ≈   PS7L124
1

1  (51)

words.

6.2 Transform-Space Processing

 The parallelization is now extended to cater for the third and final stage of the processing chain, with

the space-complexity for the initial conversion of all L sets of RFHT outputs from Hartley-space to Fourier-

space and of the subsequent production of the PSD data – and using the same level of parallelism as for the

computation of the multiple RFHTs – involving a total arithmetic component of

)P(
PSDCONA  = 8S1 multipliers & 12S1 adders (52)

together with a total memory component of

)P(
PSDCONM  ≈   PL2

1  (53)

data set, in turn, will be available for processing after L×P/8 clock cycles, so that TSTG1+STG2 ≠ TSTG1+TSTG2 and

the processing for the two stages may be overlapped in order to reduce the overall time-complexity.

 Suppose, in addition, that the time-complexity is further reduced through the parallel operation of

multiple processing streams where each stream involves the processing, via the RFHT, of one or more of the

WSRG data sets, so that there would be between 1 and L such processing streams operating independently of

each other in an SIMD fashion. The exact number of streams is denoted by parameter ‘S1’, where S1|L, so that

each stream is assigned the processing of exactly L/S1 WSRG data sets in an interleaved fashion so that with

the case of two streams, for example, one stream might deal with the processing of the even-addressed data sets

whilst the other deals with the processing of the odd-addressed data sets. This enables the time-complexity to

be expressed via the more general expression

)P(
2STG1STGT  ≈   2STG

1
1STG1 TS

1TSL
1  =  PS8

1
1  +    1Plog2PLS16

1
4

1
 (49)

clock cycles, where the superscript ‘P’ refers to the fact that the complexity now reflects the adoption of

coarse-grained parallel computation techniques.

 The corresponding space-complexity figures for carrying out the first two stages of the processing

chain will as a consequence increase to account for the scaling up of the second stage by a factor of S1, so that

)P(
2STG1STGA  =  2STG11STG ASA 

 = 8+9S1 multipliers & 31S1 adders (50)

and

)P(
2STG1STGM  =)MS(M 2STG11STG 

 ≈   PS7L124
1

1  (51)

words.

6.2 Transform-Space Processing

 The parallelization is now extended to cater for the third and final stage of the processing chain, with

the space-complexity for the initial conversion of all L sets of RFHT outputs from Hartley-space to Fourier-

space and of the subsequent production of the PSD data – and using the same level of parallelism as for the

computation of the multiple RFHTs – involving a total arithmetic component of

)P(
PSDCONA  = 8S1 multipliers & 12S1 adders (52)

together with a total memory component of

)P(
PSDCONM  ≈   PL2

1  (53)

data set, in turn, will be available for processing after L×P/8 clock cycles, so that TSTG1+STG2 ≠ TSTG1+TSTG2 and

the processing for the two stages may be overlapped in order to reduce the overall time-complexity.

 Suppose, in addition, that the time-complexity is further reduced through the parallel operation of

multiple processing streams where each stream involves the processing, via the RFHT, of one or more of the

WSRG data sets, so that there would be between 1 and L such processing streams operating independently of

each other in an SIMD fashion. The exact number of streams is denoted by parameter ‘S1’, where S1|L, so that

each stream is assigned the processing of exactly L/S1 WSRG data sets in an interleaved fashion so that with

the case of two streams, for example, one stream might deal with the processing of the even-addressed data sets

whilst the other deals with the processing of the odd-addressed data sets. This enables the time-complexity to

be expressed via the more general expression

)P(
2STG1STGT  ≈   2STG

1
1STG1 TS

1TSL
1  =  PS8

1
1  +    1Plog2PLS16

1
4

1
 (49)

clock cycles, where the superscript ‘P’ refers to the fact that the complexity now reflects the adoption of

coarse-grained parallel computation techniques.

 The corresponding space-complexity figures for carrying out the first two stages of the processing

chain will as a consequence increase to account for the scaling up of the second stage by a factor of S1, so that

)P(
2STG1STGA  =  2STG11STG ASA 

 = 8+9S1 multipliers & 31S1 adders (50)

and

)P(
2STG1STGM  =)MS(M 2STG11STG 

 ≈   PS7L124
1

1  (51)

words.

6.2 Transform-Space Processing

 The parallelization is now extended to cater for the third and final stage of the processing chain, with

the space-complexity for the initial conversion of all L sets of RFHT outputs from Hartley-space to Fourier-

space and of the subsequent production of the PSD data – and using the same level of parallelism as for the

computation of the multiple RFHTs – involving a total arithmetic component of

)P(
PSDCONA  = 8S1 multipliers & 12S1 adders (52)

together with a total memory component of

)P(
PSDCONM  ≈   PL2

1  (53)

data set, in turn, will be available for processing after L×P/8 clock cycles, so that TSTG1+STG2 ≠ TSTG1+TSTG2 and

the processing for the two stages may be overlapped in order to reduce the overall time-complexity.

 Suppose, in addition, that the time-complexity is further reduced through the parallel operation of

multiple processing streams where each stream involves the processing, via the RFHT, of one or more of the

WSRG data sets, so that there would be between 1 and L such processing streams operating independently of

each other in an SIMD fashion. The exact number of streams is denoted by parameter ‘S1’, where S1|L, so that

each stream is assigned the processing of exactly L/S1 WSRG data sets in an interleaved fashion so that with

the case of two streams, for example, one stream might deal with the processing of the even-addressed data sets

whilst the other deals with the processing of the odd-addressed data sets. This enables the time-complexity to

be expressed via the more general expression

)P(
2STG1STGT  ≈   2STG

1
1STG1 TS

1TSL
1  =  PS8

1
1  +    1Plog2PLS16

1
4

1
 (49)

clock cycles, where the superscript ‘P’ refers to the fact that the complexity now reflects the adoption of

coarse-grained parallel computation techniques.

 The corresponding space-complexity figures for carrying out the first two stages of the processing

chain will as a consequence increase to account for the scaling up of the second stage by a factor of S1, so that

)P(
2STG1STGA  =  2STG11STG ASA 

 = 8+9S1 multipliers & 31S1 adders (50)

and

)P(
2STG1STGM  =)MS(M 2STG11STG 

 ≈   PS7L124
1

1  (51)

words.

6.2 Transform-Space Processing

 The parallelization is now extended to cater for the third and final stage of the processing chain, with

the space-complexity for the initial conversion of all L sets of RFHT outputs from Hartley-space to Fourier-

space and of the subsequent production of the PSD data – and using the same level of parallelism as for the

computation of the multiple RFHTs – involving a total arithmetic component of

)P(
PSDCONA  = 8S1 multipliers & 12S1 adders (52)

together with a total memory component of

)P(
PSDCONM  ≈   PL2

1  (53)

data set, in turn, will be available for processing after L×P/8 clock cycles, so that TSTG1+STG2 ≠ TSTG1+TSTG2 and

the processing for the two stages may be overlapped in order to reduce the overall time-complexity.

 Suppose, in addition, that the time-complexity is further reduced through the parallel operation of

multiple processing streams where each stream involves the processing, via the RFHT, of one or more of the

WSRG data sets, so that there would be between 1 and L such processing streams operating independently of

each other in an SIMD fashion. The exact number of streams is denoted by parameter ‘S1’, where S1|L, so that

each stream is assigned the processing of exactly L/S1 WSRG data sets in an interleaved fashion so that with

the case of two streams, for example, one stream might deal with the processing of the even-addressed data sets

whilst the other deals with the processing of the odd-addressed data sets. This enables the time-complexity to

be expressed via the more general expression

)P(
2STG1STGT  ≈   2STG

1
1STG1 TS

1TSL
1  =  PS8

1
1  +    1Plog2PLS16

1
4

1
 (49)

clock cycles, where the superscript ‘P’ refers to the fact that the complexity now reflects the adoption of

coarse-grained parallel computation techniques.

 The corresponding space-complexity figures for carrying out the first two stages of the processing

chain will as a consequence increase to account for the scaling up of the second stage by a factor of S1, so that

)P(
2STG1STGA  =  2STG11STG ASA 

 = 8+9S1 multipliers & 31S1 adders (50)

and

)P(
2STG1STGM  =)MS(M 2STG11STG 

 ≈   PS7L124
1

1  (51)

words.

6.2 Transform-Space Processing

 The parallelization is now extended to cater for the third and final stage of the processing chain, with

the space-complexity for the initial conversion of all L sets of RFHT outputs from Hartley-space to Fourier-

space and of the subsequent production of the PSD data – and using the same level of parallelism as for the

computation of the multiple RFHTs – involving a total arithmetic component of

)P(
PSDCONA  = 8S1 multipliers & 12S1 adders (52)

together with a total memory component of

)P(
PSDCONM  ≈   PL2

1  (53)

data set, in turn, will be available for processing after L×P/8 clock cycles, so that TSTG1+STG2 ≠ TSTG1+TSTG2 and

the processing for the two stages may be overlapped in order to reduce the overall time-complexity.

 Suppose, in addition, that the time-complexity is further reduced through the parallel operation of

multiple processing streams where each stream involves the processing, via the RFHT, of one or more of the

WSRG data sets, so that there would be between 1 and L such processing streams operating independently of

each other in an SIMD fashion. The exact number of streams is denoted by parameter ‘S1’, where S1|L, so that

each stream is assigned the processing of exactly L/S1 WSRG data sets in an interleaved fashion so that with

the case of two streams, for example, one stream might deal with the processing of the even-addressed data sets

whilst the other deals with the processing of the odd-addressed data sets. This enables the time-complexity to

be expressed via the more general expression

)P(
2STG1STGT  ≈   2STG

1
1STG1 TS

1TSL
1  =  PS8

1
1  +    1Plog2PLS16

1
4

1
 (49)

clock cycles, where the superscript ‘P’ refers to the fact that the complexity now reflects the adoption of

coarse-grained parallel computation techniques.

 The corresponding space-complexity figures for carrying out the first two stages of the processing

chain will as a consequence increase to account for the scaling up of the second stage by a factor of S1, so that

)P(
2STG1STGA  =  2STG11STG ASA 

 = 8+9S1 multipliers & 31S1 adders (50)

and

)P(
2STG1STGM  =)MS(M 2STG11STG 

 ≈   PS7L124
1

1  (51)

words.

6.2 Transform-Space Processing

 The parallelization is now extended to cater for the third and final stage of the processing chain, with

the space-complexity for the initial conversion of all L sets of RFHT outputs from Hartley-space to Fourier-

space and of the subsequent production of the PSD data – and using the same level of parallelism as for the

computation of the multiple RFHTs – involving a total arithmetic component of

)P(
PSDCONA  = 8S1 multipliers & 12S1 adders (52)

together with a total memory component of

)P(
PSDCONM  ≈   PL2

1  (53)

data set, in turn, will be available for processing after L×P/8 clock cycles, so that TSTG1+STG2 ≠ TSTG1+TSTG2 and

the processing for the two stages may be overlapped in order to reduce the overall time-complexity.

 Suppose, in addition, that the time-complexity is further reduced through the parallel operation of

multiple processing streams where each stream involves the processing, via the RFHT, of one or more of the

WSRG data sets, so that there would be between 1 and L such processing streams operating independently of

each other in an SIMD fashion. The exact number of streams is denoted by parameter ‘S1’, where S1|L, so that

each stream is assigned the processing of exactly L/S1 WSRG data sets in an interleaved fashion so that with

the case of two streams, for example, one stream might deal with the processing of the even-addressed data sets

whilst the other deals with the processing of the odd-addressed data sets. This enables the time-complexity to

be expressed via the more general expression

)P(
2STG1STGT  ≈   2STG

1
1STG1 TS

1TSL
1  =  PS8

1
1  +    1Plog2PLS16

1
4

1
 (49)

clock cycles, where the superscript ‘P’ refers to the fact that the complexity now reflects the adoption of

coarse-grained parallel computation techniques.

 The corresponding space-complexity figures for carrying out the first two stages of the processing

chain will as a consequence increase to account for the scaling up of the second stage by a factor of S1, so that

)P(
2STG1STGA  =  2STG11STG ASA 

 = 8+9S1 multipliers & 31S1 adders (50)

and

)P(
2STG1STGM  =)MS(M 2STG11STG 

 ≈   PS7L124
1

1  (51)

words.

6.2 Transform-Space Processing

 The parallelization is now extended to cater for the third and final stage of the processing chain, with

the space-complexity for the initial conversion of all L sets of RFHT outputs from Hartley-space to Fourier-

space and of the subsequent production of the PSD data – and using the same level of parallelism as for the

computation of the multiple RFHTs – involving a total arithmetic component of

)P(
PSDCONA  = 8S1 multipliers & 12S1 adders (52)

together with a total memory component of

)P(
PSDCONM  ≈   PL2

1  (53)

data set, in turn, will be available for processing after L×P/8 clock cycles, so that TSTG1+STG2 ≠ TSTG1+TSTG2 and

the processing for the two stages may be overlapped in order to reduce the overall time-complexity.

 Suppose, in addition, that the time-complexity is further reduced through the parallel operation of

multiple processing streams where each stream involves the processing, via the RFHT, of one or more of the

WSRG data sets, so that there would be between 1 and L such processing streams operating independently of

each other in an SIMD fashion. The exact number of streams is denoted by parameter ‘S1’, where S1|L, so that

each stream is assigned the processing of exactly L/S1 WSRG data sets in an interleaved fashion so that with

the case of two streams, for example, one stream might deal with the processing of the even-addressed data sets

whilst the other deals with the processing of the odd-addressed data sets. This enables the time-complexity to

be expressed via the more general expression

)P(
2STG1STGT  ≈   2STG

1
1STG1 TS

1TSL
1  =  PS8

1
1  +    1Plog2PLS16

1
4

1
 (49)

clock cycles, where the superscript ‘P’ refers to the fact that the complexity now reflects the adoption of

coarse-grained parallel computation techniques.

 The corresponding space-complexity figures for carrying out the first two stages of the processing

chain will as a consequence increase to account for the scaling up of the second stage by a factor of S1, so that

)P(
2STG1STGA  =  2STG11STG ASA 

 = 8+9S1 multipliers & 31S1 adders (50)

and

)P(
2STG1STGM  =)MS(M 2STG11STG 

 ≈   PS7L124
1

1  (51)

words.

6.2 Transform-Space Processing

 The parallelization is now extended to cater for the third and final stage of the processing chain, with

the space-complexity for the initial conversion of all L sets of RFHT outputs from Hartley-space to Fourier-

space and of the subsequent production of the PSD data – and using the same level of parallelism as for the

computation of the multiple RFHTs – involving a total arithmetic component of

)P(
PSDCONA  = 8S1 multipliers & 12S1 adders (52)

together with a total memory component of

)P(
PSDCONM  ≈   PL2

1  (53)

data set, in turn, will be available for processing after L×P/8 clock cycles, so that TSTG1+STG2 ≠ TSTG1+TSTG2 and

the processing for the two stages may be overlapped in order to reduce the overall time-complexity.

 Suppose, in addition, that the time-complexity is further reduced through the parallel operation of

multiple processing streams where each stream involves the processing, via the RFHT, of one or more of the

WSRG data sets, so that there would be between 1 and L such processing streams operating independently of

each other in an SIMD fashion. The exact number of streams is denoted by parameter ‘S1’, where S1|L, so that

each stream is assigned the processing of exactly L/S1 WSRG data sets in an interleaved fashion so that with

the case of two streams, for example, one stream might deal with the processing of the even-addressed data sets

whilst the other deals with the processing of the odd-addressed data sets. This enables the time-complexity to

be expressed via the more general expression

)P(
2STG1STGT  ≈   2STG

1
1STG1 TS

1TSL
1  =  PS8

1
1  +    1Plog2PLS16

1
4

1
 (49)

clock cycles, where the superscript ‘P’ refers to the fact that the complexity now reflects the adoption of

coarse-grained parallel computation techniques.

 The corresponding space-complexity figures for carrying out the first two stages of the processing

chain will as a consequence increase to account for the scaling up of the second stage by a factor of S1, so that

)P(
2STG1STGA  =  2STG11STG ASA 

 = 8+9S1 multipliers & 31S1 adders (50)

and

)P(
2STG1STGM  =)MS(M 2STG11STG 

 ≈   PS7L124
1

1  (51)

words.

6.2 Transform-Space Processing

 The parallelization is now extended to cater for the third and final stage of the processing chain, with

the space-complexity for the initial conversion of all L sets of RFHT outputs from Hartley-space to Fourier-

space and of the subsequent production of the PSD data – and using the same level of parallelism as for the

computation of the multiple RFHTs – involving a total arithmetic component of

)P(
PSDCONA  = 8S1 multipliers & 12S1 adders (52)

together with a total memory component of

)P(
PSDCONM  ≈   PL2

1  (53)

words, whilst the associated time-complexity for the combined task may be expressed as

)P(
PSDCONT 

 
1S8

PL (54)

clock cycles, where S1 processes are now assumed to be operating in parallel in SIMD fashion upon the L sets

of Hartley-space data with L/S1 data sets being assigned to each process.

 For the parallelization of the next task concerning the determination of the dominant bin locations for

each of the L SDRD-FFT output data sets, the space-complexity – just as for the sequential solution – will

possess a zero arithmetic component together with a memory component, denoted)P(
LOCM , of

)P(
LOCM ≈  )W2/P(K2L D  (55)

words, whilst the associated (worst-case) time-complexity, denoted)P(
LOCT , may be expressed as

)P(
LOCT ≈   D2D

2
Klog)K3P(LS5 





  (56)

clock cycles, where ‘S2’ processes are now assumed to be operating in parallel in SIMD fashion upon the L sets

of PSD data with L/S2 data sets being assigned to each process and where S2 is such that S2|L. Note, however,

that a highly-parallel alternative to having multiple sequential solutions running in parallel may be achieved for

each data set by pipelining the iterations, in a fine-grained fashion, so that updated versions of the Min-Heap

may be produced every O(1) clock cycles [21], rather than every O(logKD) clock cycles (as is required for each

of the insert and delete operations), at the expense of an O(logKD) increase in the space-complexity.

 For the parallelization of the next task concerning the determination of the signal frequencies, the

space-complexity will possess an arithmetic component, denoted)P(
FRQA , of

)P(
FRQA = (L-1) ×S3 multipliers & L×S3 adders (57)

together with a memory component, denoted)P(
FRQM , of

)P(
FRQM ≈  1LKD  (58)

words, whilst the associated time-complexity, denoted)P(
FRQT , may be expressed as

)P(
FRQT ≈     1)-(L N/P/SK 3D  (59)

clock cycles, where ‘S3’ multi-stage filters are now operating in parallel in SIMD fashion upon the sets of FOIs

so that parameter S3 must be such that S3|KD with KD/S3 sets, each of N/P FOIs, being assigned to each

pipelined process. A memory-efficient implementation that avoids having to replicate the set of BIAs for each

version of the multi-stage filter may be achieved by setting S3 equal to L and processing L consecutive sets of

words, whilst the associated time-complexity for the combined task may be expressed as

)P(
PSDCONT 

 
1S8

PL (54)

clock cycles, where S1 processes are now assumed to be operating in parallel in SIMD fashion upon the L sets

of Hartley-space data with L/S1 data sets being assigned to each process.

 For the parallelization of the next task concerning the determination of the dominant bin locations for

each of the L SDRD-FFT output data sets, the space-complexity – just as for the sequential solution – will

possess a zero arithmetic component together with a memory component, denoted)P(
LOCM , of

)P(
LOCM ≈  )W2/P(K2L D  (55)

words, whilst the associated (worst-case) time-complexity, denoted)P(
LOCT , may be expressed as

)P(
LOCT ≈   D2D

2
Klog)K3P(LS5 





  (56)

clock cycles, where ‘S2’ processes are now assumed to be operating in parallel in SIMD fashion upon the L sets

of PSD data with L/S2 data sets being assigned to each process and where S2 is such that S2|L. Note, however,

that a highly-parallel alternative to having multiple sequential solutions running in parallel may be achieved for

each data set by pipelining the iterations, in a fine-grained fashion, so that updated versions of the Min-Heap

may be produced every O(1) clock cycles [21], rather than every O(logKD) clock cycles (as is required for each

of the insert and delete operations), at the expense of an O(logKD) increase in the space-complexity.

