
 Volume 3 | Issue 2 | 1

Design and Optimization of a Zookeeper and Kafka-Based Messaging Broker for
Asynchronous Processing in High Availability and Low Latency Applications

Research Article

Sourabh Sethi1*, Sarah Panda2 and Sandeep Hooda3

*Corresponding Author
Sourabh Sethi, Design and Optimization of a Zookeeper and Kafka-Based
Messaging Broker for Asynchronous Processing in High Availability and Low
Latency Applications.

Submitted: 2024, Feb 13; Accepted: 2024, Mar 08; Published: 2024, Mar 12

J Curr Trends Comp Sci Res, 2024

Citation: Sethi, S., Panda, S., Hooda, S. (2024). Design and Optimization of a Zookeeper and Kafka-Based Messaging Broker
for Asynchronous Processing in High Availability and Low Latency Applications. J Curr Trends Comp Sci Res, 3(2), 01-07.

Abstract
In modern distributed systems, achieving high availability and low latency is crucial for ensuring optimal performance and
responsiveness. This paper aims to explore and enhance the capabilities of a messaging broker system by leveraging Apache
Zookeeper and Apache Kafka for asynchronous processing. The focus is on designing a robust architecture that ensures high
availability while minimizing processing delays, thus meeting the stringent requirements of contemporary applications.

1Sourabh Sethi, Infosys, Jersey City, New Jersey, 07306,
USA

2Sarah Panda, Microsoft, Seattle, Washington, 98101,
USA

3Sandeep Hooda, Infosys, Alpharetta, GA, 30004, USA

Journal of Current Trends in Computer Science Research
ISSN: 2836-8495

Keywords: Apache Zookeeper, Apache Kafka, Messaging, Low Latency Applications

1. Introduction
Let's consider an example involving a messaging system,
whenever a message is sent from one user to another, such
as user1 sending a message to user2, the message is stored in
user2's database. Following this action, several tasks need to be
performed: Notify user2. Send an email to user2 if they haven't
read messages in the last 24 hours. Update relevant metrics in
analytics. However, we don't want the sender of the message to
wait for these tasks to be completed. Additionally, if any of the
above tasks fail, it should not imply that the message itself failed
to be sent successfully. How can we achieve immediate success?
To address these requirements, we utilize a Persistent Queue.
A Persistent Queue is durable, meaning that data is written to
a hard disk to ensure it is not lost. Persistent Queues work on
a model called pub-sub (Publish Subscribe) such as apache
Kafka. Kafka uses Zookeeper internally, Zookeeper serves

as a dis-tributed coordination service for Kafka, providing
essential functionalities such as cluster coordination, metadata
management, leader election, and configuration management,
which are crucial for Kafka's re-liability, scalability, and fault
tolerance. Why opt for Zookeeper? In a Master-Slave architecture,
the mas-ter is the central point for all write operations, excluding
the slave machines. Consequently, all clients (app servers) need
to be aware of the current master. While this is manageable
when the master remains consistent, the challenge arises if the
master becomes unavailable. In such cases, a new master needs
to be selected, and all machines must synchronize and be aware
of the change. If posed as a problem, how would one address
this issue? A simplistic approach involves having a dedicated
machine assigned the sole task of tracking the master. Whenever
an app server needs information about the current master, it
would query this designated machine.

 Volume 3 | Issue 2 | 2J Curr Trends Comp Sci Res, 2024

Sourabh Sethi, Sarah Panda, Sandeep Hooda

While this is manageable when the master remains consistent, the challenge arises if the
master becomes unavailable. In such cases, a new master needs to be selected, and all
machines must synchronize and be aware of the change. If posed as a problem, how would
one address this issue? A simplistic approach involve having a dedicated machine as-
signed the sole task of tracking the master. Whenever an app server needs information
about the current master, it would query this designated machine.

Figure 1: Who is the Master?

Nevertheless, there are two concerns associated with this strategy.
1.) The designated machine becomes a sole point of failure; if it experiences downtime,

write operations cease, even if the master remains operational.
2.) Introducing an extra hop for every request is a drawback, as it necessitates determin-

ing the master. To address concern 1, an alternative could be employing not just one
machine but rather a group of machines or clusters.

Figure 2: Cluster of Machine

How do these machines ascertain the master's identity? How can we guarantee consistent
information about the master across all machines? How do we enable direct access for
app servers to the master without additional hops? The solution lies in a cluster manage-
ment system like Zookeeper.

2. Zookeeper
2.1. Strongly Consistent Consensus System

Zookeeper is a versatile system designed to maintain data in a strongly consistent format,

Sourabh Sethi, Sarah Panda, Sandeep Hooda

While this is manageable when the master remains consistent, the challenge arises if the
master becomes unavailable. In such cases, a new master needs to be selected, and all
machines must synchronize and be aware of the change. If posed as a problem, how would
one address this issue? A simplistic approach involve having a dedicated machine as-
signed the sole task of tracking the master. Whenever an app server needs information
about the current master, it would query this designated machine.

Figure 1: Who is the Master?

Nevertheless, there are two concerns associated with this strategy.
1.) The designated machine becomes a sole point of failure; if it experiences downtime,

write operations cease, even if the master remains operational.
2.) Introducing an extra hop for every request is a drawback, as it necessitates determin-

ing the master. To address concern 1, an alternative could be employing not just one
machine but rather a group of machines or clusters.

