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1. Introduction
Let's consider an example involving a messaging system, 
whenever a message is sent from one user to another, such 
as user1 sending a message to user2, the message is stored in 
user2's database. Following this action, several tasks need to be 
performed: Notify user2. Send an email to user2 if they haven't 
read messages in the last 24 hours. Update relevant metrics in 
analytics. However, we don't want the sender of the message to 
wait for these tasks to be completed. Additionally, if any of the 
above tasks fail, it should not imply that the message itself failed 
to be sent successfully. How can we achieve immediate success? 
To address these requirements, we utilize a Persistent Queue. 
A Persistent Queue is durable, meaning that data is written to 
a hard disk to ensure it is not lost. Persistent Queues work on 
a model called pub-sub (Publish Subscribe) such as apache 
Kafka. Kafka uses Zookeeper internally, Zookeeper serves 

as a dis-tributed coordination service for Kafka, providing 
essential functionalities such as cluster coordination, metadata 
management, leader election, and configuration management, 
which are crucial for Kafka's re-liability, scalability, and fault 
tolerance. Why opt for Zookeeper? In a Master-Slave architecture, 
the mas-ter is the central point for all write operations, excluding 
the slave machines. Consequently, all clients (app servers) need 
to be aware of the current master. While this is manageable 
when the master remains consistent, the challenge arises if the 
master becomes unavailable. In such cases, a new master needs 
to be selected, and all machines must synchronize and be aware 
of the change. If posed as a problem, how would one address 
this issue? A simplistic approach involves having a dedicated 
machine assigned the sole task of tracking the master. Whenever 
an app server needs information about the current master, it 
would query this designated machine.



 Volume 3 | Issue 2 | 2J Curr Trends Comp Sci Res, 2024

Sourabh Sethi, Sarah Panda, Sandeep Hooda 
 

While this is manageable when the master remains consistent, the challenge arises if the 
master becomes unavailable. In such cases, a new master needs to be selected, and all 
machines must synchronize and be aware of the change. If posed as a problem, how would 
one address this issue? A simplistic approach involve having a dedicated machine as-
signed the sole task of tracking the master. Whenever an app server needs information 
about the current master, it would query this designated machine. 
 
 
 
 
 

 
 
 

 

Figure 1: Who is the Master? 

Nevertheless, there are two concerns associated with this strategy. 
1.) The designated machine becomes a sole point of failure; if it experiences downtime, 

write operations cease, even if the master remains operational. 
2.) Introducing an extra hop for every request is a drawback, as it necessitates determin-

ing the master. To address concern 1, an alternative could be employing not just one 
machine but rather a group of machines or clusters. 

 

Figure 2: Cluster of Machine  

How do these machines ascertain the master's identity? How can we guarantee consistent 
information about the master across all machines? How do we enable direct access for 
app servers to the master without additional hops? The solution lies in a cluster manage-
ment system like Zookeeper. 

2. Zookeeper 
2.1. Strongly Consistent Consensus System 

Zookeeper is a versatile system designed to maintain data in a strongly consistent format, 
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Nevertheless, there are two concerns associated with this 
strategy.
1.) The designated machine becomes a sole point of failure; if 
it experiences downtime, write operations cease, even if the 
master remains operational.

2.) Introducing an extra hop for every request is a drawback, as 
it necessitates determining the master. To address concern 1, an 
alternative could be employing not just one machine but rather a 
group of machines or clusters.

Figure 2: Cluster of Machine

How do these machines ascertain the master's identity? How can 
we guarantee consistent information about the master across all 
machines? How do we enable direct access for app servers to the 
master with-out ad-dictional hops? The solution lies in a cluster 
management system like Zookeeper.