 For the parallelization of the next task concerning the determination of the signal frequencies, the

space-complexity will possess an arithmetic component, denoted)P(
FRQA , of

)P(
FRQA = (L-1) ×S3 multipliers & L×S3 adders (57)

together with a memory component, denoted)P(
FRQM , of

)P(
FRQM ≈  1LKD  (58)

words, whilst the associated time-complexity, denoted)P(
FRQT , may be expressed as

)P(
FRQT ≈     1)-(L N/P/SK 3D  (59)

clock cycles, where ‘S3’ multi-stage filters are now operating in parallel in SIMD fashion upon the sets of FOIs

so that parameter S3 must be such that S3|KD with KD/S3 sets, each of N/P FOIs, being assigned to each

pipelined process. A memory-efficient implementation that avoids having to replicate the set of BIAs for each

version of the multi-stage filter may be achieved by setting S3 equal to L and processing L consecutive sets of

Volume 1 | Issue 2 | 83OA J Applied Sci Technol, 2023

For the parallelization of the next task concerning the
determination of the dominant bin locations for each of the
L SDRD-FFT output data sets, the space complexity – just
as for the sequential solution – will possess a zero arithmetic
component together with a memory component, denoted 	 ,
of

words, whilst the associated (worst-case) time complexity,
denoted	 , may be expressed as

clock cycles, where ‘S2’ processes are now assumed to be
operating in parallel in SIMD fashion upon the L sets of PSD data
with L/S2 data sets being assigned to each process and where S2
is such that S2|L. Note, however, that a highly-parallel alternative
to having multiple sequential solutions running in parallel may
be achieved for each data set by pipelining the iterations, in a
fine-grained fashion, so that updated versions of the Min-Heap
may be produced every O(1) clock cycles [21], rather than every
O(logKD) clock cycles (as is required for each of the insert and
delete operations), at the expense of an O(logKD) increase in the
space complexity.

For the parallelization of the next task concerning the
determination of the signal frequencies, the space complexity
will possess an arithmetic component, denoted 	 , of

together with a memory component, denoted		 , of

words, whilst the associated time complexity, denoted 		
may be expressed as

clock cycles, where ‘S3’ multi-stage filters are now operating in
parallel in SIMD fashion upon the sets of FOIs so that parameter
S3 must be such that S3|KD with KD/S3 sets, each of N/P FOIs,
being assigned to each pipelined process. A memory-efficient
implementation that avoids having to replicate the set of BIAs
for each version of the multi-stage filter may be achieved by
setting S3 equal to L and processing L consecutive sets of FOIs
in parallel where, to avoid addressing conflicts: 1) the BIA used
to feed the L multi-stage filters is different for each with the BIA
used by the n’th multi-stage filter (where n varies from 1 to L)
being set to that defined for the n’th SDRD-FFT, and 2) the BIA
used by the m’th stage (where m varies from 1 to L-1) of the n’th
multi-stage filter is set to that defined for the k’th SDRD-FFT,
where

In this way, the ordering of the L BIAs is simply rotated by
one position with increasing n so that all the BIAs may be used

simultaneously for all L-1 stages of the L multi-stage filters.
Care needs to be taken, however, to ensure that when all stages
of a given filter are successfully traversed the resulting set of L
addresses is suitably rotated to enable them to be stored in their
correct order.

For the last task of the final stage concerning the determination of
the spectrum components, the low space and time complexities
for carrying out this task suggest that no additional parallelization
is required so that the solution described in Section 5.4 – which
consists of a single pipelined process – is retained, this possessing
an arithmetic component, denoted , of

together with a memory component, denoted		 of

words, whilst the associated time complexity, denoted for
carrying out the task may be expressed as

clock cycles – for the simple case where L is a radix-2 integer.

Combining these complexity results, the space-complexity for
carrying out the transform-space processing in a coarse-grained
parallel fashion involves an arithmetic component, denoted 	
of

together with a memory component, denoted		 of

words, whilst the associated time complexity, denoted	
for carrying out the task may be expressed as
	

clock cycles.

6.3 Discussion
This section has provided space and time complexity results
for parallel versions of all three stages of the processing chain,
with the results for the first two stages concerning the data-space

words, whilst the associated time-complexity for the combined task may be expressed as

)P(
PSDCONT 

 
1S8

PL (54)

clock cycles, where S1 processes are now assumed to be operating in parallel in SIMD fashion upon the L sets

of Hartley-space data with L/S1 data sets being assigned to each process.

 For the parallelization of the next task concerning the determination of the dominant bin locations for

each of the L SDRD-FFT output data sets, the space-complexity – just as for the sequential solution – will

possess a zero arithmetic component together with a memory component, denoted)P(
LOCM , of

)P(
LOCM ≈  )W2/P(K2L D  (55)

words, whilst the associated (worst-case) time-complexity, denoted)P(
LOCT , may be expressed as

)P(
LOCT ≈   D2D

2
Klog)K3P(LS5 





  (56)

clock cycles, where ‘S2’ processes are now assumed to be operating in parallel in SIMD fashion upon the L sets

of PSD data with L/S2 data sets being assigned to each process and where S2 is such that S2|L. Note, however,

that a highly-parallel alternative to having multiple sequential solutions running in parallel may be achieved for

each data set by pipelining the iterations, in a fine-grained fashion, so that updated versions of the Min-Heap

may be produced every O(1) clock cycles [21], rather than every O(logKD) clock cycles (as is required for each

of the insert and delete operations), at the expense of an O(logKD) increase in the space-complexity.

 For the parallelization of the next task concerning the determination of the signal frequencies, the

space-complexity will possess an arithmetic component, denoted)P(
FRQA , of

)P(
FRQA = (L-1) ×S3 multipliers & L×S3 adders (57)

together with a memory component, denoted)P(
FRQM , of

)P(
FRQM ≈  1LKD  (58)

words, whilst the associated time-complexity, denoted)P(
FRQT , may be expressed as

)P(
FRQT ≈     1)-(L N/P/SK 3D  (59)

clock cycles, where ‘S3’ multi-stage filters are now operating in parallel in SIMD fashion upon the sets of FOIs

so that parameter S3 must be such that S3|KD with KD/S3 sets, each of N/P FOIs, being assigned to each

pipelined process. A memory-efficient implementation that avoids having to replicate the set of BIAs for each

version of the multi-stage filter may be achieved by setting S3 equal to L and processing L consecutive sets of

words, whilst the associated time-complexity for the combined task may be expressed as

)P(
PSDCONT 

 
1S8

PL (54)

clock cycles, where S1 processes are now assumed to be operating in parallel in SIMD fashion upon the L sets

of Hartley-space data with L/S1 data sets being assigned to each process.

 For the parallelization of the next task concerning the determination of the dominant bin locations for

each of the L SDRD-FFT output data sets, the space-complexity – just as for the sequential solution – will

possess a zero arithmetic component together with a memory component, denoted)P(
LOCM , of

)P(
LOCM ≈  )W2/P(K2L D  (55)

words, whilst the associated (worst-case) time-complexity, denoted)P(
LOCT , may be expressed as

)P(
LOCT ≈   D2D

2
Klog)K3P(LS5 





  (56)

clock cycles, where ‘S2’ processes are now assumed to be operating in parallel in SIMD fashion upon the L sets

of PSD data with L/S2 data sets being assigned to each process and where S2 is such that S2|L. Note, however,

that a highly-parallel alternative to having multiple sequential solutions running in parallel may be achieved for

each data set by pipelining the iterations, in a fine-grained fashion, so that updated versions of the Min-Heap

may be produced every O(1) clock cycles [21], rather than every O(logKD) clock cycles (as is required for each

of the insert and delete operations), at the expense of an O(logKD) increase in the space-complexity.

 For the parallelization of the next task concerning the determination of the signal frequencies, the

space-complexity will possess an arithmetic component, denoted)P(
FRQA , of

)P(
FRQA = (L-1) ×S3 multipliers & L×S3 adders (57)

together with a memory component, denoted)P(
FRQM , of

)P(
FRQM ≈  1LKD  (58)

words, whilst the associated time-complexity, denoted)P(
FRQT , may be expressed as

)P(
FRQT ≈     1)-(L N/P/SK 3D  (59)

clock cycles, where ‘S3’ multi-stage filters are now operating in parallel in SIMD fashion upon the sets of FOIs

so that parameter S3 must be such that S3|KD with KD/S3 sets, each of N/P FOIs, being assigned to each

pipelined process. A memory-efficient implementation that avoids having to replicate the set of BIAs for each

version of the multi-stage filter may be achieved by setting S3 equal to L and processing L consecutive sets of

words, whilst the associated time-complexity for the combined task may be expressed as

)P(
PSDCONT 

 
1S8

PL (54)

clock cycles, where S1 processes are now assumed to be operating in parallel in SIMD fashion upon the L sets

of Hartley-space data with L/S1 data sets being assigned to each process.

 For the parallelization of the next task concerning the determination of the dominant bin locations for

each of the L SDRD-FFT output data sets, the space-complexity – just as for the sequential solution – will

possess a zero arithmetic component together with a memory component, denoted)P(
LOCM , of

)P(
LOCM ≈  )W2/P(K2L D  (55)

words, whilst the associated (worst-case) time-complexity, denoted)P(
LOCT , may be expressed as

)P(
LOCT ≈   D2D

2
Klog)K3P(LS5 





  (56)

clock cycles, where ‘S2’ processes are now assumed to be operating in parallel in SIMD fashion upon the L sets

of PSD data with L/S2 data sets being assigned to each process and where S2 is such that S2|L. Note, however,

that a highly-parallel alternative to having multiple sequential solutions running in parallel may be achieved for

each data set by pipelining the iterations, in a fine-grained fashion, so that updated versions of the Min-Heap

may be produced every O(1) clock cycles [21], rather than every O(logKD) clock cycles (as is required for each

of the insert and delete operations), at the expense of an O(logKD) increase in the space-complexity.

 For the parallelization of the next task concerning the determination of the signal frequencies, the

space-complexity will possess an arithmetic component, denoted)P(
FRQA , of

)P(
FRQA = (L-1) ×S3 multipliers & L×S3 adders (57)

together with a memory component, denoted)P(
FRQM , of

)P(
FRQM ≈  1LKD  (58)

words, whilst the associated time-complexity, denoted)P(
FRQT , may be expressed as

)P(
FRQT ≈     1)-(L N/P/SK 3D  (59)

clock cycles, where ‘S3’ multi-stage filters are now operating in parallel in SIMD fashion upon the sets of FOIs

so that parameter S3 must be such that S3|KD with KD/S3 sets, each of N/P FOIs, being assigned to each

pipelined process. A memory-efficient implementation that avoids having to replicate the set of BIAs for each

version of the multi-stage filter may be achieved by setting S3 equal to L and processing L consecutive sets of

words, whilst the associated time-complexity for the combined task may be expressed as

)P(
PSDCONT 

 
1S8

PL (54)

clock cycles, where S1 processes are now assumed to be operating in parallel in SIMD fashion upon the L sets

of Hartley-space data with L/S1 data sets being assigned to each process.

 For the parallelization of the next task concerning the determination of the dominant bin locations for

each of the L SDRD-FFT output data sets, the space-complexity – just as for the sequential solution – will

possess a zero arithmetic component together with a memory component, denoted)P(
LOCM , of

)P(
LOCM ≈  )W2/P(K2L D  (55)

words, whilst the associated (worst-case) time-complexity, denoted)P(
LOCT , may be expressed as

)P(
LOCT ≈   D2D

2
Klog)K3P(LS5 





  (56)

clock cycles, where ‘S2’ processes are now assumed to be operating in parallel in SIMD fashion upon the L sets

of PSD data with L/S2 data sets being assigned to each process and where S2 is such that S2|L. Note, however,

that a highly-parallel alternative to having multiple sequential solutions running in parallel may be achieved for

each data set by pipelining the iterations, in a fine-grained fashion, so that updated versions of the Min-Heap

may be produced every O(1) clock cycles [21], rather than every O(logKD) clock cycles (as is required for each

of the insert and delete operations), at the expense of an O(logKD) increase in the space-complexity.

 For the parallelization of the next task concerning the determination of the signal frequencies, the

space-complexity will possess an arithmetic component, denoted)P(
FRQA , of

)P(
FRQA = (L-1) ×S3 multipliers & L×S3 adders (57)

together with a memory component, denoted)P(
FRQM , of

)P(
FRQM ≈  1LKD  (58)

words, whilst the associated time-complexity, denoted)P(
FRQT , may be expressed as

)P(
FRQT ≈     1)-(L N/P/SK 3D  (59)

clock cycles, where ‘S3’ multi-stage filters are now operating in parallel in SIMD fashion upon the sets of FOIs

so that parameter S3 must be such that S3|KD with KD/S3 sets, each of N/P FOIs, being assigned to each

pipelined process. A memory-efficient implementation that avoids having to replicate the set of BIAs for each

version of the multi-stage filter may be achieved by setting S3 equal to L and processing L consecutive sets of

words, whilst the associated time-complexity for the combined task may be expressed as

)P(
PSDCONT 

 
1S8

PL (54)

clock cycles, where S1 processes are now assumed to be operating in parallel in SIMD fashion upon the L sets

of Hartley-space data with L/S1 data sets being assigned to each process.

 For the parallelization of the next task concerning the determination of the dominant bin locations for

each of the L SDRD-FFT output data sets, the space-complexity – just as for the sequential solution – will

possess a zero arithmetic component together with a memory component, denoted)P(
LOCM , of

)P(
LOCM ≈  )W2/P(K2L D  (55)

words, whilst the associated (worst-case) time-complexity, denoted)P(
LOCT , may be expressed as

)P(
LOCT ≈   D2D

2
Klog)K3P(LS5 





  (56)

clock cycles, where ‘S2’ processes are now assumed to be operating in parallel in SIMD fashion upon the L sets

of PSD data with L/S2 data sets being assigned to each process and where S2 is such that S2|L. Note, however,

that a highly-parallel alternative to having multiple sequential solutions running in parallel may be achieved for

each data set by pipelining the iterations, in a fine-grained fashion, so that updated versions of the Min-Heap

may be produced every O(1) clock cycles [21], rather than every O(logKD) clock cycles (as is required for each

of the insert and delete operations), at the expense of an O(logKD) increase in the space-complexity.

 For the parallelization of the next task concerning the determination of the signal frequencies, the

space-complexity will possess an arithmetic component, denoted)P(
FRQA , of

)P(
FRQA = (L-1) ×S3 multipliers & L×S3 adders (57)

together with a memory component, denoted)P(
FRQM , of

)P(
FRQM ≈  1LKD  (58)

words, whilst the associated time-complexity, denoted)P(
FRQT , may be expressed as

)P(
FRQT ≈     1)-(L N/P/SK 3D  (59)

clock cycles, where ‘S3’ multi-stage filters are now operating in parallel in SIMD fashion upon the sets of FOIs

so that parameter S3 must be such that S3|KD with KD/S3 sets, each of N/P FOIs, being assigned to each

pipelined process. A memory-efficient implementation that avoids having to replicate the set of BIAs for each

version of the multi-stage filter may be achieved by setting S3 equal to L and processing L consecutive sets of

words, whilst the associated time-complexity for the combined task may be expressed as

)P(
PSDCONT 

 
1S8

PL (54)

clock cycles, where S1 processes are now assumed to be operating in parallel in SIMD fashion upon the L sets

of Hartley-space data with L/S1 data sets being assigned to each process.

 For the parallelization of the next task concerning the determination of the dominant bin locations for

each of the L SDRD-FFT output data sets, the space-complexity – just as for the sequential solution – will

possess a zero arithmetic component together with a memory component, denoted)P(
LOCM , of

)P(
LOCM ≈  )W2/P(K2L D  (55)

words, whilst the associated (worst-case) time-complexity, denoted)P(
LOCT , may be expressed as

)P(
LOCT ≈   D2D

2
Klog)K3P(LS5 





  (56)

clock cycles, where ‘S2’ processes are now assumed to be operating in parallel in SIMD fashion upon the L sets

of PSD data with L/S2 data sets being assigned to each process and where S2 is such that S2|L. Note, however,

that a highly-parallel alternative to having multiple sequential solutions running in parallel may be achieved for

each data set by pipelining the iterations, in a fine-grained fashion, so that updated versions of the Min-Heap

may be produced every O(1) clock cycles [21], rather than every O(logKD) clock cycles (as is required for each

of the insert and delete operations), at the expense of an O(logKD) increase in the space-complexity.

 For the parallelization of the next task concerning the determination of the signal frequencies, the

space-complexity will possess an arithmetic component, denoted)P(
FRQA , of

)P(
FRQA = (L-1) ×S3 multipliers & L×S3 adders (57)

together with a memory component, denoted)P(
FRQM , of

)P(
FRQM ≈  1LKD  (58)

words, whilst the associated time-complexity, denoted)P(
FRQT , may be expressed as

)P(
FRQT ≈     1)-(L N/P/SK 3D  (59)

clock cycles, where ‘S3’ multi-stage filters are now operating in parallel in SIMD fashion upon the sets of FOIs

so that parameter S3 must be such that S3|KD with KD/S3 sets, each of N/P FOIs, being assigned to each

pipelined process. A memory-efficient implementation that avoids having to replicate the set of BIAs for each

version of the multi-stage filter may be achieved by setting S3 equal to L and processing L consecutive sets of

words, whilst the associated time-complexity for the combined task may be expressed as

)P(
PSDCONT 

 
1S8

PL (54)

clock cycles, where S1 processes are now assumed to be operating in parallel in SIMD fashion upon the L sets

of Hartley-space data with L/S1 data sets being assigned to each process.

 For the parallelization of the next task concerning the determination of the dominant bin locations for

each of the L SDRD-FFT output data sets, the space-complexity – just as for the sequential solution – will

possess a zero arithmetic component together with a memory component, denoted)P(
LOCM , of

)P(
LOCM ≈  )W2/P(K2L D  (55)

words, whilst the associated (worst-case) time-complexity, denoted)P(
LOCT , may be expressed as

)P(
LOCT ≈   D2D

2
Klog)K3P(LS5 





  (56)

clock cycles, where ‘S2’ processes are now assumed to be operating in parallel in SIMD fashion upon the L sets

of PSD data with L/S2 data sets being assigned to each process and where S2 is such that S2|L. Note, however,

that a highly-parallel alternative to having multiple sequential solutions running in parallel may be achieved for

each data set by pipelining the iterations, in a fine-grained fashion, so that updated versions of the Min-Heap

may be produced every O(1) clock cycles [21], rather than every O(logKD) clock cycles (as is required for each

of the insert and delete operations), at the expense of an O(logKD) increase in the space-complexity.

 For the parallelization of the next task concerning the determination of the signal frequencies, the

space-complexity will possess an arithmetic component, denoted)P(
FRQA , of

)P(
FRQA = (L-1) ×S3 multipliers & L×S3 adders (57)

together with a memory component, denoted)P(
FRQM , of

)P(
FRQM ≈  1LKD  (58)

words, whilst the associated time-complexity, denoted)P(
FRQT , may be expressed as

)P(
FRQT ≈     1)-(L N/P/SK 3D  (59)

clock cycles, where ‘S3’ multi-stage filters are now operating in parallel in SIMD fashion upon the sets of FOIs

so that parameter S3 must be such that S3|KD with KD/S3 sets, each of N/P FOIs, being assigned to each

pipelined process. A memory-efficient implementation that avoids having to replicate the set of BIAs for each

version of the multi-stage filter may be achieved by setting S3 equal to L and processing L consecutive sets of

words, whilst the associated time-complexity for the combined task may be expressed as

)P(
PSDCONT 

 
1S8

PL (54)

clock cycles, where S1 processes are now assumed to be operating in parallel in SIMD fashion upon the L sets

of Hartley-space data with L/S1 data sets being assigned to each process.

 For the parallelization of the next task concerning the determination of the dominant bin locations for

each of the L SDRD-FFT output data sets, the space-complexity – just as for the sequential solution – will

possess a zero arithmetic component together with a memory component, denoted)P(
LOCM , of

)P(
LOCM ≈  )W2/P(K2L D  (55)

words, whilst the associated (worst-case) time-complexity, denoted)P(
LOCT , may be expressed as

)P(
LOCT ≈   D2D

2
Klog)K3P(LS5 





  (56)

clock cycles, where ‘S2’ processes are now assumed to be operating in parallel in SIMD fashion upon the L sets

of PSD data with L/S2 data sets being assigned to each process and where S2 is such that S2|L. Note, however,

that a highly-parallel alternative to having multiple sequential solutions running in parallel may be achieved for

each data set by pipelining the iterations, in a fine-grained fashion, so that updated versions of the Min-Heap

may be produced every O(1) clock cycles [21], rather than every O(logKD) clock cycles (as is required for each

of the insert and delete operations), at the expense of an O(logKD) increase in the space-complexity.

 For the parallelization of the next task concerning the determination of the signal frequencies, the

space-complexity will possess an arithmetic component, denoted)P(
FRQA , of

)P(
FRQA = (L-1) ×S3 multipliers & L×S3 adders (57)

together with a memory component, denoted)P(
FRQM , of

)P(
FRQM ≈  1LKD  (58)

words, whilst the associated time-complexity, denoted)P(
FRQT , may be expressed as

)P(
FRQT ≈     1)-(L N/P/SK 3D  (59)

clock cycles, where ‘S3’ multi-stage filters are now operating in parallel in SIMD fashion upon the sets of FOIs

so that parameter S3 must be such that S3|KD with KD/S3 sets, each of N/P FOIs, being assigned to each

pipelined process. A memory-efficient implementation that avoids having to replicate the set of BIAs for each

version of the multi-stage filter may be achieved by setting S3 equal to L and processing L consecutive sets of

words, whilst the associated time-complexity for the combined task may be expressed as

)P(
PSDCONT 

 
1S8

PL (54)

clock cycles, where S1 processes are now assumed to be operating in parallel in SIMD fashion upon the L sets

of Hartley-space data with L/S1 data sets being assigned to each process.