Figure 2: Cluster of Machine

How do these machines ascertain the master's identity? How can we guarantee consistent
information about the master across all machines? How do we enable direct access for
app servers to the master without additional hops? The solution lies in a cluster manage-
ment system like Zookeeper.

2. Zookeeper
2.1. Strongly Consistent Consensus System

Zookeeper is a versatile system designed to maintain data in a strongly consistent format,

Figure 1: Who is the Master?

Nevertheless, there are two concerns associated with this
strategy.
1.) The designated machine becomes a sole point of failure; if
it experiences downtime, write operations cease, even if the
master remains operational.

2.) Introducing an extra hop for every request is a drawback, as
it necessitates determining the master. To address concern 1, an
alternative could be employing not just one machine but rather a
group of machines or clusters.

Figure 2: Cluster of Machine

How do these machines ascertain the master's identity? How can
we guarantee consistent information about the master across all
machines? How do we enable direct access for app servers to the
master with-out ad-dictional hops? The solution lies in a cluster
management system like Zookeeper.

2. Zookeeper
2.1. Strongly Consistent Consensus System
Zookeeper is a versatile system designed to maintain data in a
strongly consistent format, with further de-tails to be discussed
later in this paper. The storage structure in Zookeeper closely
resembles that of a file system. For instance, there is a root folder
containing a collection of files or directories.

Sourabh Sethi, Sarah Panda, Sandeep Hooda

 3

with further details to be discussed later in this paper. The storage structure in Zookeeper
closely resembles that of a file system. For instance, there is a root folder containing a
collection of files or directories.

Figure 3: ZK nodes
All these files are known as ZK nodes in zookeeper.

2.2. ZK Nodes

Every file in Zookeeper falls into one of two categories Ephemeral & Persistent

Ephemeral: Ephemeral nodes (not to be confused with machines; nodes represent files in
the context of Zookeeper) are files where the data written is only valid as long as the ma-
chine/session that wrote the data remains active. In simpler terms, the data on these nodes
remains valid only if the machine continuously sends heartbeats to ensure its presence.
Once an ephemeral node is created, other machines/sessions cannot write any data to it.
An ephemeral node is exclusively owned by exactly one session/machine, allowing only
the owner to modify the data. If the owner fails to send a heartbeat, the session termi-
nates, and the ephemeral node is automatically deleted. Subsequently, any other machine
can create the same node/file with different data. These nodes are commonly employed
for tracking machine status, determining the master of a cluster, implementing distributed
locks, etc. Further details will be provided later.

Persistent: Persistent nodes are nodes that persist unless explicitly deleted. They are typi-
cally utilized for storing configuration variables.

2.3. ZK Node for consistency / Master Election

For the sake of simplicity, let's envision Zookeeper as a solitary machine initially
(we'll address multiple machines later on). Consider a cluster named X consisting of
several storage machines.

Figure 3: ZK nodes

All these files are known as ZK nodes in zookeeper.

2.2. ZK Nodes
Every file in Zookeeper falls into one of two categories
Ephemeral & Persistent Ephemeral: Ephemeral nodes (not to be
confused with machines; nodes represent files in the context of
Zookeeper) are files where the data written is only valid as long
as the machine/session that wrote the data remains active. In
simpler terms, the data on these nodes remains valid only if the

machine continuously sends heartbeats to ensure its presence.
Once an ephemeral node is created, other machines/sessions
cannot write any data to it. An ephemeral node is exclusively
owned by exactly one session/machine, al-lowing only the
owner to modify the data. If the owner fails to send a heartbeat,
the session terminates, and the ephemeral node is automatically
deleted. Subsequently, any other machine can create the same
node/file with different data. These nodes are commonly
employed for tracking machine status, deter-mining the master

 Volume 3 | Issue 2 | 3J Curr Trends Comp Sci Res, 2024

of a cluster, implementing distributed locks, etc. Further details
will be provided later.

Persistent: Persistent nodes are nodes that persist unless explicitly
deleted. They are typically utilized for storing configuration
variables.

2.3. ZK Node for consistency / Master Election
For the sake of simplicity, let's envision Zookeeper as a solitary
machine initially (we'll address multiple machines later on).
Consider a cluster named X consisting of several storage
machines.Sourabh Sethi, Sarah Panda, Sandeep Hooda

Figure 4: ZK nodes Consistency

All of them aspire to become the master. However, only one can assume this role.
Thus, we face the challenge of determining (who will become the master). To address
this, it instruct all machines to attempt writing their IP addresses as data to the same
ephemeral Zookeeper node (let's designate it as /clusterx/master_ip). It's important to
note that only one machine will successfully write to this ephemeral node; all other
attempts will fail. Suppose M2 successfully writes its IP address to
/clusterx/master_ip. Now, as long as M2 remains operational and continues sending
heartbeats, /clusterx/master_ip will retain M2's IP address. Consequently, any machine
attempting to read data from /clusterx/master_ip will receive M2's IP address in re-
sponse.