2. Zookeeper
2.1. Strongly Consistent Consensus System
Zookeeper is a versatile system designed to maintain data in a 
strongly consistent format, with further de-tails to be discussed 
later in this paper. The storage structure in Zookeeper closely 
resembles that of a file system. For instance, there is a root folder 
containing a collection of files or directories.
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All these files are known as ZK nodes in zookeeper.  
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Every file in Zookeeper falls into one of two categories Ephemeral & Persistent 

Ephemeral: Ephemeral nodes (not to be confused with machines; nodes represent files in 
the context of Zookeeper) are files where the data written is only valid as long as the ma-
chine/session that wrote the data remains active. In simpler terms, the data on these nodes 
remains valid only if the machine continuously sends heartbeats to ensure its presence. 
Once an ephemeral node is created, other machines/sessions cannot write any data to it. 
An ephemeral node is exclusively owned by exactly one session/machine, allowing only 
the owner to modify the data. If the owner fails to send a heartbeat, the session termi-
nates, and the ephemeral node is automatically deleted. Subsequently, any other machine 
can create the same node/file with different data. These nodes are commonly employed 
for tracking machine status, determining the master of a cluster, implementing distributed 
locks, etc. Further details will be provided later. 

Persistent: Persistent nodes are nodes that persist unless explicitly deleted. They are typi-
cally utilized for storing configuration variables. 

2.3. ZK Node for consistency / Master Election 

For the sake of simplicity, let's envision Zookeeper as a solitary machine initially 
(we'll address multiple machines later on). Consider a cluster named X consisting of 
several storage machines. 
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All these files are known as ZK nodes in zookeeper.

2.2. ZK Nodes
Every file in Zookeeper falls into one of two categories 
Ephemeral & Persistent Ephemeral: Ephemeral nodes (not to be 
confused with machines; nodes represent files in the context of 
Zookeeper) are files where the data written is only valid as long 
as the machine/session that wrote the data remains active. In 
simpler terms, the data on these nodes remains valid only if the 

machine continuously sends heartbeats to ensure its presence. 
Once an ephemeral node is created, other machines/sessions 
cannot write any data to it. An ephemeral node is exclusively 
owned by exactly one session/machine, al-lowing only the 
owner to modify the data. If the owner fails to send a heartbeat, 
the session terminates, and the ephemeral node is automatically 
deleted. Subsequently, any other machine can create the same 
node/file with different data. These nodes are commonly 
employed for tracking machine status, deter-mining the master 
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of a cluster, implementing distributed locks, etc. Further details 
will be provided later.

Persistent: Persistent nodes are nodes that persist unless explicitly 
deleted. They are typically utilized for storing configuration 
variables.

2.3. ZK Node for consistency / Master Election
For the sake of simplicity, let's envision Zookeeper as a solitary 
machine initially (we'll address multiple machines later on). 
Consider a cluster named X consisting of several storage 
machines.Sourabh Sethi, Sarah Panda, Sandeep Hooda 

 

 

Figure 4: ZK nodes Consistency 

All of them aspire to become the master. However, only one can assume this role. 
Thus, we face the challenge of determining (who will become the master). To address 
this, it instruct all machines to attempt writing their IP addresses as data to the same 
ephemeral Zookeeper node (let's designate it as /clusterx/master_ip). It's important to 
note that only one machine will successfully write to this ephemeral node; all other 
attempts will fail. Suppose M2 successfully writes its IP address to 
/clusterx/master_ip. Now, as long as M2 remains operational and continues sending 
heartbeats, /clusterx/master_ip will retain M2's IP address. Consequently, any machine 
attempting to read data from /clusterx/master_ip will receive M2's IP address in re-
sponse. 

2.4 ZK: Setting a watch 

The issue of additional hops persists. If every app server and machine must communicate 
with Zookeeper for every request to determine the master, it not only burdens Zookeeper 
with excessive load but also increases the number of hops for each request. How can we 
tackle this challenge? Upon reflection, it's apparent that the data on ephemeral nodes 
changes infrequently, perhaps only once a day or even less frequently. It seems impracti-
cal for every client to repeatedly query Zookeeper for the master value when it remains 
static most of the time. Therefore, why not invert the process? Instead of clients continu-
ally querying for updates, we can provide them with the current value, instructing them to 
use it without the need for repeated inquiries. We assure them that whenever this value is 
updated, they will receive notification. Zookeeper employs a similar approach to resolve 
this issue through a "subscribe to updates on this ZK node" feature. On any Zookeeper 
node, you can establish a watch (subscribe to updates). In Zookeeper, all read operations 
offer the option of setting a watch as a secondary action. For instance, if I'm an app server 
and I set a watch on /clusterx/master_ip, I, along with all other clients who have set a 
watch on that node, will be notified when the node's data changes or when it is deleted. 
This implies that when clients set a watch, Zookeeper maintains a list of subscribers for 
each node/file. 