 For the parallelization of the next task concerning the determination of the dominant bin locations for

each of the L SDRD-FFT output data sets, the space-complexity – just as for the sequential solution – will

possess a zero arithmetic component together with a memory component, denoted)P(
LOCM , of

)P(
LOCM ≈  )W2/P(K2L D  (55)

words, whilst the associated (worst-case) time-complexity, denoted)P(
LOCT , may be expressed as

)P(
LOCT ≈   D2D

2
Klog)K3P(LS5 





  (56)

clock cycles, where ‘S2’ processes are now assumed to be operating in parallel in SIMD fashion upon the L sets

of PSD data with L/S2 data sets being assigned to each process and where S2 is such that S2|L. Note, however,

that a highly-parallel alternative to having multiple sequential solutions running in parallel may be achieved for

each data set by pipelining the iterations, in a fine-grained fashion, so that updated versions of the Min-Heap

may be produced every O(1) clock cycles [21], rather than every O(logKD) clock cycles (as is required for each

of the insert and delete operations), at the expense of an O(logKD) increase in the space-complexity.

 For the parallelization of the next task concerning the determination of the signal frequencies, the

space-complexity will possess an arithmetic component, denoted)P(
FRQA , of

)P(
FRQA = (L-1) ×S3 multipliers & L×S3 adders (57)

together with a memory component, denoted)P(
FRQM , of

)P(
FRQM ≈  1LKD  (58)

words, whilst the associated time-complexity, denoted)P(
FRQT , may be expressed as

)P(
FRQT ≈     1)-(L N/P/SK 3D  (59)

clock cycles, where ‘S3’ multi-stage filters are now operating in parallel in SIMD fashion upon the sets of FOIs

so that parameter S3 must be such that S3|KD with KD/S3 sets, each of N/P FOIs, being assigned to each

pipelined process. A memory-efficient implementation that avoids having to replicate the set of BIAs for each

version of the multi-stage filter may be achieved by setting S3 equal to L and processing L consecutive sets of

words, whilst the associated time-complexity for the combined task may be expressed as

)P(
PSDCONT 

 
1S8

PL (54)

clock cycles, where S1 processes are now assumed to be operating in parallel in SIMD fashion upon the L sets

of Hartley-space data with L/S1 data sets being assigned to each process.

 For the parallelization of the next task concerning the determination of the dominant bin locations for

each of the L SDRD-FFT output data sets, the space-complexity – just as for the sequential solution – will

possess a zero arithmetic component together with a memory component, denoted)P(
LOCM , of

)P(
LOCM ≈  )W2/P(K2L D  (55)

words, whilst the associated (worst-case) time-complexity, denoted)P(
LOCT , may be expressed as

)P(
LOCT ≈   D2D

2
Klog)K3P(LS5 





  (56)

clock cycles, where ‘S2’ processes are now assumed to be operating in parallel in SIMD fashion upon the L sets

of PSD data with L/S2 data sets being assigned to each process and where S2 is such that S2|L. Note, however,

that a highly-parallel alternative to having multiple sequential solutions running in parallel may be achieved for

each data set by pipelining the iterations, in a fine-grained fashion, so that updated versions of the Min-Heap

may be produced every O(1) clock cycles [21], rather than every O(logKD) clock cycles (as is required for each

of the insert and delete operations), at the expense of an O(logKD) increase in the space-complexity.

 For the parallelization of the next task concerning the determination of the signal frequencies, the

space-complexity will possess an arithmetic component, denoted)P(
FRQA , of

)P(
FRQA = (L-1) ×S3 multipliers & L×S3 adders (57)

together with a memory component, denoted)P(
FRQM , of

)P(
FRQM ≈  1LKD  (58)

words, whilst the associated time-complexity, denoted)P(
FRQT , may be expressed as

)P(
FRQT ≈     1)-(L N/P/SK 3D  (59)

clock cycles, where ‘S3’ multi-stage filters are now operating in parallel in SIMD fashion upon the sets of FOIs

so that parameter S3 must be such that S3|KD with KD/S3 sets, each of N/P FOIs, being assigned to each

pipelined process. A memory-efficient implementation that avoids having to replicate the set of BIAs for each

version of the multi-stage filter may be achieved by setting S3 equal to L and processing L consecutive sets of

words, whilst the associated time-complexity for the combined task may be expressed as

)P(
PSDCONT 

 
1S8

PL (54)

clock cycles, where S1 processes are now assumed to be operating in parallel in SIMD fashion upon the L sets

of Hartley-space data with L/S1 data sets being assigned to each process.

 For the parallelization of the next task concerning the determination of the dominant bin locations for

each of the L SDRD-FFT output data sets, the space-complexity – just as for the sequential solution – will

possess a zero arithmetic component together with a memory component, denoted)P(
LOCM , of

)P(
LOCM ≈  )W2/P(K2L D  (55)

words, whilst the associated (worst-case) time-complexity, denoted)P(
LOCT , may be expressed as

)P(
LOCT ≈   D2D

2
Klog)K3P(LS5 





  (56)

clock cycles, where ‘S2’ processes are now assumed to be operating in parallel in SIMD fashion upon the L sets

of PSD data with L/S2 data sets being assigned to each process and where S2 is such that S2|L. Note, however,

that a highly-parallel alternative to having multiple sequential solutions running in parallel may be achieved for

each data set by pipelining the iterations, in a fine-grained fashion, so that updated versions of the Min-Heap

may be produced every O(1) clock cycles [21], rather than every O(logKD) clock cycles (as is required for each

of the insert and delete operations), at the expense of an O(logKD) increase in the space-complexity.

 For the parallelization of the next task concerning the determination of the signal frequencies, the

space-complexity will possess an arithmetic component, denoted)P(
FRQA , of

)P(
FRQA = (L-1) ×S3 multipliers & L×S3 adders (57)

together with a memory component, denoted)P(
FRQM , of

)P(
FRQM ≈  1LKD  (58)

words, whilst the associated time-complexity, denoted)P(
FRQT , may be expressed as

)P(
FRQT ≈     1)-(L N/P/SK 3D  (59)

clock cycles, where ‘S3’ multi-stage filters are now operating in parallel in SIMD fashion upon the sets of FOIs

so that parameter S3 must be such that S3|KD with KD/S3 sets, each of N/P FOIs, being assigned to each

pipelined process. A memory-efficient implementation that avoids having to replicate the set of BIAs for each

version of the multi-stage filter may be achieved by setting S3 equal to L and processing L consecutive sets of

words, whilst the associated time-complexity for the combined task may be expressed as

)P(
PSDCONT 

 
1S8

PL (54)

clock cycles, where S1 processes are now assumed to be operating in parallel in SIMD fashion upon the L sets

of Hartley-space data with L/S1 data sets being assigned to each process.

 For the parallelization of the next task concerning the determination of the dominant bin locations for

each of the L SDRD-FFT output data sets, the space-complexity – just as for the sequential solution – will

possess a zero arithmetic component together with a memory component, denoted)P(
LOCM , of

)P(
LOCM ≈  )W2/P(K2L D  (55)

words, whilst the associated (worst-case) time-complexity, denoted)P(
LOCT , may be expressed as

)P(
LOCT ≈   D2D

2
Klog)K3P(LS5 





  (56)

clock cycles, where ‘S2’ processes are now assumed to be operating in parallel in SIMD fashion upon the L sets

of PSD data with L/S2 data sets being assigned to each process and where S2 is such that S2|L. Note, however,

that a highly-parallel alternative to having multiple sequential solutions running in parallel may be achieved for

each data set by pipelining the iterations, in a fine-grained fashion, so that updated versions of the Min-Heap

may be produced every O(1) clock cycles [21], rather than every O(logKD) clock cycles (as is required for each

of the insert and delete operations), at the expense of an O(logKD) increase in the space-complexity.

 For the parallelization of the next task concerning the determination of the signal frequencies, the

space-complexity will possess an arithmetic component, denoted)P(
FRQA , of

)P(
FRQA = (L-1) ×S3 multipliers & L×S3 adders (57)

together with a memory component, denoted)P(
FRQM , of

)P(
FRQM ≈  1LKD  (58)

words, whilst the associated time-complexity, denoted)P(
FRQT , may be expressed as

)P(
FRQT ≈     1)-(L N/P/SK 3D  (59)

clock cycles, where ‘S3’ multi-stage filters are now operating in parallel in SIMD fashion upon the sets of FOIs

so that parameter S3 must be such that S3|KD with KD/S3 sets, each of N/P FOIs, being assigned to each

pipelined process. A memory-efficient implementation that avoids having to replicate the set of BIAs for each

version of the multi-stage filter may be achieved by setting S3 equal to L and processing L consecutive sets of

words, whilst the associated time-complexity for the combined task may be expressed as

)P(
PSDCONT 

 
1S8

PL (54)

clock cycles, where S1 processes are now assumed to be operating in parallel in SIMD fashion upon the L sets

of Hartley-space data with L/S1 data sets being assigned to each process.

 For the parallelization of the next task concerning the determination of the dominant bin locations for

each of the L SDRD-FFT output data sets, the space-complexity – just as for the sequential solution – will

possess a zero arithmetic component together with a memory component, denoted)P(
LOCM , of

)P(
LOCM ≈  )W2/P(K2L D  (55)

words, whilst the associated (worst-case) time-complexity, denoted)P(
LOCT , may be expressed as

)P(
LOCT ≈   D2D

2
Klog)K3P(LS5 





  (56)

clock cycles, where ‘S2’ processes are now assumed to be operating in parallel in SIMD fashion upon the L sets

of PSD data with L/S2 data sets being assigned to each process and where S2 is such that S2|L. Note, however,

that a highly-parallel alternative to having multiple sequential solutions running in parallel may be achieved for

each data set by pipelining the iterations, in a fine-grained fashion, so that updated versions of the Min-Heap

may be produced every O(1) clock cycles [21], rather than every O(logKD) clock cycles (as is required for each

of the insert and delete operations), at the expense of an O(logKD) increase in the space-complexity.

 For the parallelization of the next task concerning the determination of the signal frequencies, the

space-complexity will possess an arithmetic component, denoted)P(
FRQA , of

)P(
FRQA = (L-1) ×S3 multipliers & L×S3 adders (57)

together with a memory component, denoted)P(
FRQM , of

)P(
FRQM ≈  1LKD  (58)

words, whilst the associated time-complexity, denoted)P(
FRQT , may be expressed as

)P(
FRQT ≈     1)-(L N/P/SK 3D  (59)

clock cycles, where ‘S3’ multi-stage filters are now operating in parallel in SIMD fashion upon the sets of FOIs

so that parameter S3 must be such that S3|KD with KD/S3 sets, each of N/P FOIs, being assigned to each

pipelined process. A memory-efficient implementation that avoids having to replicate the set of BIAs for each

version of the multi-stage filter may be achieved by setting S3 equal to L and processing L consecutive sets of

words, whilst the associated time-complexity for the combined task may be expressed as

)P(
PSDCONT 

 
1S8

PL (54)

clock cycles, where S1 processes are now assumed to be operating in parallel in SIMD fashion upon the L sets

of Hartley-space data with L/S1 data sets being assigned to each process.

 For the parallelization of the next task concerning the determination of the dominant bin locations for

each of the L SDRD-FFT output data sets, the space-complexity – just as for the sequential solution – will

possess a zero arithmetic component together with a memory component, denoted)P(
LOCM , of

)P(
LOCM ≈  )W2/P(K2L D  (55)

words, whilst the associated (worst-case) time-complexity, denoted)P(
LOCT , may be expressed as

)P(
LOCT ≈   D2D

2
Klog)K3P(LS5 





  (56)

clock cycles, where ‘S2’ processes are now assumed to be operating in parallel in SIMD fashion upon the L sets

of PSD data with L/S2 data sets being assigned to each process and where S2 is such that S2|L. Note, however,

that a highly-parallel alternative to having multiple sequential solutions running in parallel may be achieved for

each data set by pipelining the iterations, in a fine-grained fashion, so that updated versions of the Min-Heap

may be produced every O(1) clock cycles [21], rather than every O(logKD) clock cycles (as is required for each

of the insert and delete operations), at the expense of an O(logKD) increase in the space-complexity.

 For the parallelization of the next task concerning the determination of the signal frequencies, the

space-complexity will possess an arithmetic component, denoted)P(
FRQA , of

)P(
FRQA = (L-1) ×S3 multipliers & L×S3 adders (57)

together with a memory component, denoted)P(
FRQM , of

)P(
FRQM ≈  1LKD  (58)

words, whilst the associated time-complexity, denoted)P(
FRQT , may be expressed as

)P(
FRQT ≈     1)-(L N/P/SK 3D  (59)

clock cycles, where ‘S3’ multi-stage filters are now operating in parallel in SIMD fashion upon the sets of FOIs

so that parameter S3 must be such that S3|KD with KD/S3 sets, each of N/P FOIs, being assigned to each

pipelined process. A memory-efficient implementation that avoids having to replicate the set of BIAs for each

version of the multi-stage filter may be achieved by setting S3 equal to L and processing L consecutive sets of

words, whilst the associated time-complexity for the combined task may be expressed as

)P(
PSDCONT 

 
1S8

PL (54)

clock cycles, where S1 processes are now assumed to be operating in parallel in SIMD fashion upon the L sets

of Hartley-space data with L/S1 data sets being assigned to each process.

 For the parallelization of the next task concerning the determination of the dominant bin locations for

each of the L SDRD-FFT output data sets, the space-complexity – just as for the sequential solution – will

possess a zero arithmetic component together with a memory component, denoted)P(
LOCM , of

)P(
LOCM ≈  )W2/P(K2L D  (55)

words, whilst the associated (worst-case) time-complexity, denoted)P(
LOCT , may be expressed as

)P(
LOCT ≈   D2D

2
Klog)K3P(LS5 





  (56)

clock cycles, where ‘S2’ processes are now assumed to be operating in parallel in SIMD fashion upon the L sets

of PSD data with L/S2 data sets being assigned to each process and where S2 is such that S2|L. Note, however,

that a highly-parallel alternative to having multiple sequential solutions running in parallel may be achieved for

each data set by pipelining the iterations, in a fine-grained fashion, so that updated versions of the Min-Heap

may be produced every O(1) clock cycles [21], rather than every O(logKD) clock cycles (as is required for each

of the insert and delete operations), at the expense of an O(logKD) increase in the space-complexity.

 For the parallelization of the next task concerning the determination of the signal frequencies, the

space-complexity will possess an arithmetic component, denoted)P(
FRQA , of

)P(
FRQA = (L-1) ×S3 multipliers & L×S3 adders (57)

together with a memory component, denoted)P(
FRQM , of

)P(
FRQM ≈  1LKD  (58)

words, whilst the associated time-complexity, denoted)P(
FRQT , may be expressed as

)P(
FRQT ≈     1)-(L N/P/SK 3D  (59)

clock cycles, where ‘S3’ multi-stage filters are now operating in parallel in SIMD fashion upon the sets of FOIs

so that parameter S3 must be such that S3|KD with KD/S3 sets, each of N/P FOIs, being assigned to each

pipelined process. A memory-efficient implementation that avoids having to replicate the set of BIAs for each

version of the multi-stage filter may be achieved by setting S3 equal to L and processing L consecutive sets of

FOIs in parallel where, to avoid addressing conflicts: 1) the BIA used to feed the L multi-stage filters is

different for each with the BIA used by the n’th multi-stage filter (where n varies from 1 to L) being set to that

defined for the n’th SDRD-FFT, and 2) the BIA used by the m’th stage (where m varies from 1 to L-1) of the

n’th multi-stage filter is set to that defined for the k’th SDRD-FFT, where

 k(m,n) = (m+n-1) mod L + 1. (60)

In this way, the ordering of the L BIAs is simply rotated by one position with increasing n so that all the BIAs

may be used simultaneously for all L-1 stages of the L multi-stage filters. Care needs to be taken, however, to

ensure that when all stages of a given filter are successfully traversed the resulting set of L addresses is suitably

rotated to enable them to be stored in their correct order.

 For the last task of the final stage concerning the determination of the spectrum components, the low

space and time complexities for carrying out this task suggest that no additional parallelization is required so

that the solution described in Section 5.4 – which consists of a single pipelined process – is retained, this

possessing an arithmetic component, denoted)P(
SSPA , of

)P(
SSPA = 0 multipliers & L-1 adders (61)

together with a memory component, denoted)P(
SSPM , of

)P(
SSPM ≈ 3KD (62) words, whilst the associated time-complexity, denoted

)P(
SSPT , for carrying out the task may be expressed as

)P(
SSPT ≈ 2KD + log2L (63)

clock cycles – for the simple case where L is a radix-2 integer.

 Combining these complexity results, the space-complexity for carrying out the transform-space

processing in a coarse-grained parallel fashion involves an arithmetic component, denoted)P(
3STGA , of

)P(
3STGA =)P(

PSDCONA  +)P(
FRQA +)P(

SSPA

 = 8S1+(L-1)×S3 multipliers &

 12S1+(L×S3)+(L-1) adders (64)

together with a memory component, denoted)P(
3STGM , of

)P(
3STGM =)P(

PSDCONM  +)P(
LOCM +)P(

FRQM +)P(
SSPM

 ≈    )4L3(K)PL(W/112
1

D  (65)

words, whilst the associated time-complexity, denoted)P(
3STGT , for carrying out the task may be expressed as

FOIs in parallel where, to avoid addressing conflicts: 1) the BIA used to feed the L multi-stage filters is

different for each with the BIA used by the n’th multi-stage filter (where n varies from 1 to L) being set to that

defined for the n’th SDRD-FFT, and 2) the BIA used by the m’th stage (where m varies from 1 to L-1) of the

n’th multi-stage filter is set to that defined for the k’th SDRD-FFT, where

 k(m,n) = (m+n-1) mod L + 1. (60)

In this way, the ordering of the L BIAs is simply rotated by one position with increasing n so that all the BIAs

may be used simultaneously for all L-1 stages of the L multi-stage filters. Care needs to be taken, however, to

ensure that when all stages of a given filter are successfully traversed the resulting set of L addresses is suitably

rotated to enable them to be stored in their correct order.

 For the last task of the final stage concerning the determination of the spectrum components, the low

space and time complexities for carrying out this task suggest that no additional parallelization is required so

that the solution described in Section 5.4 – which consists of a single pipelined process – is retained, this

possessing an arithmetic component, denoted)P(
SSPA , of

)P(
SSPA = 0 multipliers & L-1 adders (61)

together with a memory component, denoted)P(
SSPM , of

)P(
SSPM ≈ 3KD (62) words, whilst the associated time-complexity, denoted

)P(
SSPT , for carrying out the task may be expressed as

)P(
SSPT ≈ 2KD + log2L (63)

clock cycles – for the simple case where L is a radix-2 integer.

 Combining these complexity results, the space-complexity for carrying out the transform-space

processing in a coarse-grained parallel fashion involves an arithmetic component, denoted)P(
3STGA , of

)P(
3STGA =)P(

PSDCONA  +)P(
FRQA +)P(

SSPA

 = 8S1+(L-1)×S3 multipliers &

 12S1+(L×S3)+(L-1) adders (64)

together with a memory component, denoted)P(
3STGM , of

)P(
3STGM =)P(

PSDCONM  +)P(
LOCM +)P(

FRQM +)P(
SSPM

 ≈    )4L3(K)PL(W/112
1

D  (65)

words, whilst the associated time-complexity, denoted)P(
3STGT , for carrying out the task may be expressed as

FOIs in parallel where, to avoid addressing conflicts: 1) the BIA used to feed the L multi-stage filters is

different for each with the BIA used by the n’th multi-stage filter (where n varies from 1 to L) being set to that

defined for the n’th SDRD-FFT, and 2) the BIA used by the m’th stage (where m varies from 1 to L-1) of the

n’th multi-stage filter is set to that defined for the k’th SDRD-FFT, where

 k(m,n) = (m+n-1) mod L + 1. (60)

In this way, the ordering of the L BIAs is simply rotated by one position with increasing n so that all the BIAs

may be used simultaneously for all L-1 stages of the L multi-stage filters. Care needs to be taken, however, to

ensure that when all stages of a given filter are successfully traversed the resulting set of L addresses is suitably

rotated to enable them to be stored in their correct order.

 For the last task of the final stage concerning the determination of the spectrum components, the low

space and time complexities for carrying out this task suggest that no additional parallelization is required so

that the solution described in Section 5.4 – which consists of a single pipelined process – is retained, this

possessing an arithmetic component, denoted)P(
SSPA , of

)P(
SSPA = 0 multipliers & L-1 adders (61)

together with a memory component, denoted)P(
SSPM , of

)P(
SSPM ≈ 3KD (62) words, whilst the associated time-complexity, denoted

)P(
SSPT , for carrying out the task may be expressed as

)P(
SSPT ≈ 2KD + log2L (63)

clock cycles – for the simple case where L is a radix-2 integer.