2.4 ZK: Setting a watch

The issue of additional hops persists. If every app server and machine must communicate
with Zookeeper for every request to determine the master, it not only burdens Zookeeper
with excessive load but also increases the number of hops for each request. How can we
tackle this challenge? Upon reflection, it's apparent that the data on ephemeral nodes
changes infrequently, perhaps only once a day or even less frequently. It seems impracti-
cal for every client to repeatedly query Zookeeper for the master value when it remains
static most of the time. Therefore, why not invert the process? Instead of clients continu-
ally querying for updates, we can provide them with the current value, instructing them to
use it without the need for repeated inquiries. We assure them that whenever this value is
updated, they will receive notification. Zookeeper employs a similar approach to resolve
this issue through a "subscribe to updates on this ZK node" feature. On any Zookeeper
node, you can establish a watch (subscribe to updates). In Zookeeper, all read operations
offer the option of setting a watch as a secondary action. For instance, if I'm an app server
and I set a watch on /clusterx/master_ip, I, along with all other clients who have set a
watch on that node, will be notified when the node's data changes or when it is deleted.
This implies that when clients set a watch, Zookeeper maintains a list of subscribers for
each node/file.

2.5. ZK: Architecture

Zookeeper cannot function on a single machine alone. How does this functionality extend
across multiple machines?

Figure 4: ZK Nodes Consistency

All of them aspire to become the master. However, only one
can assume this role. Thus, we face the challenge of determining
(who will become the master). To address this, it instructs all
machines to at-tempt writing their IP addresses as data to the
same ephemeral Zookeeper node (let's designate it as /clusterx/
master_ip). It's important to note that only one machine will
successfully write to this ephemeral node; all other attempts
will fail. Suppose M2 successfully writes its IP address to /
clusterx/master_ip. Now, as long as M2 remains operational
and continues sending heartbeats, /clusterx/master_ip will retain
M2's IP address. Consequently, any machine attempting to read
data from /clusterx/master_ip will receive M2's IP address in
response.

2.4 ZK: Setting A Watch
The issue of additional hops persists. If every app server and
machine must communicate with Zookeeper for every request
to determine the master, it not only burdens Zookeeper with
excessive load but also in-creases the number of hops for each
request. How can we tackle this challenge? Upon reflection, it's
ap-parent that the data on ephemeral nodes changes infrequently,
perhaps only once a day or even less fre-quently. It seems
impractical for every client to repeatedly query Zookeeper for the

master value when it remains static most of the time. Therefore,
why not invert the process? Instead of clients continually que-
rying for updates, we can provide them with the current value,
instructing them to use it without the need for repeated inquiries.
We assure them that whenever this value is updated, they will
receive notification. Zookeeper employs a similar approach to
resolve this issue through a "subscribe to updates on this ZK
node" feature. On any Zookeeper node, you can establish a
watch (subscribe to updates). In Zookeeper, all read operations
offer the option of setting a watch as a secondary action. For
instance, if I'm an app server and I set a watch on /clusterx/
master_ip, I, along with all other clients who have set a watch
on that node, will be notified when the node's data changes or
when it is deleted. This implies that when clients set a watch,
Zookeeper maintains a list of subscribers for each node/file.

2.5. ZK: Architecture
Zookeeper cannot function on a single machine alone. How does
this functionality extend across multiple machines?
The current issue lies in the fact that Zookeeper operates on a
single machine, which consequently creates a single point of
failure. Therefore, Zookeeper is designed to function across
multiple machines, typically

Sourabh Sethi, Sarah Panda, Sandeep Hooda

 5

The current issue lies in the fact that Zookeeper operates on a single machine, which
consequently creates a single point of failure. Therefore, Zookeeper is designed to func

Figure 5: ZK Architecture

tion across multiple machines, typically an odd number of them.Within the Zookeeper
cluster, machines collectively elect a leader or master from among themselves. When set-
ting up the cluster or in the event of the existing leader's failure, the first task is to elect a
new leader. Suppose Z3 is elected as the leader; any write operation, such as modifying
the /master IP address to a new value, is initially directed to the leader. The leader then
broadcasts this change to all other machines. For a write operation to be considered suc-
cessful, at least the majority of machines, including the leader, must acknowledge the
change; otherwise, it is rolled back. For instance, in a cluster of 5 machines, 3 machines
need to acknowledge for the write to succeed. Even if a machine in the cluster fails, the
total number of machines remains unchanged, and therefore, even in such cases, 3 ma-
chines need to acknowledge. Thus, if 10 machines were vying to become the master and
simultaneously sent requests to write to /clusterx/master, all these requests would initially
be directed to a single machine—the leader. The leader can employ a lock mechanism to
ensure that only one of these requests proceeds initially. The data is written only if the
majority of Zookeeper machines acknowledge the request. If not, the data is rolled back,
the lock is released, and the next request is processed.But why rely on the majority of
machines? Consider if we allow the write operation to succeed if it is acknowledged by at
least X/2 number of machines (where X represents the total number of machines). For in-
stance, let's envision a scenario where we have 5 Zookeeper machines. Due to a network
partition, machines z1 and z2 become disconnected from the other 3 machines.Let's con-
sider the scenario where write1 (/clusterx/master_ip = ip1) occurs on machines z1 and z2,

Figure 5: ZK Architecture

 Volume 3 | Issue 2 | 4J Curr Trends Comp Sci Res, 2024

an odd number of them. Within the Zookeeper cluster, machines
collectively elect a leader or master from among themselves.
When setting up the cluster or in the event of the existing leader's
failure, the first task is to elect a new leader. Suppose Z3 is elected
as the leader; any write operation, such as modifying the /master
IP address to a new value, is initially directed to the leader.
The leader then broadcasts this change to all other machines.
For a write operation to be considered successful, at least the
majority of machines, including the leader, must acknowledge
the change; otherwise, it is rolled back. For instance, in a cluster
of 5 machines, 3 machines need to acknowledge for the write to
succeed.