2.5. ZK: Architecture 

Zookeeper cannot function on a single machine alone. How does this functionality extend 
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All of them aspire to become the master. However, only one 
can assume this role. Thus, we face the challenge of determining 
(who will become the master). To address this, it instructs all 
machines to at-tempt writing their IP addresses as data to the 
same ephemeral Zookeeper node (let's designate it as /clusterx/
master_ip). It's important to note that only one machine will 
successfully write to this ephemeral node; all other attempts 
will fail. Suppose M2 successfully writes its IP address to /
clusterx/master_ip. Now, as long as M2 remains operational 
and continues sending heartbeats, /clusterx/master_ip will retain 
M2's IP address. Consequently, any machine attempting to read 
data from /clusterx/master_ip will receive M2's IP address in 
response.

2.4 ZK: Setting A Watch
The issue of additional hops persists. If every app server and 
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request. How can we tackle this challenge? Upon reflection, it's 
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master value when it remains static most of the time. Therefore, 
why not invert the process? Instead of clients continually que-
rying for updates, we can provide them with the current value, 
instructing them to use it without the need for repeated inquiries. 
We assure them that whenever this value is updated, they will 
receive notification. Zookeeper employs a similar approach to 
resolve this issue through a "subscribe to updates on this ZK 
node" feature. On any Zookeeper node, you can establish a 
watch (subscribe to updates). In Zookeeper, all read operations 
offer the option of setting a watch as a secondary action. For 
instance, if I'm an app server and I set a watch on /clusterx/
master_ip, I, along with all other clients who have set a watch 
on that node, will be notified when the node's data changes or 
when it is deleted. This implies that when clients set a watch, 
Zookeeper maintains a list of subscribers for each node/file.

2.5. ZK: Architecture
Zookeeper cannot function on a single machine alone. How does 
this functionality extend across multiple machines?
The current issue lies in the fact that Zookeeper operates on a 
single machine, which consequently creates a single point of 
failure. Therefore, Zookeeper is designed to function across 
multiple machines, typically 
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tion across multiple machines, typically an odd number of them.Within the Zookeeper 
cluster, machines collectively elect a leader or master from among themselves. When set-
ting up the cluster or in the event of the existing leader's failure, the first task is to elect a 
new leader. Suppose Z3 is elected as the leader; any write operation, such as modifying 
the /master IP address to a new value, is initially directed to the leader. The leader then 
broadcasts this change to all other machines. For a write operation to be considered suc-
cessful, at least the majority of machines, including the leader, must acknowledge the 
change; otherwise, it is rolled back. For instance, in a cluster of 5 machines, 3 machines 
need to acknowledge for the write to succeed. Even if a machine in the cluster fails, the 
total number of machines remains unchanged, and therefore, even in such cases, 3 ma-
chines need to acknowledge. Thus, if 10 machines were vying to become the master and 
simultaneously sent requests to write to /clusterx/master, all these requests would initially 
be directed to a single machine—the leader. The leader can employ a lock mechanism to 
ensure that only one of these requests proceeds initially. The data is written only if the 
majority of Zookeeper machines acknowledge the request. If not, the data is rolled back, 
the lock is released, and the next request is processed.But why rely on the majority of 
machines? Consider if we allow the write operation to succeed if it is acknowledged by at 
least X/2 number of machines (where X represents the total number of machines). For in-
stance, let's envision a scenario where we have 5 Zookeeper machines. Due to a network 
partition, machines z1 and z2 become disconnected from the other 3 machines.Let's con-
sider the scenario where write1 (/clusterx/master_ip = ip1) occurs on machines z1 and z2, 
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an odd number of them. Within the Zookeeper cluster, machines 
collectively elect a leader or master from among themselves. 
When setting up the cluster or in the event of the existing leader's 
failure, the first task is to elect a new leader. Suppose Z3 is elected 
as the leader; any write operation, such as modifying the /master 
IP address to a new value, is initially directed to the leader. 
The leader then broadcasts this change to all other machines. 
For a write operation to be considered successful, at least the 
majority of machines, including the leader, must acknowledge 
the change; otherwise, it is rolled back. For instance, in a cluster 
of 5 machines, 3 machines need to acknowledge for the write to 
succeed. 