 Combining these complexity results, the space-complexity for carrying out the transform-space

processing in a coarse-grained parallel fashion involves an arithmetic component, denoted)P(
3STGA , of

)P(
3STGA =)P(

PSDCONA  +)P(
FRQA +)P(

SSPA

 = 8S1+(L-1)×S3 multipliers &

 12S1+(L×S3)+(L-1) adders (64)

together with a memory component, denoted)P(
3STGM , of

)P(
3STGM =)P(

PSDCONM  +)P(
LOCM +)P(

FRQM +)P(
SSPM

 ≈    )4L3(K)PL(W/112
1

D  (65)

words, whilst the associated time-complexity, denoted)P(
3STGT , for carrying out the task may be expressed as

FOIs in parallel where, to avoid addressing conflicts: 1) the BIA used to feed the L multi-stage filters is

different for each with the BIA used by the n’th multi-stage filter (where n varies from 1 to L) being set to that

defined for the n’th SDRD-FFT, and 2) the BIA used by the m’th stage (where m varies from 1 to L-1) of the

n’th multi-stage filter is set to that defined for the k’th SDRD-FFT, where

 k(m,n) = (m+n-1) mod L + 1. (60)

In this way, the ordering of the L BIAs is simply rotated by one position with increasing n so that all the BIAs

may be used simultaneously for all L-1 stages of the L multi-stage filters. Care needs to be taken, however, to

ensure that when all stages of a given filter are successfully traversed the resulting set of L addresses is suitably

rotated to enable them to be stored in their correct order.

 For the last task of the final stage concerning the determination of the spectrum components, the low

space and time complexities for carrying out this task suggest that no additional parallelization is required so

that the solution described in Section 5.4 – which consists of a single pipelined process – is retained, this

possessing an arithmetic component, denoted)P(
SSPA , of

)P(
SSPA = 0 multipliers & L-1 adders (61)

together with a memory component, denoted)P(
SSPM , of

)P(
SSPM ≈ 3KD (62) words, whilst the associated time-complexity, denoted

)P(
SSPT , for carrying out the task may be expressed as

)P(
SSPT ≈ 2KD + log2L (63)

clock cycles – for the simple case where L is a radix-2 integer.

 Combining these complexity results, the space-complexity for carrying out the transform-space

processing in a coarse-grained parallel fashion involves an arithmetic component, denoted)P(
3STGA , of

)P(
3STGA =)P(

PSDCONA  +)P(
FRQA +)P(

SSPA

 = 8S1+(L-1)×S3 multipliers &

 12S1+(L×S3)+(L-1) adders (64)

together with a memory component, denoted)P(
3STGM , of

)P(
3STGM =)P(

PSDCONM  +)P(
LOCM +)P(

FRQM +)P(
SSPM

 ≈    )4L3(K)PL(W/112
1

D  (65)

words, whilst the associated time-complexity, denoted)P(
3STGT , for carrying out the task may be expressed as

FOIs in parallel where, to avoid addressing conflicts: 1) the BIA used to feed the L multi-stage filters is

different for each with the BIA used by the n’th multi-stage filter (where n varies from 1 to L) being set to that

defined for the n’th SDRD-FFT, and 2) the BIA used by the m’th stage (where m varies from 1 to L-1) of the

n’th multi-stage filter is set to that defined for the k’th SDRD-FFT, where

 k(m,n) = (m+n-1) mod L + 1. (60)

In this way, the ordering of the L BIAs is simply rotated by one position with increasing n so that all the BIAs

may be used simultaneously for all L-1 stages of the L multi-stage filters. Care needs to be taken, however, to

ensure that when all stages of a given filter are successfully traversed the resulting set of L addresses is suitably

rotated to enable them to be stored in their correct order.

 For the last task of the final stage concerning the determination of the spectrum components, the low

space and time complexities for carrying out this task suggest that no additional parallelization is required so

that the solution described in Section 5.4 – which consists of a single pipelined process – is retained, this

possessing an arithmetic component, denoted)P(
SSPA , of

)P(
SSPA = 0 multipliers & L-1 adders (61)

together with a memory component, denoted)P(
SSPM , of

)P(
SSPM ≈ 3KD (62) words, whilst the associated time-complexity, denoted

)P(
SSPT , for carrying out the task may be expressed as

)P(
SSPT ≈ 2KD + log2L (63)

clock cycles – for the simple case where L is a radix-2 integer.

 Combining these complexity results, the space-complexity for carrying out the transform-space

processing in a coarse-grained parallel fashion involves an arithmetic component, denoted)P(
3STGA , of

)P(
3STGA =)P(

PSDCONA  +)P(
FRQA +)P(

SSPA

 = 8S1+(L-1)×S3 multipliers &

 12S1+(L×S3)+(L-1) adders (64)

together with a memory component, denoted)P(
3STGM , of

)P(
3STGM =)P(

PSDCONM  +)P(
LOCM +)P(

FRQM +)P(
SSPM

 ≈    )4L3(K)PL(W/112
1

D  (65)

words, whilst the associated time-complexity, denoted)P(
3STGT , for carrying out the task may be expressed as

FOIs in parallel where, to avoid addressing conflicts: 1) the BIA used to feed the L multi-stage filters is

different for each with the BIA used by the n’th multi-stage filter (where n varies from 1 to L) being set to that

defined for the n’th SDRD-FFT, and 2) the BIA used by the m’th stage (where m varies from 1 to L-1) of the

n’th multi-stage filter is set to that defined for the k’th SDRD-FFT, where

 k(m,n) = (m+n-1) mod L + 1. (60)

In this way, the ordering of the L BIAs is simply rotated by one position with increasing n so that all the BIAs

may be used simultaneously for all L-1 stages of the L multi-stage filters. Care needs to be taken, however, to

ensure that when all stages of a given filter are successfully traversed the resulting set of L addresses is suitably

rotated to enable them to be stored in their correct order.

 For the last task of the final stage concerning the determination of the spectrum components, the low

space and time complexities for carrying out this task suggest that no additional parallelization is required so

that the solution described in Section 5.4 – which consists of a single pipelined process – is retained, this

possessing an arithmetic component, denoted)P(
SSPA , of

)P(
SSPA = 0 multipliers & L-1 adders (61)

together with a memory component, denoted)P(
SSPM , of

)P(
SSPM ≈ 3KD (62) words, whilst the associated time-complexity, denoted

)P(
SSPT , for carrying out the task may be expressed as

)P(
SSPT ≈ 2KD + log2L (63)

clock cycles – for the simple case where L is a radix-2 integer.

 Combining these complexity results, the space-complexity for carrying out the transform-space

processing in a coarse-grained parallel fashion involves an arithmetic component, denoted)P(
3STGA , of

)P(
3STGA =)P(

PSDCONA  +)P(
FRQA +)P(

SSPA

 = 8S1+(L-1)×S3 multipliers &

 12S1+(L×S3)+(L-1) adders (64)

together with a memory component, denoted)P(
3STGM , of

)P(
3STGM =)P(

PSDCONM  +)P(
LOCM +)P(

FRQM +)P(
SSPM

 ≈    )4L3(K)PL(W/112
1

D  (65)

words, whilst the associated time-complexity, denoted)P(
3STGT , for carrying out the task may be expressed as

FOIs in parallel where, to avoid addressing conflicts: 1) the BIA used to feed the L multi-stage filters is

different for each with the BIA used by the n’th multi-stage filter (where n varies from 1 to L) being set to that

defined for the n’th SDRD-FFT, and 2) the BIA used by the m’th stage (where m varies from 1 to L-1) of the

n’th multi-stage filter is set to that defined for the k’th SDRD-FFT, where

 k(m,n) = (m+n-1) mod L + 1. (60)

In this way, the ordering of the L BIAs is simply rotated by one position with increasing n so that all the BIAs

may be used simultaneously for all L-1 stages of the L multi-stage filters. Care needs to be taken, however, to

ensure that when all stages of a given filter are successfully traversed the resulting set of L addresses is suitably

rotated to enable them to be stored in their correct order.

 For the last task of the final stage concerning the determination of the spectrum components, the low

space and time complexities for carrying out this task suggest that no additional parallelization is required so

that the solution described in Section 5.4 – which consists of a single pipelined process – is retained, this

possessing an arithmetic component, denoted)P(
SSPA , of

)P(
SSPA = 0 multipliers & L-1 adders (61)

together with a memory component, denoted)P(
SSPM , of

)P(
SSPM ≈ 3KD (62) words, whilst the associated time-complexity, denoted

)P(
SSPT , for carrying out the task may be expressed as

)P(
SSPT ≈ 2KD + log2L (63)

clock cycles – for the simple case where L is a radix-2 integer.

 Combining these complexity results, the space-complexity for carrying out the transform-space

processing in a coarse-grained parallel fashion involves an arithmetic component, denoted)P(
3STGA , of

)P(
3STGA =)P(

PSDCONA  +)P(
FRQA +)P(

SSPA

 = 8S1+(L-1)×S3 multipliers &

 12S1+(L×S3)+(L-1) adders (64)

together with a memory component, denoted)P(
3STGM , of

)P(
3STGM =)P(

PSDCONM  +)P(
LOCM +)P(

FRQM +)P(
SSPM

 ≈    )4L3(K)PL(W/112
1

D  (65)

words, whilst the associated time-complexity, denoted)P(
3STGT , for carrying out the task may be expressed as

FOIs in parallel where, to avoid addressing conflicts: 1) the BIA used to feed the L multi-stage filters is

different for each with the BIA used by the n’th multi-stage filter (where n varies from 1 to L) being set to that

defined for the n’th SDRD-FFT, and 2) the BIA used by the m’th stage (where m varies from 1 to L-1) of the

n’th multi-stage filter is set to that defined for the k’th SDRD-FFT, where

 k(m,n) = (m+n-1) mod L + 1. (60)

In this way, the ordering of the L BIAs is simply rotated by one position with increasing n so that all the BIAs

may be used simultaneously for all L-1 stages of the L multi-stage filters. Care needs to be taken, however, to

ensure that when all stages of a given filter are successfully traversed the resulting set of L addresses is suitably

rotated to enable them to be stored in their correct order.

 For the last task of the final stage concerning the determination of the spectrum components, the low

space and time complexities for carrying out this task suggest that no additional parallelization is required so

that the solution described in Section 5.4 – which consists of a single pipelined process – is retained, this

possessing an arithmetic component, denoted)P(
SSPA , of

)P(
SSPA = 0 multipliers & L-1 adders (61)

together with a memory component, denoted)P(
SSPM , of

)P(
SSPM ≈ 3KD (62) words, whilst the associated time-complexity, denoted

)P(
SSPT , for carrying out the task may be expressed as

)P(
SSPT ≈ 2KD + log2L (63)

clock cycles – for the simple case where L is a radix-2 integer.

 Combining these complexity results, the space-complexity for carrying out the transform-space

processing in a coarse-grained parallel fashion involves an arithmetic component, denoted)P(
3STGA , of

)P(
3STGA =)P(

PSDCONA  +)P(
FRQA +)P(

SSPA

 = 8S1+(L-1)×S3 multipliers &

 12S1+(L×S3)+(L-1) adders (64)

together with a memory component, denoted)P(
3STGM , of

)P(
3STGM =)P(

PSDCONM  +)P(
LOCM +)P(

FRQM +)P(
SSPM

 ≈    )4L3(K)PL(W/112
1

D  (65)

words, whilst the associated time-complexity, denoted)P(
3STGT , for carrying out the task may be expressed as

FOIs in parallel where, to avoid addressing conflicts: 1) the BIA used to feed the L multi-stage filters is

different for each with the BIA used by the n’th multi-stage filter (where n varies from 1 to L) being set to that

defined for the n’th SDRD-FFT, and 2) the BIA used by the m’th stage (where m varies from 1 to L-1) of the

n’th multi-stage filter is set to that defined for the k’th SDRD-FFT, where

 k(m,n) = (m+n-1) mod L + 1. (60)

In this way, the ordering of the L BIAs is simply rotated by one position with increasing n so that all the BIAs

may be used simultaneously for all L-1 stages of the L multi-stage filters. Care needs to be taken, however, to

ensure that when all stages of a given filter are successfully traversed the resulting set of L addresses is suitably

rotated to enable them to be stored in their correct order.

 For the last task of the final stage concerning the determination of the spectrum components, the low

space and time complexities for carrying out this task suggest that no additional parallelization is required so

that the solution described in Section 5.4 – which consists of a single pipelined process – is retained, this

possessing an arithmetic component, denoted)P(
SSPA , of

)P(
SSPA = 0 multipliers & L-1 adders (61)

together with a memory component, denoted)P(
SSPM , of

)P(
SSPM ≈ 3KD (62) words, whilst the associated time-complexity, denoted

)P(
SSPT , for carrying out the task may be expressed as

)P(
SSPT ≈ 2KD + log2L (63)

clock cycles – for the simple case where L is a radix-2 integer.

 Combining these complexity results, the space-complexity for carrying out the transform-space

processing in a coarse-grained parallel fashion involves an arithmetic component, denoted)P(
3STGA , of

)P(
3STGA =)P(

PSDCONA  +)P(
FRQA +)P(

SSPA

 = 8S1+(L-1)×S3 multipliers &

 12S1+(L×S3)+(L-1) adders (64)

together with a memory component, denoted)P(
3STGM , of

)P(
3STGM =)P(

PSDCONM  +)P(
LOCM +)P(

FRQM +)P(
SSPM

 ≈    )4L3(K)PL(W/112
1

D  (65)

words, whilst the associated time-complexity, denoted)P(
3STGT , for carrying out the task may be expressed as

FOIs in parallel where, to avoid addressing conflicts: 1) the BIA used to feed the L multi-stage filters is

different for each with the BIA used by the n’th multi-stage filter (where n varies from 1 to L) being set to that

defined for the n’th SDRD-FFT, and 2) the BIA used by the m’th stage (where m varies from 1 to L-1) of the

n’th multi-stage filter is set to that defined for the k’th SDRD-FFT, where

 k(m,n) = (m+n-1) mod L + 1. (60)

In this way, the ordering of the L BIAs is simply rotated by one position with increasing n so that all the BIAs

may be used simultaneously for all L-1 stages of the L multi-stage filters. Care needs to be taken, however, to

ensure that when all stages of a given filter are successfully traversed the resulting set of L addresses is suitably

rotated to enable them to be stored in their correct order.

 For the last task of the final stage concerning the determination of the spectrum components, the low

space and time complexities for carrying out this task suggest that no additional parallelization is required so

that the solution described in Section 5.4 – which consists of a single pipelined process – is retained, this

possessing an arithmetic component, denoted)P(
SSPA , of

)P(
SSPA = 0 multipliers & L-1 adders (61)

together with a memory component, denoted)P(
SSPM , of

)P(
SSPM ≈ 3KD (62) words, whilst the associated time-complexity, denoted

)P(
SSPT , for carrying out the task may be expressed as

)P(
SSPT ≈ 2KD + log2L (63)

clock cycles – for the simple case where L is a radix-2 integer.

 Combining these complexity results, the space-complexity for carrying out the transform-space

processing in a coarse-grained parallel fashion involves an arithmetic component, denoted)P(
3STGA , of

)P(
3STGA =)P(

PSDCONA  +)P(
FRQA +)P(

SSPA

 = 8S1+(L-1)×S3 multipliers &

 12S1+(L×S3)+(L-1) adders (64)

together with a memory component, denoted)P(
3STGM , of

)P(
3STGM =)P(

PSDCONM  +)P(
LOCM +)P(

FRQM +)P(
SSPM

 ≈    )4L3(K)PL(W/112
1

D  (65)

words, whilst the associated time-complexity, denoted)P(
3STGT , for carrying out the task may be expressed as

FOIs in parallel where, to avoid addressing conflicts: 1) the BIA used to feed the L multi-stage filters is

different for each with the BIA used by the n’th multi-stage filter (where n varies from 1 to L) being set to that

defined for the n’th SDRD-FFT, and 2) the BIA used by the m’th stage (where m varies from 1 to L-1) of the

n’th multi-stage filter is set to that defined for the k’th SDRD-FFT, where

 k(m,n) = (m+n-1) mod L + 1. (60)

In this way, the ordering of the L BIAs is simply rotated by one position with increasing n so that all the BIAs

may be used simultaneously for all L-1 stages of the L multi-stage filters. Care needs to be taken, however, to

ensure that when all stages of a given filter are successfully traversed the resulting set of L addresses is suitably

rotated to enable them to be stored in their correct order.

 For the last task of the final stage concerning the determination of the spectrum components, the low

space and time complexities for carrying out this task suggest that no additional parallelization is required so

that the solution described in Section 5.4 – which consists of a single pipelined process – is retained, this

possessing an arithmetic component, denoted)P(
SSPA , of

)P(
SSPA = 0 multipliers & L-1 adders (61)

together with a memory component, denoted)P(
SSPM , of

)P(
SSPM ≈ 3KD (62) words, whilst the associated time-complexity, denoted

)P(
SSPT , for carrying out the task may be expressed as

)P(
SSPT ≈ 2KD + log2L (63)

clock cycles – for the simple case where L is a radix-2 integer.

 Combining these complexity results, the space-complexity for carrying out the transform-space

processing in a coarse-grained parallel fashion involves an arithmetic component, denoted)P(
3STGA , of

)P(
3STGA =)P(

PSDCONA  +)P(
FRQA +)P(

SSPA

 = 8S1+(L-1)×S3 multipliers &

 12S1+(L×S3)+(L-1) adders (64)

together with a memory component, denoted)P(
3STGM , of

)P(
3STGM =)P(

PSDCONM  +)P(
LOCM +)P(

FRQM +)P(
SSPM

 ≈    )4L3(K)PL(W/112
1

D  (65)

words, whilst the associated time-complexity, denoted)P(
3STGT , for carrying out the task may be expressed as

FOIs in parallel where, to avoid addressing conflicts: 1) the BIA used to feed the L multi-stage filters is

different for each with the BIA used by the n’th multi-stage filter (where n varies from 1 to L) being set to that

defined for the n’th SDRD-FFT, and 2) the BIA used by the m’th stage (where m varies from 1 to L-1) of the

n’th multi-stage filter is set to that defined for the k’th SDRD-FFT, where

 k(m,n) = (m+n-1) mod L + 1. (60)

In this way, the ordering of the L BIAs is simply rotated by one position with increasing n so that all the BIAs

may be used simultaneously for all L-1 stages of the L multi-stage filters. Care needs to be taken, however, to

ensure that when all stages of a given filter are successfully traversed the resulting set of L addresses is suitably

rotated to enable them to be stored in their correct order.

 For the last task of the final stage concerning the determination of the spectrum components, the low

space and time complexities for carrying out this task suggest that no additional parallelization is required so

that the solution described in Section 5.4 – which consists of a single pipelined process – is retained, this

possessing an arithmetic component, denoted)P(
SSPA , of

)P(
SSPA = 0 multipliers & L-1 adders (61)

together with a memory component, denoted)P(
SSPM , of

)P(
SSPM ≈ 3KD (62) words, whilst the associated time-complexity, denoted

)P(
SSPT , for carrying out the task may be expressed as

)P(
SSPT ≈ 2KD + log2L (63)

clock cycles – for the simple case where L is a radix-2 integer.

 Combining these complexity results, the space-complexity for carrying out the transform-space

processing in a coarse-grained parallel fashion involves an arithmetic component, denoted)P(
3STGA , of

)P(
3STGA =)P(

PSDCONA  +)P(
FRQA +)P(

SSPA

 = 8S1+(L-1)×S3 multipliers &

 12S1+(L×S3)+(L-1) adders (64)

together with a memory component, denoted)P(
3STGM , of

)P(
3STGM =)P(

PSDCONM  +)P(
LOCM +)P(

FRQM +)P(
SSPM

 ≈    )4L3(K)PL(W/112
1

D  (65)

words, whilst the associated time-complexity, denoted)P(
3STGT , for carrying out the task may be expressed as

FOIs in parallel where, to avoid addressing conflicts: 1) the BIA used to feed the L multi-stage filters is

different for each with the BIA used by the n’th multi-stage filter (where n varies from 1 to L) being set to that

defined for the n’th SDRD-FFT, and 2) the BIA used by the m’th stage (where m varies from 1 to L-1) of the

n’th multi-stage filter is set to that defined for the k’th SDRD-FFT, where

 k(m,n) = (m+n-1) mod L + 1. (60)

In this way, the ordering of the L BIAs is simply rotated by one position with increasing n so that all the BIAs

may be used simultaneously for all L-1 stages of the L multi-stage filters. Care needs to be taken, however, to

ensure that when all stages of a given filter are successfully traversed the resulting set of L addresses is suitably

rotated to enable them to be stored in their correct order.

 For the last task of the final stage concerning the determination of the spectrum components, the low

space and time complexities for carrying out this task suggest that no additional parallelization is required so

that the solution described in Section 5.4 – which consists of a single pipelined process – is retained, this

possessing an arithmetic component, denoted)P(
SSPA , of

)P(
SSPA = 0 multipliers & L-1 adders (61)

together with a memory component, denoted)P(
SSPM , of

)P(
SSPM ≈ 3KD (62) words, whilst the associated time-complexity, denoted

)P(
SSPT , for carrying out the task may be expressed as

)P(
SSPT ≈ 2KD + log2L (63)

clock cycles – for the simple case where L is a radix-2 integer.