Even if a machine in the cluster fails, the total number of
machines remains unchanged, and therefore, even in such cases,
3 machines need to acknowledge. Thus, if 10 machines were
vying to become the master and simultaneously sent requests
to write to /clusterx/master, all these requests would initially be
directed to a single machine—the leader. The leader can employ
a lock mechanism to ensure that only one of these requests
proceeds initially. The data is written only if the majority of
Zookeeper machines acknowledge the request. If not, the data
is rolled back, the lock is released, and the next request is pro-
cessed. But why rely on the majority of machines? Consider if
we allow the write operation to succeed if it is acknowledged by
at least X/2 number of machines (where X represents the total
number of ma-chines). For instance, let's envision a scenario
where we have 5 Zookeeper machines. Due to a network
partition, machines z1 and z2 become disconnected from the
other 3 machines. Let's consider the scenario where write1 (/
clusterx/master_ip = ip1) occurs on machines z1 and z2, while
another writes, write2 (/clusterx/master_ip = ip2), happens for
the same Zookeeper (ZK) node on machines z4 and z5. When
attempting to read (/clusterx/master_ip), half of the machines
would indicate that ip1 is the master, while the other half would
suggest ip2 as the master. This situation is commonly referred to
as split brain. Thus, the implementation of Quorum or Majority
is essential to avoid the occurrence of two separate sets of
machines asserting different values as the answer. Consistency
is crucial in such cases. Therefore, until the write operation is
successful on the majority of the machines, we cannot confirm
success. In the described scenario, both ip1 and ip2 attempt to
write to Z3, and whichever operation succeeds will determine
the master address, while the other operation will fail.

2.6. Master Dies
Consider a scenario where the master has written its IP address to
/clusterx/master_ip. All app servers and slaves have set a watch
on the same node to track the current master IP address. Now, let's

envision what happens if the master dies: The master machine
ceases sending heartbeats to Zookeeper for the ephemeral node /
clusterx/master_ip. Consequently, the ephemeral node /clusterx/
master_ip is deleted.

All subscribers are notified of this change. Slaves, upon receiving
this update, initiate attempts to become masters again. The first
to successfully write to Zookeeper assumes the role of the new
master.

App servers delete the local value of master_ip. They must then
read from Zookeeper, set a new watch, and update the local
master_ip value whenever a new write request occurs. If they
receive a null value, the request fails, indicating that a new
master has not yet been selected. When the old master comes
back online, it reads from the same Zookeeper node to determine
the new master machine and assumes the role of a slave.

Unless it returns quickly and finds the Zookeeper node to be null,
it joins other slaves in attempting to become the new master.

3. Async Tasks
To address such scenarios where asynchronous tasks, need to
be handled, we utilize a concept called Per-sistent Queue. A
Persistent Queue ensures durability, implying that data is written
onto a hard disk to prevent any risk of data loss. Persistent Queues
work on a model called pub-sub (Publish Subscribe) whereas
zookeeper is used within Kafka cluster to manage Kafka cluster.

3.1. Pub Sub
Pub sub comprises two components: Publish: In this part,
all events of interest that necessitate subsequent actions are
identified. For instance, sending a message constitutes an event,
as does a customer purchasing an item on Flipkart. These events
are published onto a persistent queue.

Subscriber: Various events may attract different types of
subscribers interested in those events. Subscrib-ers consume the
events they have subscribed to from the queue. For example, in
the scenario of a message notification system, a message email
system, and a message analytics system would subscribe to the
event of "a message sent" on the queue. Similarly, an invoice
generation system might subscribe to the event of "a purchase
made on Flip Kart." There can be multiple types of events being
published, and each event may have multiple types of subscribers
consuming these events. Topics: Within a queue, segregation of
topics is necessary because the system does not want to subscribe
to the entire queue; rather, it needs to subscribe to specific types
of events. Each of these specific events is referred to as a topic.

Sourabh Sethi, Sarah Panda, Sandeep Hooda

 7

Similarly, an invoice generation system might subscribe to the event of "a purchase made
on FlipKart." There can be multiple types of events being published, and each event may
have multiple types of subscribers consuming these events. Topics: Within a queue, seg-
regation of topics is necessary because the system does not want to subscribe to the entire
queue; rather, it needs to subscribe to specific types of events. Each of these specific
events is referred to as a topic.

Figure 5: Topic

Consider an example involving Flipkart that Flipkart incorporates an integrated messag-
ing service, allowing customers to communicate with vendors regarding product quality
and feedback.

Figure 6: Publish Event

These are the two events, and subsequently, we desire specific actions to occur.

Here, both events are distinct from each other. If we were to publish both events in a sin-

Figure 5: Topic

 Volume 3 | Issue 2 | 5J Curr Trends Comp Sci Res, 2024

Consider an example involving Flipkart that Flipkart incorporates an integrated messaging service, al-lowing customers to
communicate with vendors regarding product quality and feedback.

Sourabh Sethi, Sarah Panda, Sandeep Hooda

 7

Similarly, an invoice generation system might subscribe to the event of "a purchase made
on FlipKart." There can be multiple types of events being published, and each event may
have multiple types of subscribers consuming these events. Topics: Within a queue, seg-
regation of topics is necessary because the system does not want to subscribe to the entire
queue; rather, it needs to subscribe to specific types of events. Each of these specific
events is referred to as a topic.