Even if a machine in the cluster fails, the total number of 
machines remains unchanged, and therefore, even in such cases, 
3 machines need to acknowledge. Thus, if 10 machines were 
vying to become the master and simultaneously sent requests 
to write to /clusterx/master, all these requests would initially be 
directed to a single machine—the leader. The leader can employ 
a lock mechanism to ensure that only one of these requests 
proceeds initially. The data is written only if the majority of 
Zookeeper machines acknowledge the request. If not, the data 
is rolled back, the lock is released, and the next request is pro-
cessed. But why rely on the majority of machines? Consider if 
we allow the write operation to succeed if it is acknowledged by 
at least X/2 number of machines (where X represents the total 
number of ma-chines). For instance, let's envision a scenario 
where we have 5 Zookeeper machines. Due to a network 
partition, machines z1 and z2 become disconnected from the 
other 3 machines. Let's consider the scenario where write1 (/
clusterx/master_ip = ip1) occurs on machines z1 and z2, while 
another writes, write2 (/clusterx/master_ip = ip2), happens for 
the same Zookeeper (ZK) node on machines z4 and z5. When 
attempting to read (/clusterx/master_ip), half of the machines 
would indicate that ip1 is the master, while the other half would 
suggest ip2 as the master. This situation is commonly referred to 
as split brain. Thus, the implementation of Quorum or Majority 
is essential to avoid the occurrence of two separate sets of 
machines asserting different values as the answer. Consistency 
is crucial in such cases. Therefore, until the write operation is 
successful on the majority of the machines, we cannot confirm 
success. In the described scenario, both ip1 and ip2 attempt to 
write to Z3, and whichever operation succeeds will determine 
the master address, while the other operation will fail.

2.6. Master Dies
Consider a scenario where the master has written its IP address to 
/clusterx/master_ip. All app servers and slaves have set a watch 
on the same node to track the current master IP address. Now, let's 

envision what happens if the master dies: The master machine 
ceases sending heartbeats to Zookeeper for the ephemeral node /
clusterx/master_ip. Consequently, the ephemeral node /clusterx/
master_ip is deleted.

All subscribers are notified of this change. Slaves, upon receiving 
this update, initiate attempts to become masters again. The first 
to successfully write to Zookeeper assumes the role of the new 
master.

App servers delete the local value of master_ip. They must then 
read from Zookeeper, set a new watch, and update the local 
master_ip value whenever a new write request occurs. If they 
receive a null value, the request fails, indicating that a new 
master has not yet been selected. When the old master comes 
back online, it reads from the same Zookeeper node to determine 
the new master machine and assumes the role of a slave.

Unless it returns quickly and finds the Zookeeper node to be null, 
it joins other slaves in attempting to become the new master.

3. Async Tasks
To address such scenarios where asynchronous tasks, need to 
be handled, we utilize a concept called Per-sistent Queue. A 
Persistent Queue ensures durability, implying that data is written 
onto a hard disk to prevent any risk of data loss. Persistent Queues 
work on a model called pub-sub (Publish Subscribe) whereas 
zookeeper is used within Kafka cluster to manage Kafka cluster. 
 
3.1. Pub Sub 
Pub sub comprises two components: Publish: In this part, 
all events of interest that necessitate subsequent actions are 
identified. For instance, sending a message constitutes an event, 
as does a customer purchasing an item on Flipkart. These events 
are published onto a persistent queue. 