 Combining these complexity results, the space-complexity for carrying out the transform-space

processing in a coarse-grained parallel fashion involves an arithmetic component, denoted)P(
3STGA , of

)P(
3STGA =)P(

PSDCONA  +)P(
FRQA +)P(

SSPA

 = 8S1+(L-1)×S3 multipliers &

 12S1+(L×S3)+(L-1) adders (64)

together with a memory component, denoted)P(
3STGM , of

)P(
3STGM =)P(

PSDCONM  +)P(
LOCM +)P(

FRQM +)P(
SSPM

 ≈    )4L3(K)PL(W/112
1

D  (65)

words, whilst the associated time-complexity, denoted)P(
3STGT , for carrying out the task may be expressed as

FOIs in parallel where, to avoid addressing conflicts: 1) the BIA used to feed the L multi-stage filters is

different for each with the BIA used by the n’th multi-stage filter (where n varies from 1 to L) being set to that

defined for the n’th SDRD-FFT, and 2) the BIA used by the m’th stage (where m varies from 1 to L-1) of the

n’th multi-stage filter is set to that defined for the k’th SDRD-FFT, where

 k(m,n) = (m+n-1) mod L + 1. (60)

In this way, the ordering of the L BIAs is simply rotated by one position with increasing n so that all the BIAs

may be used simultaneously for all L-1 stages of the L multi-stage filters. Care needs to be taken, however, to

ensure that when all stages of a given filter are successfully traversed the resulting set of L addresses is suitably

rotated to enable them to be stored in their correct order.

 For the last task of the final stage concerning the determination of the spectrum components, the low

space and time complexities for carrying out this task suggest that no additional parallelization is required so

that the solution described in Section 5.4 – which consists of a single pipelined process – is retained, this

possessing an arithmetic component, denoted)P(
SSPA , of

)P(
SSPA = 0 multipliers & L-1 adders (61)

together with a memory component, denoted)P(
SSPM , of

)P(
SSPM ≈ 3KD (62) words, whilst the associated time-complexity, denoted

)P(
SSPT , for carrying out the task may be expressed as

)P(
SSPT ≈ 2KD + log2L (63)

clock cycles – for the simple case where L is a radix-2 integer.

 Combining these complexity results, the space-complexity for carrying out the transform-space

processing in a coarse-grained parallel fashion involves an arithmetic component, denoted)P(
3STGA , of

)P(
3STGA =)P(

PSDCONA  +)P(
FRQA +)P(

SSPA

 = 8S1+(L-1)×S3 multipliers &

 12S1+(L×S3)+(L-1) adders (64)

together with a memory component, denoted)P(
3STGM , of

)P(
3STGM =)P(

PSDCONM  +)P(
LOCM +)P(

FRQM +)P(
SSPM

 ≈    )4L3(K)PL(W/112
1

D  (65)

words, whilst the associated time-complexity, denoted)P(
3STGT , for carrying out the task may be expressed as

FOIs in parallel where, to avoid addressing conflicts: 1) the BIA used to feed the L multi-stage filters is

different for each with the BIA used by the n’th multi-stage filter (where n varies from 1 to L) being set to that

defined for the n’th SDRD-FFT, and 2) the BIA used by the m’th stage (where m varies from 1 to L-1) of the

n’th multi-stage filter is set to that defined for the k’th SDRD-FFT, where

 k(m,n) = (m+n-1) mod L + 1. (60)

In this way, the ordering of the L BIAs is simply rotated by one position with increasing n so that all the BIAs

may be used simultaneously for all L-1 stages of the L multi-stage filters. Care needs to be taken, however, to

ensure that when all stages of a given filter are successfully traversed the resulting set of L addresses is suitably

rotated to enable them to be stored in their correct order.

 For the last task of the final stage concerning the determination of the spectrum components, the low

space and time complexities for carrying out this task suggest that no additional parallelization is required so

that the solution described in Section 5.4 – which consists of a single pipelined process – is retained, this

possessing an arithmetic component, denoted)P(
SSPA , of

)P(
SSPA = 0 multipliers & L-1 adders (61)

together with a memory component, denoted)P(
SSPM , of

)P(
SSPM ≈ 3KD (62) words, whilst the associated time-complexity, denoted

)P(
SSPT , for carrying out the task may be expressed as

)P(
SSPT ≈ 2KD + log2L (63)

clock cycles – for the simple case where L is a radix-2 integer.

 Combining these complexity results, the space-complexity for carrying out the transform-space

processing in a coarse-grained parallel fashion involves an arithmetic component, denoted)P(
3STGA , of

)P(
3STGA =)P(

PSDCONA  +)P(
FRQA +)P(

SSPA

 = 8S1+(L-1)×S3 multipliers &

 12S1+(L×S3)+(L-1) adders (64)

together with a memory component, denoted)P(
3STGM , of

)P(
3STGM =)P(

PSDCONM  +)P(
LOCM +)P(

FRQM +)P(
SSPM

 ≈    )4L3(K)PL(W/112
1

D  (65)

words, whilst the associated time-complexity, denoted)P(
3STGT , for carrying out the task may be expressed as

FOIs in parallel where, to avoid addressing conflicts: 1) the BIA used to feed the L multi-stage filters is

different for each with the BIA used by the n’th multi-stage filter (where n varies from 1 to L) being set to that

defined for the n’th SDRD-FFT, and 2) the BIA used by the m’th stage (where m varies from 1 to L-1) of the

n’th multi-stage filter is set to that defined for the k’th SDRD-FFT, where

 k(m,n) = (m+n-1) mod L + 1. (60)

In this way, the ordering of the L BIAs is simply rotated by one position with increasing n so that all the BIAs

may be used simultaneously for all L-1 stages of the L multi-stage filters. Care needs to be taken, however, to

ensure that when all stages of a given filter are successfully traversed the resulting set of L addresses is suitably

rotated to enable them to be stored in their correct order.

 For the last task of the final stage concerning the determination of the spectrum components, the low

space and time complexities for carrying out this task suggest that no additional parallelization is required so

that the solution described in Section 5.4 – which consists of a single pipelined process – is retained, this

possessing an arithmetic component, denoted)P(
SSPA , of

)P(
SSPA = 0 multipliers & L-1 adders (61)

together with a memory component, denoted)P(
SSPM , of

)P(
SSPM ≈ 3KD (62) words, whilst the associated time-complexity, denoted

)P(
SSPT , for carrying out the task may be expressed as

)P(
SSPT ≈ 2KD + log2L (63)

clock cycles – for the simple case where L is a radix-2 integer.

 Combining these complexity results, the space-complexity for carrying out the transform-space

processing in a coarse-grained parallel fashion involves an arithmetic component, denoted)P(
3STGA , of

)P(
3STGA =)P(

PSDCONA  +)P(
FRQA +)P(

SSPA

 = 8S1+(L-1)×S3 multipliers &

 12S1+(L×S3)+(L-1) adders (64)

together with a memory component, denoted)P(
3STGM , of

)P(
3STGM =)P(

PSDCONM  +)P(
LOCM +)P(

FRQM +)P(
SSPM

 ≈    )4L3(K)PL(W/112
1

D  (65)

words, whilst the associated time-complexity, denoted)P(
3STGT , for carrying out the task may be expressed as

FOIs in parallel where, to avoid addressing conflicts: 1) the BIA used to feed the L multi-stage filters is

different for each with the BIA used by the n’th multi-stage filter (where n varies from 1 to L) being set to that

defined for the n’th SDRD-FFT, and 2) the BIA used by the m’th stage (where m varies from 1 to L-1) of the

n’th multi-stage filter is set to that defined for the k’th SDRD-FFT, where

 k(m,n) = (m+n-1) mod L + 1. (60)

In this way, the ordering of the L BIAs is simply rotated by one position with increasing n so that all the BIAs

may be used simultaneously for all L-1 stages of the L multi-stage filters. Care needs to be taken, however, to

ensure that when all stages of a given filter are successfully traversed the resulting set of L addresses is suitably

rotated to enable them to be stored in their correct order.

 For the last task of the final stage concerning the determination of the spectrum components, the low

space and time complexities for carrying out this task suggest that no additional parallelization is required so

that the solution described in Section 5.4 – which consists of a single pipelined process – is retained, this

possessing an arithmetic component, denoted)P(
SSPA , of

)P(
SSPA = 0 multipliers & L-1 adders (61)

together with a memory component, denoted)P(
SSPM , of

)P(
SSPM ≈ 3KD (62) words, whilst the associated time-complexity, denoted

)P(
SSPT , for carrying out the task may be expressed as

)P(
SSPT ≈ 2KD + log2L (63)

clock cycles – for the simple case where L is a radix-2 integer.

 Combining these complexity results, the space-complexity for carrying out the transform-space

processing in a coarse-grained parallel fashion involves an arithmetic component, denoted)P(
3STGA , of

)P(
3STGA =)P(

PSDCONA  +)P(
FRQA +)P(

SSPA

 = 8S1+(L-1)×S3 multipliers &

 12S1+(L×S3)+(L-1) adders (64)

together with a memory component, denoted)P(
3STGM , of

)P(
3STGM =)P(

PSDCONM  +)P(
LOCM +)P(

FRQM +)P(
SSPM

 ≈    )4L3(K)PL(W/112
1

D  (65)

words, whilst the associated time-complexity, denoted)P(
3STGT , for carrying out the task may be expressed as

)P(
3STGT =)P(

PSDCONT  +)P(
LOCT +)P(

FRQT +)P(
SSPT

 ≈  
1S8

PL +     N/P/SK 3D  + (2KD+log2L)

 +   D2D
2

Klog)K3P(LS5 




  (66)

clock cycles.

6.3 Discussion

 This section has provided space and time complexity results for parallel versions of all three stages of

the processing chain, with the results for the first two stages concerning the data-space processing and the

RFHTs being combined (Eqtns. 49 to 51) due to the overlapping of their operations and those for the last stage

concerning the transform-space processing (Eqtns. 64 to 66) being based upon each of the individual tasks

being completed before its successor can commence – although complexity results for the first two tasks

concerning the data conversion and PSD estimation routines are combined via the pipelining of their

operations. As a result, for the case of interest where the parameters L, KD, P and N are such that L << KD << P

<< N, the overall time-complexity is of 


















 

3
D

2
D

1 S
)P/N(KS

Klog
S

Plog)PL(O

 (67)

where S1, S2 and S3 are the parallelization parameters, which

 














3
D S

)P/N(KO (68)

when the performance-related parameters L and P are fixed and the size-related parameters N and KD are

allowed to increase, and

 












 

2
D

1 S
Klog

S
Plog)PL(O (69)

when instead the parameters N and KD are fixed and the parameters L and P are allowed to increase.

 Note also that the block-based nature of its operation enables arbitrary large transforms to be realized

through the replication of silicon resources by having multiple sFFT’s applied to consecutive input data sets, in

turn, so as to produce interleaved output data sets.

7. A Detailed Example: 2M-Point Real-Data Sparse FFT
 A parameterized model has been produced in MatLab [32] for evaluating the timing and resource

requirements which, for a given set of constraints relating to the data set refresh rate (and, equivalently, the

)P(
3STGT =)P(

PSDCONT  +)P(
LOCT +)P(

FRQT +)P(
SSPT

 ≈  
1S8

PL +     N/P/SK 3D  + (2KD+log2L)

 +   D2D
2

Klog)K3P(LS5 




  (66)

clock cycles.

6.3 Discussion

 This section has provided space and time complexity results for parallel versions of all three stages of

the processing chain, with the results for the first two stages concerning the data-space processing and the

RFHTs being combined (Eqtns. 49 to 51) due to the overlapping of their operations and those for the last stage

concerning the transform-space processing (Eqtns. 64 to 66) being based upon each of the individual tasks

being completed before its successor can commence – although complexity results for the first two tasks

concerning the data conversion and PSD estimation routines are combined via the pipelining of their

operations. As a result, for the case of interest where the parameters L, KD, P and N are such that L << KD << P

<< N, the overall time-complexity is of 


















 

3
D

2
D

1 S
)P/N(KS

Klog
S

Plog)PL(O

 (67)

where S1, S2 and S3 are the parallelization parameters, which

 














3
D S

)P/N(KO (68)

when the performance-related parameters L and P are fixed and the size-related parameters N and KD are

allowed to increase, and

 












 

2
D

1 S
Klog

S
Plog)PL(O (69)

when instead the parameters N and KD are fixed and the parameters L and P are allowed to increase.

 Note also that the block-based nature of its operation enables arbitrary large transforms to be realized

through the replication of silicon resources by having multiple sFFT’s applied to consecutive input data sets, in

turn, so as to produce interleaved output data sets.

7. A Detailed Example: 2M-Point Real-Data Sparse FFT
 A parameterized model has been produced in MatLab [32] for evaluating the timing and resource

requirements which, for a given set of constraints relating to the data set refresh rate (and, equivalently, the

)P(
SSPT

Volume 1 | Issue 2 | 84OA J Applied Sci Technol, 2023

processing and the RFHTs being combined (Eqtns. 49 to 51) due
to the overlapping of their operations and those for the last stage
concerning the transform-space processing (Eqtns. 64 to 66)
being based upon each of the individual tasks being completed
before its successor can commence – although complexity
results for the first two tasks concerning the data conversion
and PSD estimation routines are combined via the pipelining of
their operations. As a result, for the case of interest where the
parameters L, KD, P and N are such that L << KD << P << N, the
overall time-complexity is of 				 	
	

where S1, S2 and S3 are the parallelization parameters, which

when the performance-related parameters L and P are fixed and
the size-related parameters N and KD are allowed to increase,
and

when instead the parameters N and KD are fixed and the
parameters L and P are allowed to increase.

Note also that the block based nature of its operation enables
arbitrary large transforms to be realized through the replication
of silicon resources by having multiple sFFT’s applied to
consecutive input data sets, in turn, so as to produce interleaved
output data sets.

7. A Detailed Example: 2M-Point Real-Data Sparse FFT
A parameterized model has been produced in MatLab [32] for
evaluating the timing and resource requirements which, for
a given set of constraints relating to the data set refresh rate
(and, equivalently, the update period) and the available silicon
resources, enables solutions to be identified which are able to
meet those constraints and thus to be actually realized. A typical
parameter set is now described, based upon a hypothetical FPGA
implementation, consisting of:
1) sampling rate of

where the samples are real-valued (assumed here to be 18-bit
integers);
2) FPGA clock rate of

3) input data set comprising

real-valued samples, leading to a real-data sFFT of ~ 2M points
(only one half of which are independent, making problem
computationally equivalent to 1M-point complex-data sFFT);
4) SDRD-FFT of length

which after transform-domain conversion yields 8K complex-
valued FFT outputs;
5) maximum number of dominant signal frequencies of

6) number of SDRD-FFTs – each carried out by means of the
RFHT – to be given by

and, finally,

7) parameter ‘α’ relating to the KD-element Min-Heap data
structure of Section 5.2 to be given by

so as to yield latency results consistent with those derived for
a data structure of length 16K [28] whereby each ‘insert’ and
‘delete’ operation was catered for with just 16 clock cycles.

The data set refresh rate, FR, which has already been defined as
the rate at which each new input data set is transferred from the
simple ADC-based sampling system to the DSM, dictates in turn
the corresponding update period, PU, which for this example is
given by
		 				

clock cycles. Thus, for real-time operation of the proposed block-
based solution, this update period must be able to accommodate
the execution of the three stages of the processing chain as
described in Sections 3 to 5, namely: 1) the derivation of the
multiple WSRG data sets, followed by 2) the carrying out of
the SDRD FFTs upon the data sets, and 3) the construction of
the sparse spectrum from the processing of the resulting sets of
SDRD FFT outputs.

The model showed that an attractive solution could be found
by setting the parallelization parameters S1, S2 and S3 to values
of 2, 4 and 4 (i.e. S3 = L), respectively, where the constraints
are such that S1|L, S2|L and S3|KD, so that: 1) the data-space
processing, followed by the RFHTs, the Hartley-space to Fourier
space conversion and the PSD estimation are each partitioned
into two parallel processing streams, whilst 2) the dominant bin
location and signal frequency estimation of the transform-space
processing are each partitioned into four parallel processing
streams – as illustrated in Fig. 8. This level of coarse-grained
parallelism, combined with the fine-grained parallelism already
achieved via the use of partitioned memory, enables the
computation of the 2M point real data sFFT to be carried out
in an efficient fashion by means of the proposed design with
512 dominant spectrum outputs being produced for each new
input data set in ~ 95.8×103 clock cycles, which with a 100 MHz
clock rate equates to a latency of ~ 0.96 millisecond (ms). This
is less than the limit imposed by the update period of Eqtn. 77,
as required for a realizable solution, yielding a safety margin of
~ 8.7%. This performance, which involves the production and
processing of 32K low resolution spectral samples in order to
compute the dominant outputs from the 1M independent outputs

)P(
3STGT =)P(

PSDCONT  +)P(
LOCT +)P(

FRQT +)P(
SSPT

 ≈  
1S8

PL +     N/P/SK 3D  + (2KD+log2L)

 +   D2D
2

Klog)K3P(LS5 




  (66)

clock cycles.

6.3 Discussion

 This section has provided space and time complexity results for parallel versions of all three stages of

the processing chain, with the results for the first two stages concerning the data-space processing and the

RFHTs being combined (Eqtns. 49 to 51) due to the overlapping of their operations and those for the last stage

concerning the transform-space processing (Eqtns. 64 to 66) being based upon each of the individual tasks

being completed before its successor can commence – although complexity results for the first two tasks

concerning the data conversion and PSD estimation routines are combined via the pipelining of their

operations. As a result, for the case of interest where the parameters L, KD, P and N are such that L << KD << P

<< N, the overall time-complexity is of 


















 

3
D

2
D

1 S
)P/N(KS

Klog
S

Plog)PL(O

 (67)

where S1, S2 and S3 are the parallelization parameters, which

 














3
D S

)P/N(KO (68)

when the performance-related parameters L and P are fixed and the size-related parameters N and KD are

allowed to increase, and

 












 

2
D

1 S
Klog

S
Plog)PL(O (69)

when instead the parameters N and KD are fixed and the parameters L and P are allowed to increase.

 Note also that the block-based nature of its operation enables arbitrary large transforms to be realized

through the replication of silicon resources by having multiple sFFT’s applied to consecutive input data sets, in

turn, so as to produce interleaved output data sets.

7. A Detailed Example: 2M-Point Real-Data Sparse FFT
 A parameterized model has been produced in MatLab [32] for evaluating the timing and resource

requirements which, for a given set of constraints relating to the data set refresh rate (and, equivalently, the

)P(
3STGT =)P(

PSDCONT  +)P(
LOCT +)P(

FRQT +)P(
SSPT

 ≈  
1S8

PL +     N/P/SK 3D  + (2KD+log2L)

 +   D2D
2

Klog)K3P(LS5 




  (66)

clock cycles.

6.3 Discussion

 This section has provided space and time complexity results for parallel versions of all three stages of

the processing chain, with the results for the first two stages concerning the data-space processing and the

RFHTs being combined (Eqtns. 49 to 51) due to the overlapping of their operations and those for the last stage

concerning the transform-space processing (Eqtns. 64 to 66) being based upon each of the individual tasks

being completed before its successor can commence – although complexity results for the first two tasks

concerning the data conversion and PSD estimation routines are combined via the pipelining of their

operations. As a result, for the case of interest where the parameters L, KD, P and N are such that L << KD << P

<< N, the overall time-complexity is of 


















 

3
D

2
D

1 S
)P/N(KS

Klog
S

Plog)PL(O

 (67)

where S1, S2 and S3 are the parallelization parameters, which

 














3
D S

)P/N(KO (68)

when the performance-related parameters L and P are fixed and the size-related parameters N and KD are

allowed to increase, and

 












 

2
D

1 S
Klog

S
Plog)PL(O (69)

when instead the parameters N and KD are fixed and the parameters L and P are allowed to increase.

 Note also that the block-based nature of its operation enables arbitrary large transforms to be realized

through the replication of silicon resources by having multiple sFFT’s applied to consecutive input data sets, in

turn, so as to produce interleaved output data sets.

7. A Detailed Example: 2M-Point Real-Data Sparse FFT
 A parameterized model has been produced in MatLab [32] for evaluating the timing and resource

requirements which, for a given set of constraints relating to the data set refresh rate (and, equivalently, the

)P(
3STGT =)P(

PSDCONT  +)P(
LOCT +)P(

FRQT +)P(
SSPT

 ≈  
1S8

PL +     N/P/SK 3D  + (2KD+log2L)

 +   D2D
2

Klog)K3P(LS5 




  (66)

clock cycles.

6.3 Discussion

 This section has provided space and time complexity results for parallel versions of all three stages of

the processing chain, with the results for the first two stages concerning the data-space processing and the

RFHTs being combined (Eqtns. 49 to 51) due to the overlapping of their operations and those for the last stage

concerning the transform-space processing (Eqtns. 64 to 66) being based upon each of the individual tasks

being completed before its successor can commence – although complexity results for the first two tasks

concerning the data conversion and PSD estimation routines are combined via the pipelining of their

operations. As a result, for the case of interest where the parameters L, KD, P and N are such that L << KD << P

<< N, the overall time-complexity is of 


















 

3
D

2
D

1 S
)P/N(KS

Klog
S

Plog)PL(O

 (67)

where S1, S2 and S3 are the parallelization parameters, which

 














3
D S

)P/N(KO (68)

when the performance-related parameters L and P are fixed and the size-related parameters N and KD are

allowed to increase, and

 












 

2
D

1 S
Klog

S
Plog)PL(O (69)

when instead the parameters N and KD are fixed and the parameters L and P are allowed to increase.