Figure 5: Topic

Consider an example involving Flipkart that Flipkart incorporates an integrated messag-
ing service, allowing customers to communicate with vendors regarding product quality
and feedback.

Figure 6: Publish Event

These are the two events, and subsequently, we desire specific actions to occur.

Here, both events are distinct from each other. If we were to publish both events in a sin-

Sourabh Sethi, Sarah Panda, Sandeep Hooda

 7

Similarly, an invoice generation system might subscribe to the event of "a purchase made
on FlipKart." There can be multiple types of events being published, and each event may
have multiple types of subscribers consuming these events. Topics: Within a queue, seg-
regation of topics is necessary because the system does not want to subscribe to the entire
queue; rather, it needs to subscribe to specific types of events. Each of these specific
events is referred to as a topic.

Figure 5: Topic

Consider an example involving Flipkart that Flipkart incorporates an integrated messag-
ing service, allowing customers to communicate with vendors regarding product quality
and feedback.

Figure 6: Publish Event

These are the two events, and subsequently, we desire specific actions to occur.

Here, both events are distinct from each other. If we were to publish both events in a sin-

Figure 6: Publish Event

These are the two events, and subsequently, we desire specific actions to occur.

Here, both events are distinct from each other. If we were to publish both events in a single persistent queue, and suppose the invoice
generation system has subscribed to the queue, it would receive a consid-erable amount of irrelevant information.

Sourabh Sethi, Sarah Panda, Sandeep Hooda

gle persistent queue, and suppose the invoice generation system has subscribed to the
queue, it would receive a considerable amount of irrelevant information.

Therefore, we assert that not all events are equal, leading us to classify them into different
topics.

Figure 7: Publish Event on Different Topics

Now, the invoice generation system has exclusively subscribed to Topic1, ensuring it on-
ly receives messages relevant to that topic. One prominent high-throughput system that
incorporates persistent queues and supports topics is Kafka. In essence, persistent queues
assist in managing systems where producers and consumers operate at varying rates,
asynchronously. These queues provide assurance against event loss within a specified re-
tention period and enable consumers to work asynchronously without impeding the pro-
ducers' primary tasks.

3.2. Apache Kafka

Terminologies: Publisher is the systems responsible for publishing events to a topic are
referred to as publishers. There may be multiple publishers. Subscriber Systems that
consume events from subscribed topics (/topics) are known as subscribers. Every ma-
chine within the Kafka cluster is termed a broker. This term is simply a sophisticated
designation for machines storing published events for a topic. Partition: Within a single
topic, it is possible to configure multiple partitions.

Sourabh Sethi, Sarah Panda, Sandeep Hooda

gle persistent queue, and suppose the invoice generation system has subscribed to the
queue, it would receive a considerable amount of irrelevant information.

Therefore, we assert that not all events are equal, leading us to classify them into different
topics.

Figure 7: Publish Event on Different Topics

Now, the invoice generation system has exclusively subscribed to Topic1, ensuring it on-
ly receives messages relevant to that topic. One prominent high-throughput system that
incorporates persistent queues and supports topics is Kafka. In essence, persistent queues
assist in managing systems where producers and consumers operate at varying rates,
asynchronously. These queues provide assurance against event loss within a specified re-
tention period and enable consumers to work asynchronously without impeding the pro-
ducers' primary tasks.

3.2. Apache Kafka

Terminologies: Publisher is the systems responsible for publishing events to a topic are
referred to as publishers. There may be multiple publishers. Subscriber Systems that
consume events from subscribed topics (/topics) are known as subscribers. Every ma-
chine within the Kafka cluster is termed a broker. This term is simply a sophisticated
designation for machines storing published events for a topic. Partition: Within a single
topic, it is possible to configure multiple partitions.

Therefore, we assert that not all events are equal, leading us to classify them into different topics.

Figure 7: Publish Event on Different Topics

Now, the invoice generation system has exclusively subscribed
to Topic1, ensuring it only receives mes-sages relevant to that
topic. One prominent high-throughput system that incorporates
persistent queues and supports topics is Kafka. In essence,
persistent queues assist in managing systems where producers
and consumers operate at varying rates, asynchronously. These
queues provide assurance against event loss within a specified
retention period and enable consumers to work asynchronously
without impeding the producers' primary tasks.

3.2. Apache Kafka
Terminologies: Publisher is the systems responsible for
publishing events to a topic are referred to as publishers. There
may be multiple publishers. Subscriber Systems that consume
events from subscribed topics (/topics) are known as subscribers.
Every machine within the Kafka cluster is termed a broker. This
term is simply a sophisticated designation for machines storing
published events for a topic. Partition: Within a single topic, it is
possible to configure multiple partitions.

 Volume 3 | Issue 2 | 6J Curr Trends Comp Sci Res, 2024

Sourabh Sethi, Sarah Panda, Sandeep Hooda

gle persistent queue, and suppose the invoice generation system has subscribed to the
queue, it would receive a considerable amount of irrelevant information.

Therefore, we assert that not all events are equal, leading us to classify them into different
topics.