Subscriber: Various events may attract different types of 
subscribers interested in those events. Subscrib-ers consume the 
events they have subscribed to from the queue. For example, in 
the scenario of a message notification system, a message email 
system, and a message analytics system would subscribe to the 
event of "a message sent" on the queue. Similarly, an invoice 
generation system might subscribe to the event of "a purchase 
made on Flip Kart." There can be multiple types of events being 
published, and each event may have multiple types of subscribers 
consuming these events. Topics: Within a queue, segregation of 
topics is necessary because the system does not want to subscribe 
to the entire queue; rather, it needs to subscribe to specific types 
of events. Each of these specific events is referred to as a topic.
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These are the two events, and subsequently, we desire specific actions to occur. 
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Figure 6: Publish Event

These are the two events, and subsequently, we desire specific actions to occur.

Here, both events are distinct from each other. If we were to publish both events in a single persistent queue, and suppose the invoice 
generation system has subscribed to the queue, it would receive a consid-erable amount of irrelevant information.
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gle persistent queue, and suppose the invoice generation system has subscribed to the 
queue, it would receive a considerable amount of irrelevant information. 

 

Therefore, we assert that not all events are equal, leading us to classify them into different 
topics. 

 

Figure 7: Publish Event on Different Topics 

Now, the invoice generation system has exclusively subscribed to Topic1, ensuring it on-
ly receives messages relevant to that topic. One prominent high-throughput system that 
incorporates persistent queues and supports topics is Kafka. In essence, persistent queues 
assist in managing systems where producers and consumers operate at varying rates, 
asynchronously. These queues provide assurance against event loss within a specified re-
tention period and enable consumers to work asynchronously without impeding the pro-
ducers' primary tasks. 

 

3.2. Apache Kafka 

Terminologies: Publisher is the systems responsible for publishing events to a topic are 
referred to as publishers. There may be multiple publishers. Subscriber Systems that 
consume events from subscribed topics (/topics) are known as subscribers. Every ma-
chine within the Kafka cluster is termed a broker. This term is simply a sophisticated 
designation for machines storing published events for a topic. Partition: Within a single 
topic, it is possible to configure multiple partitions.  
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Figure 7: Publish Event on Different Topics

Now, the invoice generation system has exclusively subscribed 
to Topic1, ensuring it only receives mes-sages relevant to that 
topic. One prominent high-throughput system that incorporates 
persistent queues and supports topics is Kafka. In essence, 
persistent queues assist in managing systems where producers 
and consumers operate at varying rates, asynchronously. These 
queues provide assurance against event loss within a specified 
retention period and enable consumers to work asynchronously 
without impeding the producers' primary tasks.

3.2. Apache Kafka
Terminologies: Publisher is the systems responsible for 
publishing events to a topic are referred to as publishers. There 
may be multiple publishers. Subscriber Systems that consume 
events from subscribed topics (/topics) are known as subscribers. 
Every machine within the Kafka cluster is termed a broker. This 
term is simply a sophisticated designation for machines storing 
published events for a topic. Partition: Within a single topic, it is 
possible to configure multiple partitions. 
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Figure 8: Apache kafka Architecture

The utilization of multiple partitions allows Kafka to effectively shard or distribute load internally. Additionally, it aids consumers 
in achieving faster consumption rates.
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Event Retention Period: Kafka, like any persistent queue, is designed to store events 
temporarily rather than indefinitely. Therefore, you define an event retention period, 
which denotes the duration for which an event is retained. Events older than the retention 
period are periodically cleaned up. What if a topic becomes so large, with numerous pro-
ducers contributing to it, that the entire topic, even within the retention period, cannot fit 
in a single machine? How can you shard it? Kafka enables you to specify the number of 
partitions for each topic. While a single partition cannot be divided across machines, dif-
ferent partitions can reside on different machines. Increasing the number of partitions al-
lows Kafka to distribute topic + partition assignments across various machines internally. 
With multiple partitions, the structure no longer resembles a simple queue. Ensuring the 
ordering of messages between partitions becomes challenging. 