 Note also that the block-based nature of its operation enables arbitrary large transforms to be realized

through the replication of silicon resources by having multiple sFFT’s applied to consecutive input data sets, in

turn, so as to produce interleaved output data sets.

7. A Detailed Example: 2M-Point Real-Data Sparse FFT
 A parameterized model has been produced in MatLab [32] for evaluating the timing and resource

requirements which, for a given set of constraints relating to the data set refresh rate (and, equivalently, the

)P(
3STGT =)P(

PSDCONT  +)P(
LOCT +)P(

FRQT +)P(
SSPT

 ≈  
1S8

PL +     N/P/SK 3D  + (2KD+log2L)

 +   D2D
2

Klog)K3P(LS5 




  (66)

clock cycles.

6.3 Discussion

 This section has provided space and time complexity results for parallel versions of all three stages of

the processing chain, with the results for the first two stages concerning the data-space processing and the

RFHTs being combined (Eqtns. 49 to 51) due to the overlapping of their operations and those for the last stage

concerning the transform-space processing (Eqtns. 64 to 66) being based upon each of the individual tasks

being completed before its successor can commence – although complexity results for the first two tasks

concerning the data conversion and PSD estimation routines are combined via the pipelining of their

operations. As a result, for the case of interest where the parameters L, KD, P and N are such that L << KD << P

<< N, the overall time-complexity is of 


















 

3
D

2
D

1 S
)P/N(KS

Klog
S

Plog)PL(O

 (67)

where S1, S2 and S3 are the parallelization parameters, which

 














3
D S

)P/N(KO (68)

when the performance-related parameters L and P are fixed and the size-related parameters N and KD are

allowed to increase, and

 












 

2
D

1 S
Klog

S
Plog)PL(O (69)

when instead the parameters N and KD are fixed and the parameters L and P are allowed to increase.

 Note also that the block-based nature of its operation enables arbitrary large transforms to be realized

through the replication of silicon resources by having multiple sFFT’s applied to consecutive input data sets, in

turn, so as to produce interleaved output data sets.

7. A Detailed Example: 2M-Point Real-Data Sparse FFT
 A parameterized model has been produced in MatLab [32] for evaluating the timing and resource

requirements which, for a given set of constraints relating to the data set refresh rate (and, equivalently, the

)P(
3STGT =)P(

PSDCONT  +)P(
LOCT +)P(

FRQT +)P(
SSPT

 ≈  
1S8

PL +     N/P/SK 3D  + (2KD+log2L)

 +   D2D
2

Klog)K3P(LS5 




  (66)

clock cycles.

6.3 Discussion

 This section has provided space and time complexity results for parallel versions of all three stages of

the processing chain, with the results for the first two stages concerning the data-space processing and the

RFHTs being combined (Eqtns. 49 to 51) due to the overlapping of their operations and those for the last stage

concerning the transform-space processing (Eqtns. 64 to 66) being based upon each of the individual tasks

being completed before its successor can commence – although complexity results for the first two tasks

concerning the data conversion and PSD estimation routines are combined via the pipelining of their

operations. As a result, for the case of interest where the parameters L, KD, P and N are such that L << KD << P

<< N, the overall time-complexity is of 


















 

3
D

2
D

1 S
)P/N(KS

Klog
S

Plog)PL(O

 (67)

where S1, S2 and S3 are the parallelization parameters, which

 














3
D S

)P/N(KO (68)

when the performance-related parameters L and P are fixed and the size-related parameters N and KD are

allowed to increase, and

 












 

2
D

1 S
Klog

S
Plog)PL(O (69)

when instead the parameters N and KD are fixed and the parameters L and P are allowed to increase.

 Note also that the block-based nature of its operation enables arbitrary large transforms to be realized

through the replication of silicon resources by having multiple sFFT’s applied to consecutive input data sets, in

turn, so as to produce interleaved output data sets.

7. A Detailed Example: 2M-Point Real-Data Sparse FFT
 A parameterized model has been produced in MatLab [32] for evaluating the timing and resource

requirements which, for a given set of constraints relating to the data set refresh rate (and, equivalently, the

)P(
3STGT =)P(

PSDCONT  +)P(
LOCT +)P(

FRQT +)P(
SSPT

 ≈  
1S8

PL +     N/P/SK 3D  + (2KD+log2L)

 +   D2D
2

Klog)K3P(LS5 




  (66)

clock cycles.

6.3 Discussion

 This section has provided space and time complexity results for parallel versions of all three stages of

the processing chain, with the results for the first two stages concerning the data-space processing and the

RFHTs being combined (Eqtns. 49 to 51) due to the overlapping of their operations and those for the last stage

concerning the transform-space processing (Eqtns. 64 to 66) being based upon each of the individual tasks

being completed before its successor can commence – although complexity results for the first two tasks

concerning the data conversion and PSD estimation routines are combined via the pipelining of their

operations. As a result, for the case of interest where the parameters L, KD, P and N are such that L << KD << P

<< N, the overall time-complexity is of 


















 

3
D

2
D

1 S
)P/N(KS

Klog
S

Plog)PL(O

 (67)

where S1, S2 and S3 are the parallelization parameters, which

 














3
D S

)P/N(KO (68)

when the performance-related parameters L and P are fixed and the size-related parameters N and KD are

allowed to increase, and

 












 

2
D

1 S
Klog

S
Plog)PL(O (69)

when instead the parameters N and KD are fixed and the parameters L and P are allowed to increase.

 Note also that the block-based nature of its operation enables arbitrary large transforms to be realized

through the replication of silicon resources by having multiple sFFT’s applied to consecutive input data sets, in

turn, so as to produce interleaved output data sets.

7. A Detailed Example: 2M-Point Real-Data Sparse FFT
 A parameterized model has been produced in MatLab [32] for evaluating the timing and resource

requirements which, for a given set of constraints relating to the data set refresh rate (and, equivalently, the

update period) and the available silicon resources, enables solutions to be identified which are able to meet

those constraints and thus to be actually realized. A typical parameter set is now described, based upon a

hypothetical FPGA implementation, consisting of:

1) sampling rate of

 9102F  Hz = 2 GHz, (70)

where the samples are real-valued (assumed here to be 18-bit integers);

2) FPGA clock rate of

 FC = 100×106 Hz = 100 MHz; (71)

3) input data set comprising

 N = 2×220 ~ 2M (2,097,152) (72)

real-valued samples, leading to a real-data sFFT of ~ 2M points (only one half of which are independent,

making problem computationally equivalent to 1M-point complex-data sFFT);

4) SDRD-FFT of length

 P = 16K (73)

which after transform-domain conversion yields 8K complex-valued FFT outputs;

5) maximum number of dominant signal frequencies of

 KD = 512; (74)

6) number of SDRD-FFTs – each carried out by means of the RFHT – to be given by

 L = 4; (75)

and, finally,

7) parameter ‘α’ relating to the KD-element Min-Heap data structure of Section 5.2 to be given by

 α = (log2KD+2)/log2KD, (76)

so as to yield latency results consistent with those derived for a data structure of length 16K [28] whereby each

‘insert’ and ‘delete’ operation was catered for with just 16 clock cycles.

 The data set refresh rate, FR, which has already been defined as the rate at which each new input data

set is transferred from the simple ADC-based sampling system to the DSM, dictates in turn the corresponding

update period, PU, which for this example is given by

    FFNFFP CCRU 310105858,104 

(77)

clock cycles. Thus, for real-time operation of the proposed block-based solution, this update period must be

able to accommodate the execution of the three stages of the processing chain as described in Sections 3 to 5,

namely: 1) the derivation of the multiple WSRG data sets, followed by 2) the carrying out of the SDRD-FFTs

update period) and the available silicon resources, enables solutions to be identified which are able to meet

those constraints and thus to be actually realized. A typical parameter set is now described, based upon a

hypothetical FPGA implementation, consisting of:

1) sampling rate of

 9102F  Hz = 2 GHz, (70)

where the samples are real-valued (assumed here to be 18-bit integers);

2) FPGA clock rate of

 FC = 100×106 Hz = 100 MHz; (71)

3) input data set comprising

 N = 2×220 ~ 2M (2,097,152) (72)

real-valued samples, leading to a real-data sFFT of ~ 2M points (only one half of which are independent,

making problem computationally equivalent to 1M-point complex-data sFFT);

4) SDRD-FFT of length

 P = 16K (73)

which after transform-domain conversion yields 8K complex-valued FFT outputs;

5) maximum number of dominant signal frequencies of

 KD = 512; (74)

6) number of SDRD-FFTs – each carried out by means of the RFHT – to be given by

 L = 4; (75)

and, finally,

7) parameter ‘α’ relating to the KD-element Min-Heap data structure of Section 5.2 to be given by

 α = (log2KD+2)/log2KD, (76)

so as to yield latency results consistent with those derived for a data structure of length 16K [28] whereby each

‘insert’ and ‘delete’ operation was catered for with just 16 clock cycles.

 The data set refresh rate, FR, which has already been defined as the rate at which each new input data

set is transferred from the simple ADC-based sampling system to the DSM, dictates in turn the corresponding

update period, PU, which for this example is given by

    FFNFFP CCRU 310105858,104 

(77)

clock cycles. Thus, for real-time operation of the proposed block-based solution, this update period must be

able to accommodate the execution of the three stages of the processing chain as described in Sections 3 to 5,

namely: 1) the derivation of the multiple WSRG data sets, followed by 2) the carrying out of the SDRD-FFTs

update period) and the available silicon resources, enables solutions to be identified which are able to meet

those constraints and thus to be actually realized. A typical parameter set is now described, based upon a

hypothetical FPGA implementation, consisting of:

1) sampling rate of

 9102F  Hz = 2 GHz, (70)

where the samples are real-valued (assumed here to be 18-bit integers);

2) FPGA clock rate of

 FC = 100×106 Hz = 100 MHz; (71)

3) input data set comprising

 N = 2×220 ~ 2M (2,097,152) (72)

real-valued samples, leading to a real-data sFFT of ~ 2M points (only one half of which are independent,

making problem computationally equivalent to 1M-point complex-data sFFT);

4) SDRD-FFT of length

 P = 16K (73)

which after transform-domain conversion yields 8K complex-valued FFT outputs;

5) maximum number of dominant signal frequencies of

 KD = 512; (74)

6) number of SDRD-FFTs – each carried out by means of the RFHT – to be given by

 L = 4; (75)

and, finally,

7) parameter ‘α’ relating to the KD-element Min-Heap data structure of Section 5.2 to be given by

 α = (log2KD+2)/log2KD, (76)

so as to yield latency results consistent with those derived for a data structure of length 16K [28] whereby each

‘insert’ and ‘delete’ operation was catered for with just 16 clock cycles.

 The data set refresh rate, FR, which has already been defined as the rate at which each new input data

set is transferred from the simple ADC-based sampling system to the DSM, dictates in turn the corresponding

update period, PU, which for this example is given by

    FFNFFP CCRU 310105858,104 

(77)

clock cycles. Thus, for real-time operation of the proposed block-based solution, this update period must be

able to accommodate the execution of the three stages of the processing chain as described in Sections 3 to 5,

namely: 1) the derivation of the multiple WSRG data sets, followed by 2) the carrying out of the SDRD-FFTs

update period) and the available silicon resources, enables solutions to be identified which are able to meet

those constraints and thus to be actually realized. A typical parameter set is now described, based upon a

hypothetical FPGA implementation, consisting of:

1) sampling rate of

 9102F  Hz = 2 GHz, (70)

where the samples are real-valued (assumed here to be 18-bit integers);

2) FPGA clock rate of

 FC = 100×106 Hz = 100 MHz; (71)

3) input data set comprising

 N = 2×220 ~ 2M (2,097,152) (72)

real-valued samples, leading to a real-data sFFT of ~ 2M points (only one half of which are independent,

making problem computationally equivalent to 1M-point complex-data sFFT);

4) SDRD-FFT of length

 P = 16K (73)

which after transform-domain conversion yields 8K complex-valued FFT outputs;

5) maximum number of dominant signal frequencies of

 KD = 512; (74)

6) number of SDRD-FFTs – each carried out by means of the RFHT – to be given by

 L = 4; (75)

and, finally,

7) parameter ‘α’ relating to the KD-element Min-Heap data structure of Section 5.2 to be given by

 α = (log2KD+2)/log2KD, (76)

so as to yield latency results consistent with those derived for a data structure of length 16K [28] whereby each

‘insert’ and ‘delete’ operation was catered for with just 16 clock cycles.

 The data set refresh rate, FR, which has already been defined as the rate at which each new input data

set is transferred from the simple ADC-based sampling system to the DSM, dictates in turn the corresponding

update period, PU, which for this example is given by

    FFNFFP CCRU 310105858,104 

(77)

clock cycles. Thus, for real-time operation of the proposed block-based solution, this update period must be

able to accommodate the execution of the three stages of the processing chain as described in Sections 3 to 5,

namely: 1) the derivation of the multiple WSRG data sets, followed by 2) the carrying out of the SDRD-FFTs

update period) and the available silicon resources, enables solutions to be identified which are able to meet

those constraints and thus to be actually realized. A typical parameter set is now described, based upon a

hypothetical FPGA implementation, consisting of:

1) sampling rate of

 9102F  Hz = 2 GHz, (70)

where the samples are real-valued (assumed here to be 18-bit integers);

2) FPGA clock rate of

 FC = 100×106 Hz = 100 MHz; (71)

3) input data set comprising

 N = 2×220 ~ 2M (2,097,152) (72)

real-valued samples, leading to a real-data sFFT of ~ 2M points (only one half of which are independent,

making problem computationally equivalent to 1M-point complex-data sFFT);

4) SDRD-FFT of length

 P = 16K (73)

which after transform-domain conversion yields 8K complex-valued FFT outputs;

5) maximum number of dominant signal frequencies of

 KD = 512; (74)

6) number of SDRD-FFTs – each carried out by means of the RFHT – to be given by

 L = 4; (75)

and, finally,

7) parameter ‘α’ relating to the KD-element Min-Heap data structure of Section 5.2 to be given by

 α = (log2KD+2)/log2KD, (76)

so as to yield latency results consistent with those derived for a data structure of length 16K [28] whereby each

‘insert’ and ‘delete’ operation was catered for with just 16 clock cycles.

 The data set refresh rate, FR, which has already been defined as the rate at which each new input data

set is transferred from the simple ADC-based sampling system to the DSM, dictates in turn the corresponding

update period, PU, which for this example is given by

    FFNFFP CCRU 310105858,104 

(77)

clock cycles. Thus, for real-time operation of the proposed block-based solution, this update period must be

able to accommodate the execution of the three stages of the processing chain as described in Sections 3 to 5,

namely: 1) the derivation of the multiple WSRG data sets, followed by 2) the carrying out of the SDRD-FFTs

update period) and the available silicon resources, enables solutions to be identified which are able to meet

those constraints and thus to be actually realized. A typical parameter set is now described, based upon a

hypothetical FPGA implementation, consisting of:

1) sampling rate of

 9102F  Hz = 2 GHz, (70)

where the samples are real-valued (assumed here to be 18-bit integers);

2) FPGA clock rate of

 FC = 100×106 Hz = 100 MHz; (71)

3) input data set comprising

 N = 2×220 ~ 2M (2,097,152) (72)

real-valued samples, leading to a real-data sFFT of ~ 2M points (only one half of which are independent,

making problem computationally equivalent to 1M-point complex-data sFFT);

4) SDRD-FFT of length

 P = 16K (73)

which after transform-domain conversion yields 8K complex-valued FFT outputs;

5) maximum number of dominant signal frequencies of

 KD = 512; (74)

6) number of SDRD-FFTs – each carried out by means of the RFHT – to be given by

 L = 4; (75)

and, finally,

7) parameter ‘α’ relating to the KD-element Min-Heap data structure of Section 5.2 to be given by

 α = (log2KD+2)/log2KD, (76)

so as to yield latency results consistent with those derived for a data structure of length 16K [28] whereby each

‘insert’ and ‘delete’ operation was catered for with just 16 clock cycles.

 The data set refresh rate, FR, which has already been defined as the rate at which each new input data

set is transferred from the simple ADC-based sampling system to the DSM, dictates in turn the corresponding

update period, PU, which for this example is given by

    FFNFFP CCRU 310105858,104 

(77)

clock cycles. Thus, for real-time operation of the proposed block-based solution, this update period must be

able to accommodate the execution of the three stages of the processing chain as described in Sections 3 to 5,

namely: 1) the derivation of the multiple WSRG data sets, followed by 2) the carrying out of the SDRD-FFTs

update period) and the available silicon resources, enables solutions to be identified which are able to meet

those constraints and thus to be actually realized. A typical parameter set is now described, based upon a

hypothetical FPGA implementation, consisting of:

1) sampling rate of

 9102F  Hz = 2 GHz, (70)

where the samples are real-valued (assumed here to be 18-bit integers);

2) FPGA clock rate of

 FC = 100×106 Hz = 100 MHz; (71)

3) input data set comprising

 N = 2×220 ~ 2M (2,097,152) (72)

real-valued samples, leading to a real-data sFFT of ~ 2M points (only one half of which are independent,

making problem computationally equivalent to 1M-point complex-data sFFT);

4) SDRD-FFT of length

 P = 16K (73)

which after transform-domain conversion yields 8K complex-valued FFT outputs;

5) maximum number of dominant signal frequencies of

 KD = 512; (74)

6) number of SDRD-FFTs – each carried out by means of the RFHT – to be given by

 L = 4; (75)

and, finally,

7) parameter ‘α’ relating to the KD-element Min-Heap data structure of Section 5.2 to be given by

 α = (log2KD+2)/log2KD, (76)

so as to yield latency results consistent with those derived for a data structure of length 16K [28] whereby each

‘insert’ and ‘delete’ operation was catered for with just 16 clock cycles.

 The data set refresh rate, FR, which has already been defined as the rate at which each new input data

set is transferred from the simple ADC-based sampling system to the DSM, dictates in turn the corresponding

update period, PU, which for this example is given by

    FFNFFP CCRU 310105858,104 

(77)

clock cycles. Thus, for real-time operation of the proposed block-based solution, this update period must be

able to accommodate the execution of the three stages of the processing chain as described in Sections 3 to 5,

namely: 1) the derivation of the multiple WSRG data sets, followed by 2) the carrying out of the SDRD-FFTs

update period) and the available silicon resources, enables solutions to be identified which are able to meet

those constraints and thus to be actually realized. A typical parameter set is now described, based upon a

hypothetical FPGA implementation, consisting of:

1) sampling rate of

 9102F  Hz = 2 GHz, (70)

where the samples are real-valued (assumed here to be 18-bit integers);

2) FPGA clock rate of

 FC = 100×106 Hz = 100 MHz; (71)

3) input data set comprising

 N = 2×220 ~ 2M (2,097,152) (72)

real-valued samples, leading to a real-data sFFT of ~ 2M points (only one half of which are independent,

making problem computationally equivalent to 1M-point complex-data sFFT);

4) SDRD-FFT of length

 P = 16K (73)

which after transform-domain conversion yields 8K complex-valued FFT outputs;

5) maximum number of dominant signal frequencies of

 KD = 512; (74)

6) number of SDRD-FFTs – each carried out by means of the RFHT – to be given by

 L = 4; (75)

and, finally,

7) parameter ‘α’ relating to the KD-element Min-Heap data structure of Section 5.2 to be given by

 α = (log2KD+2)/log2KD, (76)

so as to yield latency results consistent with those derived for a data structure of length 16K [28] whereby each

‘insert’ and ‘delete’ operation was catered for with just 16 clock cycles.

 The data set refresh rate, FR, which has already been defined as the rate at which each new input data

set is transferred from the simple ADC-based sampling system to the DSM, dictates in turn the corresponding

update period, PU, which for this example is given by

    FFNFFP CCRU 310105858,104 

(77)

clock cycles. Thus, for real-time operation of the proposed block-based solution, this update period must be

able to accommodate the execution of the three stages of the processing chain as described in Sections 3 to 5,

namely: 1) the derivation of the multiple WSRG data sets, followed by 2) the carrying out of the SDRD-FFTs

update period) and the available silicon resources, enables solutions to be identified which are able to meet

those constraints and thus to be actually realized. A typical parameter set is now described, based upon a

hypothetical FPGA implementation, consisting of:

1) sampling rate of

 9102F  Hz = 2 GHz, (70)

where the samples are real-valued (assumed here to be 18-bit integers);

2) FPGA clock rate of

 FC = 100×106 Hz = 100 MHz; (71)

3) input data set comprising

 N = 2×220 ~ 2M (2,097,152) (72)

real-valued samples, leading to a real-data sFFT of ~ 2M points (only one half of which are independent,

making problem computationally equivalent to 1M-point complex-data sFFT);

4) SDRD-FFT of length

 P = 16K (73)

which after transform-domain conversion yields 8K complex-valued FFT outputs;

5) maximum number of dominant signal frequencies of

 KD = 512; (74)

6) number of SDRD-FFTs – each carried out by means of the RFHT – to be given by

 L = 4; (75)

and, finally,

7) parameter ‘α’ relating to the KD-element Min-Heap data structure of Section 5.2 to be given by

 α = (log2KD+2)/log2KD, (76)

so as to yield latency results consistent with those derived for a data structure of length 16K [28] whereby each

‘insert’ and ‘delete’ operation was catered for with just 16 clock cycles.