Figure 7: Publish Event on Different Topics

Now, the invoice generation system has exclusively subscribed to Topic1, ensuring it on-
ly receives messages relevant to that topic. One prominent high-throughput system that
incorporates persistent queues and supports topics is Kafka. In essence, persistent queues
assist in managing systems where producers and consumers operate at varying rates,
asynchronously. These queues provide assurance against event loss within a specified re-
tention period and enable consumers to work asynchronously without impeding the pro-
ducers' primary tasks.

3.2. Apache Kafka

Terminologies: Publisher is the systems responsible for publishing events to a topic are
referred to as publishers. There may be multiple publishers. Subscriber Systems that
consume events from subscribed topics (/topics) are known as subscribers. Every ma-
chine within the Kafka cluster is termed a broker. This term is simply a sophisticated
designation for machines storing published events for a topic. Partition: Within a single
topic, it is possible to configure multiple partitions.

Figure 8: Apache kafka Architecture

The utilization of multiple partitions allows Kafka to effectively shard or distribute load internally. Additionally, it aids consumers
in achieving faster consumption rates.

Sourabh Sethi, Sarah Panda, Sandeep Hooda

 9

Figure 8: Apache kafka Architecture

The utilization of multiple partitions allows Kafka to effectively shard or distribute load
internally. Additionally, it aids consumers in achieving faster consumption rates.

Figure 9: Partition

Event Retention Period: Kafka, like any persistent queue, is designed to store events
temporarily rather than indefinitely. Therefore, you define an event retention period,
which denotes the duration for which an event is retained. Events older than the retention
period are periodically cleaned up. What if a topic becomes so large, with numerous pro-
ducers contributing to it, that the entire topic, even within the retention period, cannot fit
in a single machine? How can you shard it? Kafka enables you to specify the number of
partitions for each topic. While a single partition cannot be divided across machines, dif-
ferent partitions can reside on different machines. Increasing the number of partitions al-
lows Kafka to distribute topic + partition assignments across various machines internally.
With multiple partitions, the structure no longer resembles a simple queue. Ensuring the
ordering of messages between partitions becomes challenging.

For instance, in a topic where messages m1, m2, m3, m4, and m5 are assigned to differ-
ent partitions, consumers lack a mechanism to determine the next most recent message
across partitions. Introducing mechanisms to maintain message ordering between parti-
tions incurs additional overhead and may not be conducive to high throughput. In many
cases, strict message ordering may not even be necessary. Consider the scenario of a
messaging system like Flipkart, where messages from different users to vendors are pub-
lished on a topic named Messages. While the order of messages between different users
may not be crucial, maintaining the order of messages from the same user is essential for
coherence. Kafka offers a solution to ensure that all messages from the same user are
routed to the same partition. Producers can optionally specify a key along with the mes-
sage, and Kafka employs a hash function (hash(key) % num_partitions) to determine the
partition to which the message should be sent. Messages with the same key are directed
to the same partition, ensuring that messages from the same sender are grouped together.
This simplifies the task of maintaining message ordering within the same partition.

3.3. Consumer group

What if a topic becomes exceedingly large, making it impractical for a single consumer to
process all events efficiently? What is the solution in such a scenario? In such cases, the
only viable approach is to employ multiple consumers operating in parallel, each han-

Figure 9: Partition

Event Retention Period: Kafka, like any persistent queue, is
designed to store events temporarily rather than indefinitely.
Therefore, you define an event retention period, which denotes
the duration for which an event is retained. Events older than
the retention period are periodically cleaned up. What if a topic
becomes so large, with numerous producers contributing to it,
that the entire topic, even within the reten-tion period, cannot
fit in a single machine? How can your shard it? Kafka enables
you to specify the number of partitions for each topic. While
a single partition cannot be divided across machines, different
partitions can reside on different machines. Increasing the
number of partitions allows Kafka to distribute topic + partition
assignments across various machines internally. With multiple
partitions, the structure no longer resembles a simple queue.
Ensuring the ordering of messages between partitions becomes
chal-lenging.

For instance, in a topic where messages m1, m2, m3, m4,
and m5 are assigned to different partitions, consumers lack a
mechanism to determine the next most recent message across
partitions. Introducing mechanisms to maintain message
ordering between partitions incurs additional overhead and
may not be conducive to high throughput. In many cases, strict
message ordering may not even be necessary. Con-sider the
scenario of a messaging system like Flipkart, where messages
from different users to vendors are published on a topic named
Messages. While the order of messages between different users

may not be crucial, maintaining the order of messages from the
same user is essential for coherence. Kafka offers a solution to
ensure that all messages from the same user are routed to the
same partition. Producers can optionally specify a key along with
the message, and Kafka employs a hash function (hash(key) %
num_partitions) to determine the partition to which the message
should be sent. Messages with the same key are directed to the
same partition, ensuring that messages from the same sender
are grouped together. This simplifies the task of maintaining
message ordering within the same partition.

3.3. Consumer Group
What if a topic becomes exceedingly large, making it impractical
for a single consumer to process all events efficiently? What is
the solution in such a scenario? In such cases, the only viable
approach is to employ multiple consumers operating in parallel,
each handling a different subset of events. Kafka facili-tates
this through consumer groups. A consumer group comprises a
set of consumer machines, all-consuming from the same topic.
Internally, each consumer within the consumer group is assigned
ex-clusively to one or more partitions (rendering it redundant to
have more consumer machines than parti-tions). Consequently,
each consumer exclusively receives messages from the
partitions it is tagged to. This enables the concurrent processing
of events from topics across multiple consumers within the same
consumer group.