For instance, in a topic where messages m1, m2, m3, m4, and m5 are assigned to differ-
ent partitions, consumers lack a mechanism to determine the next most recent message 
across partitions. Introducing mechanisms to maintain message ordering between parti-
tions incurs additional overhead and may not be conducive to high throughput. In many 
cases, strict message ordering may not even be necessary. Consider the scenario of a 
messaging system like Flipkart, where messages from different users to vendors are pub-
lished on a topic named Messages. While the order of messages between different users 
may not be crucial, maintaining the order of messages from the same user is essential for 
coherence. Kafka offers a solution to ensure that all messages from the same user are 
routed to the same partition. Producers can optionally specify a key along with the mes-
sage, and Kafka employs a hash function (hash(key) % num_partitions) to determine the 
partition to which the message should be sent. Messages with the same key are directed 
to the same partition, ensuring that messages from the same sender are grouped together. 
This simplifies the task of maintaining message ordering within the same partition. 
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What if a topic becomes exceedingly large, making it impractical for a single consumer to 
process all events efficiently? What is the solution in such a scenario? In such cases, the 
only viable approach is to employ multiple consumers operating in parallel, each han-
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Event Retention Period: Kafka, like any persistent queue, is 
designed to store events temporarily rather than indefinitely. 
Therefore, you define an event retention period, which denotes 
the duration for which an event is retained. Events older than 
the retention period are periodically cleaned up. What if a topic 
becomes so large, with numerous producers contributing to it, 
that the entire topic, even within the reten-tion period, cannot 
fit in a single machine? How can your shard it? Kafka enables 
you to specify the number of partitions for each topic. While 
a single partition cannot be divided across machines, different 
partitions can reside on different machines. Increasing the 
number of partitions allows Kafka to distribute topic + partition 
assignments across various machines internally. With multiple 
partitions, the structure no longer resembles a simple queue. 
Ensuring the ordering of messages between partitions becomes 
chal-lenging.

For instance, in a topic where messages m1, m2, m3, m4, 
and m5 are assigned to different partitions, consumers lack a 
mechanism to determine the next most recent message across 
partitions. Introducing mechanisms to maintain message 
ordering between partitions incurs additional overhead and 
may not be conducive to high throughput. In many cases, strict 
message ordering may not even be necessary. Con-sider the 
scenario of a messaging system like Flipkart, where messages 
from different users to vendors are published on a topic named 
Messages. While the order of messages between different users 

may not be crucial, maintaining the order of messages from the 
same user is essential for coherence. Kafka offers a solution to 
ensure that all messages from the same user are routed to the 
same partition. Producers can optionally specify a key along with 
the message, and Kafka employs a hash function (hash(key) % 
num_partitions) to determine the partition to which the message 
should be sent. Messages with the same key are directed to the 
same partition, ensuring that messages from the same sender 
are grouped together. This simplifies the task of maintaining 
message ordering within the same partition.

3.3. Consumer Group
What if a topic becomes exceedingly large, making it impractical 
for a single consumer to process all events efficiently? What is 
the solution in such a scenario? In such cases, the only viable 
approach is to employ multiple consumers operating in parallel, 
each handling a different subset of events. Kafka facili-tates 
this through consumer groups. A consumer group comprises a 
set of consumer machines, all-consuming from the same topic. 
Internally, each consumer within the consumer group is assigned 
ex-clusively to one or more partitions (rendering it redundant to 
have more consumer machines than parti-tions). Consequently, 
each consumer exclusively receives messages from the 
partitions it is tagged to. This enables the concurrent processing 
of events from topics across multiple consumers within the same 
consumer group.
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Figure 10: Consumer Group 

In the event of one or more machines (brokers) failing within Kafka, how can it guarantee 
that events are never lost? The solution remains consistent with other scenarios is replica-
tion. Kafka allows you to configure the desired number of replicas. Subsequently, for 
each partition, primary and secondary replicas are allocated across machines or brokers. 
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