 The data set refresh rate, FR, which has already been defined as the rate at which each new input data

set is transferred from the simple ADC-based sampling system to the DSM, dictates in turn the corresponding

update period, PU, which for this example is given by

    FFNFFP CCRU 310105858,104 

(77)

clock cycles. Thus, for real-time operation of the proposed block-based solution, this update period must be

able to accommodate the execution of the three stages of the processing chain as described in Sections 3 to 5,

namely: 1) the derivation of the multiple WSRG data sets, followed by 2) the carrying out of the SDRD-FFTs

update period) and the available silicon resources, enables solutions to be identified which are able to meet

those constraints and thus to be actually realized. A typical parameter set is now described, based upon a

hypothetical FPGA implementation, consisting of:

1) sampling rate of

 9102F  Hz = 2 GHz, (70)

where the samples are real-valued (assumed here to be 18-bit integers);

2) FPGA clock rate of

 FC = 100×106 Hz = 100 MHz; (71)

3) input data set comprising

 N = 2×220 ~ 2M (2,097,152) (72)

real-valued samples, leading to a real-data sFFT of ~ 2M points (only one half of which are independent,

making problem computationally equivalent to 1M-point complex-data sFFT);

4) SDRD-FFT of length

 P = 16K (73)

which after transform-domain conversion yields 8K complex-valued FFT outputs;

5) maximum number of dominant signal frequencies of

 KD = 512; (74)

6) number of SDRD-FFTs – each carried out by means of the RFHT – to be given by

 L = 4; (75)

and, finally,

7) parameter ‘α’ relating to the KD-element Min-Heap data structure of Section 5.2 to be given by

 α = (log2KD+2)/log2KD, (76)

so as to yield latency results consistent with those derived for a data structure of length 16K [28] whereby each

‘insert’ and ‘delete’ operation was catered for with just 16 clock cycles.

 The data set refresh rate, FR, which has already been defined as the rate at which each new input data

set is transferred from the simple ADC-based sampling system to the DSM, dictates in turn the corresponding

update period, PU, which for this example is given by

    FFNFFP CCRU 310105858,104 

(77)

clock cycles. Thus, for real-time operation of the proposed block-based solution, this update period must be

able to accommodate the execution of the three stages of the processing chain as described in Sections 3 to 5,

namely: 1) the derivation of the multiple WSRG data sets, followed by 2) the carrying out of the SDRD-FFTs

update period) and the available silicon resources, enables solutions to be identified which are able to meet

those constraints and thus to be actually realized. A typical parameter set is now described, based upon a

hypothetical FPGA implementation, consisting of:

1) sampling rate of

 9102F  Hz = 2 GHz, (70)

where the samples are real-valued (assumed here to be 18-bit integers);

2) FPGA clock rate of

 FC = 100×106 Hz = 100 MHz; (71)

3) input data set comprising

 N = 2×220 ~ 2M (2,097,152) (72)

real-valued samples, leading to a real-data sFFT of ~ 2M points (only one half of which are independent,

making problem computationally equivalent to 1M-point complex-data sFFT);

4) SDRD-FFT of length

 P = 16K (73)

which after transform-domain conversion yields 8K complex-valued FFT outputs;

5) maximum number of dominant signal frequencies of

 KD = 512; (74)

6) number of SDRD-FFTs – each carried out by means of the RFHT – to be given by

 L = 4; (75)

and, finally,

7) parameter ‘α’ relating to the KD-element Min-Heap data structure of Section 5.2 to be given by

 α = (log2KD+2)/log2KD, (76)

so as to yield latency results consistent with those derived for a data structure of length 16K [28] whereby each

‘insert’ and ‘delete’ operation was catered for with just 16 clock cycles.

 The data set refresh rate, FR, which has already been defined as the rate at which each new input data

set is transferred from the simple ADC-based sampling system to the DSM, dictates in turn the corresponding

update period, PU, which for this example is given by

    FFNFFP CCRU 310105858,104 

(77)

clock cycles. Thus, for real-time operation of the proposed block-based solution, this update period must be

able to accommodate the execution of the three stages of the processing chain as described in Sections 3 to 5,

namely: 1) the derivation of the multiple WSRG data sets, followed by 2) the carrying out of the SDRD-FFTs

update period) and the available silicon resources, enables solutions to be identified which are able to meet

those constraints and thus to be actually realized. A typical parameter set is now described, based upon a

hypothetical FPGA implementation, consisting of:

1) sampling rate of

 9102F  Hz = 2 GHz, (70)

where the samples are real-valued (assumed here to be 18-bit integers);

2) FPGA clock rate of

 FC = 100×106 Hz = 100 MHz; (71)

3) input data set comprising

 N = 2×220 ~ 2M (2,097,152) (72)

real-valued samples, leading to a real-data sFFT of ~ 2M points (only one half of which are independent,

making problem computationally equivalent to 1M-point complex-data sFFT);

4) SDRD-FFT of length

 P = 16K (73)

which after transform-domain conversion yields 8K complex-valued FFT outputs;

5) maximum number of dominant signal frequencies of

 KD = 512; (74)

6) number of SDRD-FFTs – each carried out by means of the RFHT – to be given by

 L = 4; (75)

and, finally,

7) parameter ‘α’ relating to the KD-element Min-Heap data structure of Section 5.2 to be given by

 α = (log2KD+2)/log2KD, (76)

so as to yield latency results consistent with those derived for a data structure of length 16K [28] whereby each

‘insert’ and ‘delete’ operation was catered for with just 16 clock cycles.

 The data set refresh rate, FR, which has already been defined as the rate at which each new input data

set is transferred from the simple ADC-based sampling system to the DSM, dictates in turn the corresponding

update period, PU, which for this example is given by

    FFNFFP CCRU 310105858,104 

(77)

clock cycles. Thus, for real-time operation of the proposed block-based solution, this update period must be

able to accommodate the execution of the three stages of the processing chain as described in Sections 3 to 5,

namely: 1) the derivation of the multiple WSRG data sets, followed by 2) the carrying out of the SDRD-FFTs

update period) and the available silicon resources, enables solutions to be identified which are able to meet

those constraints and thus to be actually realized. A typical parameter set is now described, based upon a

hypothetical FPGA implementation, consisting of:

1) sampling rate of

 9102F  Hz = 2 GHz, (70)

where the samples are real-valued (assumed here to be 18-bit integers);

2) FPGA clock rate of

 FC = 100×106 Hz = 100 MHz; (71)

3) input data set comprising

 N = 2×220 ~ 2M (2,097,152) (72)

real-valued samples, leading to a real-data sFFT of ~ 2M points (only one half of which are independent,

making problem computationally equivalent to 1M-point complex-data sFFT);

4) SDRD-FFT of length

 P = 16K (73)

which after transform-domain conversion yields 8K complex-valued FFT outputs;

5) maximum number of dominant signal frequencies of

 KD = 512; (74)

6) number of SDRD-FFTs – each carried out by means of the RFHT – to be given by

 L = 4; (75)

and, finally,

7) parameter ‘α’ relating to the KD-element Min-Heap data structure of Section 5.2 to be given by

 α = (log2KD+2)/log2KD, (76)

so as to yield latency results consistent with those derived for a data structure of length 16K [28] whereby each

‘insert’ and ‘delete’ operation was catered for with just 16 clock cycles.

 The data set refresh rate, FR, which has already been defined as the rate at which each new input data

set is transferred from the simple ADC-based sampling system to the DSM, dictates in turn the corresponding

update period, PU, which for this example is given by

    FFNFFP CCRU 310105858,104 

(77)

clock cycles. Thus, for real-time operation of the proposed block-based solution, this update period must be

able to accommodate the execution of the three stages of the processing chain as described in Sections 3 to 5,

namely: 1) the derivation of the multiple WSRG data sets, followed by 2) the carrying out of the SDRD-FFTs

update period) and the available silicon resources, enables solutions to be identified which are able to meet

those constraints and thus to be actually realized. A typical parameter set is now described, based upon a

hypothetical FPGA implementation, consisting of:

1) sampling rate of

 9102F  Hz = 2 GHz, (70)

where the samples are real-valued (assumed here to be 18-bit integers);

2) FPGA clock rate of

 FC = 100×106 Hz = 100 MHz; (71)

3) input data set comprising

 N = 2×220 ~ 2M (2,097,152) (72)

real-valued samples, leading to a real-data sFFT of ~ 2M points (only one half of which are independent,

making problem computationally equivalent to 1M-point complex-data sFFT);

4) SDRD-FFT of length

 P = 16K (73)

which after transform-domain conversion yields 8K complex-valued FFT outputs;

5) maximum number of dominant signal frequencies of

 KD = 512; (74)

6) number of SDRD-FFTs – each carried out by means of the RFHT – to be given by

 L = 4; (75)

and, finally,

7) parameter ‘α’ relating to the KD-element Min-Heap data structure of Section 5.2 to be given by

 α = (log2KD+2)/log2KD, (76)

so as to yield latency results consistent with those derived for a data structure of length 16K [28] whereby each

‘insert’ and ‘delete’ operation was catered for with just 16 clock cycles.

 The data set refresh rate, FR, which has already been defined as the rate at which each new input data

set is transferred from the simple ADC-based sampling system to the DSM, dictates in turn the corresponding

update period, PU, which for this example is given by

    FFNFFP CCRU 310105858,104 

(77)

clock cycles. Thus, for real-time operation of the proposed block-based solution, this update period must be

able to accommodate the execution of the three stages of the processing chain as described in Sections 3 to 5,

namely: 1) the derivation of the multiple WSRG data sets, followed by 2) the carrying out of the SDRD-FFTs

update period) and the available silicon resources, enables solutions to be identified which are able to meet

those constraints and thus to be actually realized. A typical parameter set is now described, based upon a

hypothetical FPGA implementation, consisting of:

1) sampling rate of

 9102F  Hz = 2 GHz, (70)

where the samples are real-valued (assumed here to be 18-bit integers);

2) FPGA clock rate of

 FC = 100×106 Hz = 100 MHz; (71)

3) input data set comprising

 N = 2×220 ~ 2M (2,097,152) (72)

real-valued samples, leading to a real-data sFFT of ~ 2M points (only one half of which are independent,

making problem computationally equivalent to 1M-point complex-data sFFT);

4) SDRD-FFT of length

 P = 16K (73)

which after transform-domain conversion yields 8K complex-valued FFT outputs;

5) maximum number of dominant signal frequencies of

 KD = 512; (74)

6) number of SDRD-FFTs – each carried out by means of the RFHT – to be given by

 L = 4; (75)

and, finally,

7) parameter ‘α’ relating to the KD-element Min-Heap data structure of Section 5.2 to be given by

 α = (log2KD+2)/log2KD, (76)

so as to yield latency results consistent with those derived for a data structure of length 16K [28] whereby each

‘insert’ and ‘delete’ operation was catered for with just 16 clock cycles.

 The data set refresh rate, FR, which has already been defined as the rate at which each new input data

set is transferred from the simple ADC-based sampling system to the DSM, dictates in turn the corresponding

update period, PU, which for this example is given by

    FFNFFP CCRU 310105858,104 

(77)

clock cycles. Thus, for real-time operation of the proposed block-based solution, this update period must be

able to accommodate the execution of the three stages of the processing chain as described in Sections 3 to 5,

namely: 1) the derivation of the multiple WSRG data sets, followed by 2) the carrying out of the SDRD-FFTs

update period) and the available silicon resources, enables solutions to be identified which are able to meet

those constraints and thus to be actually realized. A typical parameter set is now described, based upon a

hypothetical FPGA implementation, consisting of:

1) sampling rate of

 9102F  Hz = 2 GHz, (70)

where the samples are real-valued (assumed here to be 18-bit integers);

2) FPGA clock rate of

 FC = 100×106 Hz = 100 MHz; (71)

3) input data set comprising

 N = 2×220 ~ 2M (2,097,152) (72)

real-valued samples, leading to a real-data sFFT of ~ 2M points (only one half of which are independent,

making problem computationally equivalent to 1M-point complex-data sFFT);

4) SDRD-FFT of length

 P = 16K (73)

which after transform-domain conversion yields 8K complex-valued FFT outputs;

5) maximum number of dominant signal frequencies of

 KD = 512; (74)

6) number of SDRD-FFTs – each carried out by means of the RFHT – to be given by

 L = 4; (75)

and, finally,

7) parameter ‘α’ relating to the KD-element Min-Heap data structure of Section 5.2 to be given by

 α = (log2KD+2)/log2KD, (76)

so as to yield latency results consistent with those derived for a data structure of length 16K [28] whereby each

‘insert’ and ‘delete’ operation was catered for with just 16 clock cycles.

 The data set refresh rate, FR, which has already been defined as the rate at which each new input data

set is transferred from the simple ADC-based sampling system to the DSM, dictates in turn the corresponding

update period, PU, which for this example is given by

    FFNFFP CCRU 310105858,104 

(77)

clock cycles. Thus, for real-time operation of the proposed block-based solution, this update period must be

able to accommodate the execution of the three stages of the processing chain as described in Sections 3 to 5,

namely: 1) the derivation of the multiple WSRG data sets, followed by 2) the carrying out of the SDRD-FFTs

update period) and the available silicon resources, enables solutions to be identified which are able to meet

those constraints and thus to be actually realized. A typical parameter set is now described, based upon a

hypothetical FPGA implementation, consisting of:

1) sampling rate of

 9102F  Hz = 2 GHz, (70)

where the samples are real-valued (assumed here to be 18-bit integers);

2) FPGA clock rate of

 FC = 100×106 Hz = 100 MHz; (71)

3) input data set comprising

 N = 2×220 ~ 2M (2,097,152) (72)

real-valued samples, leading to a real-data sFFT of ~ 2M points (only one half of which are independent,

making problem computationally equivalent to 1M-point complex-data sFFT);

4) SDRD-FFT of length

 P = 16K (73)

which after transform-domain conversion yields 8K complex-valued FFT outputs;

5) maximum number of dominant signal frequencies of

 KD = 512; (74)

6) number of SDRD-FFTs – each carried out by means of the RFHT – to be given by

 L = 4; (75)

and, finally,

7) parameter ‘α’ relating to the KD-element Min-Heap data structure of Section 5.2 to be given by

 α = (log2KD+2)/log2KD, (76)

so as to yield latency results consistent with those derived for a data structure of length 16K [28] whereby each

‘insert’ and ‘delete’ operation was catered for with just 16 clock cycles.

 The data set refresh rate, FR, which has already been defined as the rate at which each new input data

set is transferred from the simple ADC-based sampling system to the DSM, dictates in turn the corresponding

update period, PU, which for this example is given by

    FFNFFP CCRU 310105858,104 

(77)

clock cycles. Thus, for real-time operation of the proposed block-based solution, this update period must be

able to accommodate the execution of the three stages of the processing chain as described in Sections 3 to 5,

namely: 1) the derivation of the multiple WSRG data sets, followed by 2) the carrying out of the SDRD-FFTs

Volume 1 | Issue 2 | 85OA J Applied Sci Technol, 2023

available, is obtained at the expense of 54 fast multipliers (with
12 involving a fixed multiplicand), 105 adders (noting that
each adder requires just O(W) logic slices when implemented

in logic) and 0.28 Mwords of RAM – the external storage of
the input data set as held in the double buffered DSM not being
included in these figures.

Figure 8: Processing Chain for Carrying out 2M-Point Real-Data sFFT with
Parallelization Parameters Given By: S1 = 2 & S2 = S3 = 4

Randomized Data Reordering
+ Windowing

Transform-Space Memory (TSM)

Regularized FHT

Hartley-Space to Fourier-Space
Conversion + PSD Estimation

Power Spectrum Memory (PSM)

Dominant Bin Location

Binary Indicator Array (BIA)

Signal Frequency Estimation

Frequency Address Memory (FAM)

Spectrum Component Estimation

Sparse Spectrum Memory (SSM)

Data-Space Memory (DSM)

×2 parallel
streams

×2 parallel
streams

×4 parallel
streams

×4 parallel
streams

×1 stream

×1 stream

×1 partitioned
memory

×4 partitioned
memories

×4 partitioned
memories

×4 memories

×1 memory

×1 memory

DAM

WCM

PDM

PCM

Figure 8: Processing Chain for Carrying out 2M-Point Real-Data sFFT with Parallelization Parameters: S1 = 2 & S2 = S3 = 4

With the adoption of a low-end Xilinx Vertex-6 FPGA such as
the XC6VLX240T device, a total of 768 embedded multipliers
would be available together with ~ 0.82 Mwords of 18-bit block
RAM (BRAM), so that the fast multiplier requirement of the
proposed real data sFFT would involve a utilization figure of ~
7% and the memory requirement a utilization figure of ~ 34%
(with 23% accounting for the multiple DAMs and WCMs). [37].
When the data-space processing (randomized data reordering
and windowing) is excluded from these figures – as was the
case for the MIT streaming solution of Agarwal et al – the fast

multiplier requirement reduces to a utilization figure of ~ 5.5%
and the memory requirement (still including access to TSMs) to
~ 19.5%, with a latency of ~ 0.92 ms [2]. With the same device
and clock rate, the Agarwal solution (which, like the proposed
solution, involves the production and processing of 32K low
resolution spectral samples in order to cater for the same sized
spectrum of ~ 1M independent samples) achieves a latency of
~ 1.39 ms and an update time of ~ 1.16 ms at the expense of a
fast multiplier utilization of ~ 16% and a memory utilization of
~ 26% – see Table 2.

Volume 1 | Issue 2 | 86OA J Applied Sci Technol, 2023

[1] Vertex-6 FPGA XC6VLX240T: Resources = 768 embedded multipliers & ~ 0.82 Mwords of BRAM

[2] Vertex Ultrascale FPGA XVCU095: Resources = 768 embedded multipliers & ~ 1.69 Mwords of BRAM

[3] Vertex-4 FPGA XC4VLX60: Resources = 64 embedded multipliers & ~ 0.16 Mwords of BRAM

Table 2: Comparative Performance Figures for Implementation of sFFT & FFT

FPGA-Based Solutions

Solution

Space-Complexity
 (Utilization %)

Time-Complexity
(clock cycles × 103) Clock Rate

(MHz)
Multipliers Memory Latency Update Time

Proposed sFFT Solution [1]
~ 2M points, real data

Short Dense FFTs
+ Transform-Space

Processing

~ 5.5 ~ 19.5
~ 93

(~ 0.93 ms)

~ 93

(~ 0.93 ms)
100

Proposed sFFT Solution [1]
~ 2M points, real data

Data-Space Processing #
+ Short Dense FFTs
+ Transform-Space

Processing

~ 7 ~ 34
~ 97

(~ 0.97 ms)

~ 97

(~ 0.97 ms)
100

Agarwal sFFT Solution [1]
~1M points, complex data

Short Dense FFTs
+ Transform-Space

Processing

~ 16 ~ 26
~ 139

(~ 1.39 ms)

~ 116

(~ 1.16 ms)
100

Kanders FFT Solution [2]
~1M points, complex data ~ 4 ~ 67 - ~ 1000

(~ 4.29 ms)
233

Kamazaki FFT Solution [3]
~1M points, complex data high high ~ 500

(~ 4.00 ms)
- 125

[1] Vertex-6 FPGA XC6VLX240T: Resources = 768 embedded multipliers & ~ 0.82 Mwords of BRAM
[2] Vertex Ultrascale FPGA XVCU095: Resources = 768 embedded multipliers & ~ 1.69 Mwords of BRAM

[3] Vertex-4 FPGA XC4VLX60: Resources = 64 embedded multipliers & ~ 0.16 Mwords of BRAM

Table 2: Comparative Performance Figures for Implementation of sFFT & FFT FPGA Based Solutions

Thus, for the simplified problem (involving data-space to
transform-space conversion and the transform-space processing
only) discussed above, the proposed real-data sFFT solution,
when compared to the Agarwal solution, is able to achieve a
latency reduction of ~ 33% whilst at the same time achieving
reductions in resource utilization of ~ 66% for the multipliers
and ~ 25% for the memory – although the associated logic
requirement cannot be properly assessed without information
derived from a real world implementation. Note, however, that
in comparing the two solutions, whereas the Agarwal solution
uses eight short dense FFTs, each of length 4K, the proposed
solution uses four such FFTs, each of length 8K (as obtained
from the 16K Hartley space outputs), so that the proposed
solution possesses the attraction of an extra 3 dB of SNR in
the low resolution spectral data (due to increased coherent
gain) but at the expense of a doubling of the variance in the
real and imaginary components of the resulting sFFT outputs.
At the time of publication, however, the Agarwal solution
appeared to offer significant improvements over existing sFFT
software implementations such as the multi-threaded software

implementation of that required 100 ms for addressing the same
size of problem [2].