 Volume 3 | Issue 2 | 7J Curr Trends Comp Sci Res, 2024

Copyright: ©2024 Sourabh Sethi, et al. This is an open-access article
distributed under the terms of the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction
in any medium, provided the original author and source are credited.

https://opastpublishers.com

Sourabh Sethi, Sarah Panda, Sandeep Hooda

dling a different subset of events. Kafka facilitates this through consumer groups. A con-
sumer group comprises a set of consumer machines, all-consuming from the same topic.
Internally, each consumer within the consumer group is assigned exclusively to one or
more partitions (rendering it redundant to have more consumer machines than partitions).
Consequently, each consumer exclusively receives messages from the partitions it is
tagged to. This enables the concurrent processing of events from topics across multiple
consumers within the same consumer group.

Figure 10: Consumer Group

In the event of one or more machines (brokers) failing within Kafka, how can it guarantee
that events are never lost? The solution remains consistent with other scenarios is replica-
tion. Kafka allows you to configure the desired number of replicas. Subsequently, for
each partition, primary and secondary replicas are allocated across machines or brokers.

Acknowledgements

We have partnered with strategic allies whose invaluable contributions have played a
crucial role in identifying highly available and low-latency solutions within the market,
including Zookeeper and Kafka. Their substantial involvement extends to the implemen-
tation of various asynchronous task solutions across a spectrum of enterprise applications
throughout the years.

References

[1] Garg, N. (2013). Apache kafka (pp. 30-31). Birmingham, UK: Packt Publishing.
[2] Wang, Guozhang, Joel Koshy, Sriram Subramanian, Kartik Paramasivam, Mammad Zadeh,

Neha Narkhede, Jun Rao, Jay Kreps, and Joe Stein. "Building a replicated logging system
with Apache Kafka." Proceedings of the VLDB Endowment 8, no. 12 (2015): 1654-1655.

[3] D'silva, Godson Michael, Azharuddin Khan, and Siddhesh Bari. "Real-time processing of IoT
events with historic data using Apache Kafka and Apache Spark with dashing framework."
In 2017 2nd IEEE International conference on recent trends in electronics, information &
communication technology (RTEICT), pp. 1804-1809. IEEE, 2017.

[4] Narkhede, Neha, Gwen Shapira, and Todd Palino. Kafka: the definitive guide: real-time data
and stream processing at scale. " O'Reilly Media, Inc.", 2017.

[5] Le Noac'H, Paul, Alexandru Costan, and Luc Bougé. "A performance evaluation of Apache

Figure 10: Consumer Group

In the event of one or more machines (brokers) failing within
Kafka, how can it guarantee that events are never lost? The
solution remains consistent with other scenarios is replication.
Kafka allows you to con-figure the desired number of replicas.
Subsequently, for each partition, primary and secondary replicas
are allocated across machines or brokers.

Acknowledgements
We have partnered with strategic allies whose invaluable
contributions have played a crucial role in iden-tifying highly
available and low-latency solutions within the market, including
Zookeeper and Kafka. Their substantial involvement extends
to the implementation of various asynchronous task solutions
across a spectrum of enterprise applications throughout the years
[1-9].

References
1. Garg, N. (2013). Apache kafka (pp. 30-31). Birmingham,

UK: Packt Publishing.
2. Wang, G., Koshy, J., Subramanian, S., Paramasivam, K.,

Zadeh, M., Narkhede, N., ... & Stein, J. (2015). Building a
replicated logging system with Apache Kafka. Proceedings
of the VLDB Endowment, 8(12), 1654-1655.

3. D'silva, G. M., Khan, A., & Bari, S. (2017, May). Real-time
processing of IoT events with historic data using Apache

Kafka and Apache Spark with dashing framework. In
2017 2nd IEEE International conference on recent trends
in electronics, information & communication technology
(RTEICT) (pp. 1804-1809). IEEE.

4. Narkhede, N., Shapira, G., & Palino, T. (2017). Kafka: the
definitive guide: real-time data and stream processing at
scale. " O'Reilly Media, Inc.".

5. Le Noac'H, P., Costan, A., & Bougé, L. (2017, December).
A performance evaluation of Apache Kafka in support of
big data streaming applications. In 2017 IEEE International
Conference on Big Data (Big Data) (pp. 4803-4806). IEEE.

6. Hiraman, B. R. (2018, August). A study of apache kafka
in big data stream processing. In 2018 International Con-
ference on Information, Communication, Engineering and
Technology (ICICET) (pp. 1-3). IEEE.

7. Thein, K. M. M. (2014). Apache kafka: Next generation
distributed messaging system. International Journal of Sci-
entific Engineering and Technology Research, 3(47), 9478-
9483.

8. Shivakumar, S. K., & Sethii, S. (2019). Building digital
experience platforms: A guide to developing next-generation
enterprise applications. APress.

9. Sethi, S. (2023). Platforms Based Approach and Strategy
for Fintech applications. Authorea Preprints.

http://archive.keyllo.com/L-%E7%BC%96%E7%A8%8B/Kafka-Apache Kafka.pdf
http://archive.keyllo.com/L-%E7%BC%96%E7%A8%8B/Kafka-Apache Kafka.pdf
https://doi.org/10.14778/2824032.2824063
https://doi.org/10.14778/2824032.2824063
https://doi.org/10.14778/2824032.2824063
https://doi.org/10.14778/2824032.2824063
https://doi.org/10.1109/RTEICT.2017.8256910
https://doi.org/10.1109/RTEICT.2017.8256910
https://doi.org/10.1109/RTEICT.2017.8256910
https://doi.org/10.1109/RTEICT.2017.8256910
https://doi.org/10.1109/RTEICT.2017.8256910
https://doi.org/10.1109/RTEICT.2017.8256910
https://books.google.co.in/books?hl=en&lr=&id=a3wzDwAAQBAJ&oi=fnd&pg=PP1&dq=Kafka:+the+definitive+guide:+real-time+data+and+stream+processing+at+scale&ots=ZjtBDlYu_e&sig=3LpSYZtvWuEMvSj6S2vo5_lSh1c&redir_esc=y#v=onepage&q=Kafka%3A%20the%20definitive%20guide%3A%20real-time%20data%20and%20stream%20processing%20at%20scale&f=false
https://books.google.co.in/books?hl=en&lr=&id=a3wzDwAAQBAJ&oi=fnd&pg=PP1&dq=Kafka:+the+definitive+guide:+real-time+data+and+stream+processing+at+scale&ots=ZjtBDlYu_e&sig=3LpSYZtvWuEMvSj6S2vo5_lSh1c&redir_esc=y#v=onepage&q=Kafka%3A%20the%20definitive%20guide%3A%20real-time%20data%20and%20stream%20processing%20at%20scale&f=false
https://books.google.co.in/books?hl=en&lr=&id=a3wzDwAAQBAJ&oi=fnd&pg=PP1&dq=Kafka:+the+definitive+guide:+real-time+data+and+stream+processing+at+scale&ots=ZjtBDlYu_e&sig=3LpSYZtvWuEMvSj6S2vo5_lSh1c&redir_esc=y#v=onepage&q=Kafka%3A%20the%20definitive%20guide%3A%20real-time%20data%20and%20stream%20processing%20at%20scale&f=false
https://doi.org/10.1109/BigData.2017.8258548
https://doi.org/10.1109/BigData.2017.8258548
https://doi.org/10.1109/BigData.2017.8258548
https://doi.org/10.1109/BigData.2017.8258548
https://doi.org/10.1109/ICICET.2018.8533771
https://doi.org/10.1109/ICICET.2018.8533771
https://doi.org/10.1109/ICICET.2018.8533771
https://doi.org/10.1109/ICICET.2018.8533771
https://ijsetr.com/uploads/436215IJSETR3636-621.pdf
https://ijsetr.com/uploads/436215IJSETR3636-621.pdf
https://ijsetr.com/uploads/436215IJSETR3636-621.pdf
https://ijsetr.com/uploads/436215IJSETR3636-621.pdf
https://books.google.co.in/books?hl=en&lr=&id=FBOGDwAAQBAJ&oi=fnd&pg=PR5&dq=Shivakumar,+Shailesh+Kumar,+and+Sourabhh+Sethii.+Building+Digital+Experience+Platforms:+A+Guide+to+Developing+Next-Generation+Enterprise+Applications.+Apress,+2019&ots=YQn_3ll869&sig=z5x6jdhTJjob3Y3BzF_V_2m-ir4&redir_esc=y#v=onepage&q=Shivakumar%2C%20Shailesh%20Kumar%2C%20and%20Sourabhh%20Sethii.%20Building%20Digital%20Experience%20Platforms%3A%20A%20Guide%20to%20Developing%20Next-Generation%20Enterprise%20Applications.%20Apress%2C%202019&f=false
https://books.google.co.in/books?hl=en&lr=&id=FBOGDwAAQBAJ&oi=fnd&pg=PR5&dq=Shivakumar,+Shailesh+Kumar,+and+Sourabhh+Sethii.+Building+Digital+Experience+Platforms:+A+Guide+to+Developing+Next-Generation+Enterprise+Applications.+Apress,+2019&ots=YQn_3ll869&sig=z5x6jdhTJjob3Y3BzF_V_2m-ir4&redir_esc=y#v=onepage&q=Shivakumar%2C%20Shailesh%20Kumar%2C%20and%20Sourabhh%20Sethii.%20Building%20Digital%20Experience%20Platforms%3A%20A%20Guide%20to%20Developing%20Next-Generation%20Enterprise%20Applications.%20Apress%2C%202019&f=false
https://books.google.co.in/books?hl=en&lr=&id=FBOGDwAAQBAJ&oi=fnd&pg=PR5&dq=Shivakumar,+Shailesh+Kumar,+and+Sourabhh+Sethii.+Building+Digital+Experience+Platforms:+A+Guide+to+Developing+Next-Generation+Enterprise+Applications.+Apress,+2019&ots=YQn_3ll869&sig=z5x6jdhTJjob3Y3BzF_V_2m-ir4&redir_esc=y#v=onepage&q=Shivakumar%2C%20Shailesh%20Kumar%2C%20and%20Sourabhh%20Sethii.%20Building%20Digital%20Experience%20Platforms%3A%20A%20Guide%20to%20Developing%20Next-Generation%20Enterprise%20Applications.%20Apress%2C%202019&f=false
https://doi.org/10.36227/techrxiv.24329533.v1
https://doi.org/10.36227/techrxiv.24329533.v1