Finally, for the purposes of comparison, Table 2 outlines the
performances of the dense 1M-point complex-data FFTs of: 1)
Kanders et al which shows itself able to produce a full 1M-point
spectrum but, compared to the proposed solution, requires
approximately 4 times the memory requirement and 7/3 times the
clock rate whilst achieving an update time that’s approximately
4 times longer; and 2) Kamazaki et al [26], which also shows
itself able to produce a full 1M-point spectrum but, compared
to the proposed solution, requires 5/4 times the clock rate whilst
achieving a latency that’s approximately 4 times longer – the
small amount of resources available on the chosen device also
suggests that the utilization must be particularly high [26,27].
An additional comparison may be made with the dense 1M point
complex-data FFT of Han et al [16] which requires the benefits
(and far greater expense) of an application-specific integrated
circuit (ASIC) implementation [33], with comparable 40 nm
technology and a 500 MHz clock rate, in order to achieve a high

Volume 1 | Issue 2 | 87OA J Applied Sci Technol, 2023

computational density yielding a latency of 14.8 ms [16,33].

8. Summary and Conclusions
The aim of the research described in this paper has been to
produce a flexible and scalable design for the real-data sFFT
that’s able to yield resource efficient low power solutions, when
implemented with silicon-based computing technology, this
being achieved by maximizing the computational density through
the exploitation of both partitioned memory and the real valued
nature of the data. The parameterization of the design enables
different problem sizes and requirements to be simply catered
for through the replication of silicon resources (i.e. multiple
memories and processing modules), rather than through changes
to the basic design, resulting in a flexible and easily modifiable
solution. A theoretical analysis has shown that with a low-
end FPGA device it would be possible, with frequency sparse
data comprising ~ 2M real-valued samples, for the frequencies
and values of the 512 dominant spectral components to be
determined via the proposed sFFT in < 1 ms whilst maintaining
low resource utilization. Such a performance would appear to
compare favourably – in terms of fast multiplier and memory
utilization, together with latency – with other recently published
FFT and sFFT silicon-based solutions.

References
1.	 Abo-Zahhad, M. M., Hussein, A. I., & Mohamed, A.

M. (2015). Compressive sensing algorithms for signal
processing applications: A survey. International journal of
communications, network and system sciences, 8(06), 197.

2.	 Agarwal, A., Hassanieh, H., Abari, O., Hamed, E., & Katabi,
D. (2014, September). High-throughput implementation
of a million-point sparse Fourier transform. In 2014 24th
International Conference on Field Programmable Logic and
Applications (FPL) (pp. 1-6). IEEE.

3.	 Akl, S. G. (1989). The design and analysis of parallel
algorithms. Prentice-Hall, Inc.

4.	 Al-Jaloud, E., Al-Aqel, H., & Badr, G. (2014). Comparative
performance evaluation of heap-sort and quick-sort
algorithms. International Journal of Computing Academic
Research, 3(2), 39-57.

5.	 Birkhoff, G., & Mac Lane, S. (2017). A survey of modern
algebra. CRC Press.

6.	 Bracewell, R. N. (1986). The Hartley transform. Oxford
University Press, Inc.

7.	 Bruun, G. (1978). Z-transform DFT filters and FFT's. IEEE
Transactions on Acoustics, Speech, and Signal Processing,
26(1), 56-63.

8.	 Cheng, C., & Yu, F. (2015). An optimum architecture
for continuous-flow parallel bit reversal. IEEE Signal
Processing Letters, 22(12), 2334-2338.

9.	 Cooley, J. W., & Tukey, J. W. (1965). An algorithm for the
machine calculation of complex Fourier series. Mathematics
of computation, 19(90), 297-301.

10.	 Cormen, T. H., Leiserson, C. E., Rivest, R. L., & Stein, C.
(2001). Introduction to Algorithms, McGraw-Hill.

11.	 Duhamel, P., & Vetterli, M. (1987). Improved Fourier
and Hartley transform algorithms: Application to cyclic
convolution of real data. IEEE Transactions on Acoustics,

Speech, and Signal Processing, 35(6), 818-824.
12.	 Duhamel, P., & Vetterli, M. (1990). Fast Fourier transforms:

a tutorial review and a state of the art. Signal processing,
19(4), 259-299.

13.	 Foucart, S., & Rauhut, H. (2013). A Mathematical
Introduction to Compressive Sensing, Birkhauser.

14.	 Garrido, M., Parhi, K. K., & Grajal, J. (2009). A pipelined
FFT architecture for real-valued signals. IEEE Transactions
on Circuits and Systems I: Regular Papers, 56(12), 2634-
2643.

15.	 Gilbert, A. C., Indyk, P., Iwen, M., & Schmidt, L. (2014).
Recent developments in the sparse Fourier transform: A
compressed Fourier transform for big data. IEEE Signal
Processing Magazine, 31(5), 91-100.

16.	 Han, F., Li, L., Wang, K., Feng, F., Pan, H., Zhang, B. &
Lin, J. (2016). An ultra-long FFT architecture implemented
in a reconfigurable application specified processor. IEICE
Electronics Express, 13(13).

17.	 Harris, F. J. (1978). On the use of windows for harmonic
analysis with the discrete Fourier transform. Proceedings of
the IEEE, 66(1), 51-83.

18.	 Hartley, R. V. (1942). A more symmetrical Fourier analysis
applied to transmission problems. Proceedings of the IRE,
30(3), 144-150.

19.	 Hassanieh, H., Indyk, P., Katabi, D., & Price, E. (2012,
January). Simple and practical algorithm for sparse Fourier
transform. In Proceedings of the twenty-third annual ACM-
SIAM symposium on Discrete Algorithms (pp. 1183-1194).
Society for Industrial and Applied Mathematics.

20.	 Hassanieh, H., Indyk, P., Katabi, D., & Price, E. (2012, May).
Nearly optimal sparse Fourier transform. In Proceedings
of the forty-fourth annual ACM symposium on Theory of
computing (pp. 563-578).

21.	 Ioannou, A., & Katevenis, M. G. (2007). Pipelined heap
(priority queue) management for advanced scheduling
in high-speed networks. IEEE/ACM Transactions on
Networking, 15(2), 450-461.

22.	 Jmaa, Y.B., Atitallah, R.B., Duvivier, D., & Jemaa, M.B.
(2019). A comparative study of sorting algorithms with
FPGA acceleration by high level synthesis. Computación y
Sistemas, 23(1), 213-230.

23.	 Jones, K. J. (2006). Design and parallel computation of
regularised fast Hartley transform. IEE Proceedings-Vision,
Image and Signal Processing, 153(1), 70-78.

24.	 Jones, K. J., & Coster, R. (2007). Area-efficient and scalable
solution to real-data fast Fourier transform via regularised
fast Hartley transform. IET Signal Processing, 1(3), 128-
138.

25.	 Jones, K. J. (2021). The Regularized Fast Hartley Transform:
Low-Complexity Parallel Computation of the FHT in One
and Multiple Dimensions. Springer Nature.

26.	 Kamazaki, T., Okumura, S.K., Chikada, Y., Okuda, T.,
Kurono, Y., Iguchi, S. & Sano, R. (2012). Digital spectro-
correlator system for the Atacama Compact Array of
the Atacama Large Millimeter/Submillimeter Array.
Publications of the Astronomical Society of Japan, 64(2),
29.

27.	 Kanders, H., Mellqvist, T., Garrido, M., Palmkvist, K., &

http://www.scirp.org/journal/PaperInformation.aspx?PaperID=56972&#abstract
http://www.scirp.org/journal/PaperInformation.aspx?PaperID=56972&#abstract
http://www.scirp.org/journal/PaperInformation.aspx?PaperID=56972&#abstract
http://www.scirp.org/journal/PaperInformation.aspx?PaperID=56972&#abstract
https://doi.org/10.1109/FPL.2014.6927450
https://doi.org/10.1109/FPL.2014.6927450
https://doi.org/10.1109/FPL.2014.6927450
https://doi.org/10.1109/FPL.2014.6927450
https://doi.org/10.1109/FPL.2014.6927450
https://dl.acm.org/doi/abs/10.5555/63471
https://dl.acm.org/doi/abs/10.5555/63471
http://www.meacse.org/IJCAR/archives/41.pdf
http://www.meacse.org/IJCAR/archives/41.pdf
http://www.meacse.org/IJCAR/archives/41.pdf
http://www.meacse.org/IJCAR/archives/41.pdf
https://books.google.co.in/books?hl=en&lr=&id=UjoPEAAAQBAJ&oi=fnd&pg=PP1&dq=Birkhoff,+G.+%26+MacLane,+S.+(1977).+A+Survey+of+Modern+Algebra.+Macmillan.&ots=9j1qP50BF6&sig=uun4qiD1BNInYk1Rjl2-ZVDOKV4&redir_esc=y#v=onepage&q&f=false
https://books.google.co.in/books?hl=en&lr=&id=UjoPEAAAQBAJ&oi=fnd&pg=PP1&dq=Birkhoff,+G.+%26+MacLane,+S.+(1977).+A+Survey+of+Modern+Algebra.+Macmillan.&ots=9j1qP50BF6&sig=uun4qiD1BNInYk1Rjl2-ZVDOKV4&redir_esc=y#v=onepage&q&f=false
https://dl.acm.org/doi/abs/10.5555/5536
https://dl.acm.org/doi/abs/10.5555/5536
https://doi.org/10.1109/TASSP.1978.1163036
https://doi.org/10.1109/TASSP.1978.1163036
https://doi.org/10.1109/TASSP.1978.1163036
https://doi.org/10.1109/LSP.2015.2470519
https://doi.org/10.1109/LSP.2015.2470519
https://doi.org/10.1109/LSP.2015.2470519
https://community.ams.org/journals/mcom/1965-19-090/S0025-5718-1965-0178586-1/S0025-5718-1965-0178586-1.pdf
https://community.ams.org/journals/mcom/1965-19-090/S0025-5718-1965-0178586-1/S0025-5718-1965-0178586-1.pdf
https://community.ams.org/journals/mcom/1965-19-090/S0025-5718-1965-0178586-1/S0025-5718-1965-0178586-1.pdf
https://doi.org/10.1109/TASSP.1987.1165218
https://doi.org/10.1109/TASSP.1987.1165218
https://doi.org/10.1109/TASSP.1987.1165218
https://doi.org/10.1109/TASSP.1987.1165218
https://doi.org/10.1016/0165-1684(90)90158-U
https://doi.org/10.1016/0165-1684(90)90158-U
https://doi.org/10.1016/0165-1684(90)90158-U
https://link.springer.com/chapter/10.1007/978-0-8176-4948-7_2
https://link.springer.com/chapter/10.1007/978-0-8176-4948-7_2
https://doi.org/10.1109/TCSI.2009.2017125
https://doi.org/10.1109/TCSI.2009.2017125
https://doi.org/10.1109/TCSI.2009.2017125
https://doi.org/10.1109/TCSI.2009.2017125
https://doi.org/10.1109/MSP.2014.2329131
https://doi.org/10.1109/MSP.2014.2329131
https://doi.org/10.1109/MSP.2014.2329131
https://doi.org/10.1109/MSP.2014.2329131
https://www.jstage.jst.go.jp/article/elex/13/13/13_13.20160504/_article/-char/ja/
https://www.jstage.jst.go.jp/article/elex/13/13/13_13.20160504/_article/-char/ja/
https://www.jstage.jst.go.jp/article/elex/13/13/13_13.20160504/_article/-char/ja/
https://doi.org/10.1109/PROC.1978.10837
https://doi.org/10.1109/PROC.1978.10837
https://doi.org/10.1109/PROC.1978.10837
https://doi.org/10.1109/JRPROC.1942.234333
https://doi.org/10.1109/JRPROC.1942.234333
https://doi.org/10.1109/JRPROC.1942.234333
https://doi.org/10.1137/1.9781611973099.93
https://doi.org/10.1137/1.9781611973099.93
https://doi.org/10.1137/1.9781611973099.93
https://doi.org/10.1137/1.9781611973099.93
https://doi.org/10.1137/1.9781611973099.93
https://dl.acm.org/doi/abs/10.1145/2213977.2214029
https://dl.acm.org/doi/abs/10.1145/2213977.2214029
https://dl.acm.org/doi/abs/10.1145/2213977.2214029
https://dl.acm.org/doi/abs/10.1145/2213977.2214029
https://doi.org/10.1109/TNET.2007.892882
https://doi.org/10.1109/TNET.2007.892882
https://doi.org/10.1109/TNET.2007.892882
https://doi.org/10.1109/TNET.2007.892882
https://doi.org/10.13053/cys-23-1-2999
https://doi.org/10.13053/cys-23-1-2999
https://doi.org/10.13053/cys-23-1-2999
https://doi.org/10.13053/cys-23-1-2999
https://digital-library.theiet.org/content/journals/10.1049/ip-vis_20045066
https://digital-library.theiet.org/content/journals/10.1049/ip-vis_20045066
https://digital-library.theiet.org/content/journals/10.1049/ip-vis_20045066
https://doi.org/10.1049/iet-spr:20060329
https://doi.org/10.1049/iet-spr:20060329
https://doi.org/10.1049/iet-spr:20060329
https://doi.org/10.1049/iet-spr:20060329
https://books.google.co.in/books?hl=en&lr=&id=fwFBEAAAQBAJ&oi=fnd&pg=PR5&dq=Jones,+K.J.+(2021).+The+Regularized+Fast+Hartley+Transform:+Low-Complexity+Parallel+Computation+of+FHT+in+One+and+Multiple+Dimensions.+Springer.&ots=OSV1p1Xe6m&sig=ZHRPcmMyyRLOFs7lrKMbv_fEx30&redir_esc=y#v=onepage&q=Jones%2C%20K.J.%20(2021).%20The%20Regularized%20Fast%20Hartley%20Transform%3A%20Low-Complexity%20Parallel%20Computation%20of%20FHT%20in%20One%20and%20Multiple%20Dimensions.%20Springer.&f=false
https://books.google.co.in/books?hl=en&lr=&id=fwFBEAAAQBAJ&oi=fnd&pg=PR5&dq=Jones,+K.J.+(2021).+The+Regularized+Fast+Hartley+Transform:+Low-Complexity+Parallel+Computation+of+FHT+in+One+and+Multiple+Dimensions.+Springer.&ots=OSV1p1Xe6m&sig=ZHRPcmMyyRLOFs7lrKMbv_fEx30&redir_esc=y#v=onepage&q=Jones%2C%20K.J.%20(2021).%20The%20Regularized%20Fast%20Hartley%20Transform%3A%20Low-Complexity%20Parallel%20Computation%20of%20FHT%20in%20One%20and%20Multiple%20Dimensions.%20Springer.&f=false
https://books.google.co.in/books?hl=en&lr=&id=fwFBEAAAQBAJ&oi=fnd&pg=PR5&dq=Jones,+K.J.+(2021).+The+Regularized+Fast+Hartley+Transform:+Low-Complexity+Parallel+Computation+of+FHT+in+One+and+Multiple+Dimensions.+Springer.&ots=OSV1p1Xe6m&sig=ZHRPcmMyyRLOFs7lrKMbv_fEx30&redir_esc=y#v=onepage&q=Jones%2C%20K.J.%20(2021).%20The%20Regularized%20Fast%20Hartley%20Transform%3A%20Low-Complexity%20Parallel%20Computation%20of%20FHT%20in%20One%20and%20Multiple%20Dimensions.%20Springer.&f=false
https://doi.org/10.1093/pasj/64.2.29
https://doi.org/10.1093/pasj/64.2.29
https://doi.org/10.1093/pasj/64.2.29
https://doi.org/10.1093/pasj/64.2.29
https://doi.org/10.1093/pasj/64.2.29
https://doi.org/10.1109/TCSI.2019.2918403

Volume 1 | Issue 2 | 88OA J Applied Sci Technol, 2023

Copyright: ©2023 Keith John Jones. This is an open-access article
distributed under the terms of the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any
medium, provided the original author and source are credited.

https://opastpublishers.com

Gustafsson, O. (2019). A 1 million-point FFT on a single
FPGA. IEEE Transactions on Circuits and Systems I:
Regular Papers, 66(10), 3863-3873.

28.	 Katevenis, M., & Ioannou, A. (2001, June). Pipelined
Heap (priority queue) Management for Advanced
Scheduling in High Speed Networks. In IEEE Int. Conf. on
Communications (lCC2001).

29.	 Li, W., Yu, F., & Ma, Z. (2015). Efficient circuit for parallel
bit reversal. IEEE Transactions on Circuits and Systems II:
Express Briefs, 63(4), 381-385.

30.	 López-Parrado, A., & Velasco-Medina, J. (2016). Algorithm
for wideband spectrum sensing based on sparse Fourier
transform. DYNA, 83(198), 79-86.

31.	 Martens, J. B. (1984). Discrete Fourier transform algorithms
for real valued sequences. IEEE transactions on acoustics,

speech, and signal processing, 32(2), 390-396.
32.	 www.mathworks.com.
33.	 Maxfield, C. (2004). The design warrior's guide to FPGAs:

devices, tools and flows. Elsevier.
34.	 Niven, I., Zuckerman, H. S., & Montgomery, H. L. (1991).

An introduction to the theory of numbers. John Wiley &
Sons.

35.	 Schumacher, J., & Püschel, M. (2014, October). High-
performance sparse fast Fourier transforms. In 2014 IEEE
Workshop on Signal Processing Systems (SiPS) (pp. 1-6).
IEEE.

36.	 Volder, J. E. (1959). The CORDIC trigonometric computing
technique. IRE Transactions on electronic computers, 8(3),
330-334.

37.	 www.xilinx.com.

https://doi.org/10.1109/TCSI.2019.2918403
https://doi.org/10.1109/TCSI.2019.2918403
https://doi.org/10.1109/TCSI.2019.2918403
https://doi.org/10.1109/TCSII.2015.2504943
https://doi.org/10.1109/TCSII.2015.2504943
https://doi.org/10.1109/TCSII.2015.2504943
https://doi.org/10.15446/dyna.v83n198.48654
https://doi.org/10.15446/dyna.v83n198.48654
https://doi.org/10.15446/dyna.v83n198.48654
https://doi.org/10.1109/TASSP.1984.1164310
https://doi.org/10.1109/TASSP.1984.1164310
https://doi.org/10.1109/TASSP.1984.1164310
https://books.google.co.in/books?hl=en&lr=&id=dnuwr2xOFpUC&oi=fnd&pg=PP1&dq=Maxfield,+C.+(2004).+The+Design+Warrior%E2%80%99s+Guide+to+FPGAs.+Newnes.&ots=YnKkbG53Yl&sig=-IMAEZgz6jWObB2Qh2OZbtHt28Y&redir_esc=y#v=onepage&q&f=false
https://books.google.co.in/books?hl=en&lr=&id=dnuwr2xOFpUC&oi=fnd&pg=PP1&dq=Maxfield,+C.+(2004).+The+Design+Warrior%E2%80%99s+Guide+to+FPGAs.+Newnes.&ots=YnKkbG53Yl&sig=-IMAEZgz6jWObB2Qh2OZbtHt28Y&redir_esc=y#v=onepage&q&f=false
https://books.google.co.in/books?hl=en&lr=&id=Tt6kEAAAQBAJ&oi=fnd&pg=PP1&dq=Nivan,+I.+%26+Zuckerman,+H.S.+(1980).+An+Introduction+to+the+Theory+of+Numbers.+John+Wiley+%26+Sons.&ots=4Y6Sb_6ZL2&sig=NdaD5m5fiBqqeFZurd6LP-tJgiI&redir_esc=y#v=onepage&q&f=false
https://books.google.co.in/books?hl=en&lr=&id=Tt6kEAAAQBAJ&oi=fnd&pg=PP1&dq=Nivan,+I.+%26+Zuckerman,+H.S.+(1980).+An+Introduction+to+the+Theory+of+Numbers.+John+Wiley+%26+Sons.&ots=4Y6Sb_6ZL2&sig=NdaD5m5fiBqqeFZurd6LP-tJgiI&redir_esc=y#v=onepage&q&f=false
https://books.google.co.in/books?hl=en&lr=&id=Tt6kEAAAQBAJ&oi=fnd&pg=PP1&dq=Nivan,+I.+%26+Zuckerman,+H.S.+(1980).+An+Introduction+to+the+Theory+of+Numbers.+John+Wiley+%26+Sons.&ots=4Y6Sb_6ZL2&sig=NdaD5m5fiBqqeFZurd6LP-tJgiI&redir_esc=y#v=onepage&q&f=false
https://doi.org/10.1109/SiPS.2014.6986055
https://doi.org/10.1109/SiPS.2014.6986055
https://doi.org/10.1109/SiPS.2014.6986055
https://doi.org/10.1109/SiPS.2014.6986055
https://doi.org/10.1109/TEC.1959.5222693
https://doi.org/10.1109/TEC.1959.5222693
https://doi.org/10.1109/TEC.1959.5222693
http://www.xilinx.com/

