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Abstract 
Chest X-rays remains to be the most common imaging modality used to diagnose lung diseases. However, they necessitate 
the interpretation of experts (radiologists and pulmonologists), who are few. This review paper investigates the use of deep 
transfer learning techniques to detect COVID-19, pneumonia, and tuberculosis in chest X-ray (CXR) images. It provides an 
overview of current state-of the-art CXR image classification techniques and discusses the challenges and opportunities in 
applying transfer learning to this domain. The paper provides a thorough examination of recent research studies that used 
deep transfer learning algorithms for COVID-19, pneumonia, and tuberculosis detection, highlighting the advantages and 
disadvantages of these approaches. Finally, the review paper discusses future research directions in the field of deep transfer 
learning for CXR image classification, as well as the potential for these techniques to aid in the diagnosis and treatment of 
lung diseases.
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Background Information
Due to constant exposure to air particles from the outside 
environment, human lungs remain highly susceptible to airborne 
diseases and other injuries [1]. These diseases are commonly 
referred to as Respiratory Diseases (RD) and have become the 
leading cause of death worldwide [2]. They include Covid-19 
[3], Pneumonia, and Tuberculosis [4] among others.

Covid-19, is a viral respiratory illness caused by the novel 
coronavirus SARS-CoV-2, which was discovered in Wuhan, 
China, in December 2019. The virus spread quickly around the 
world, resulting in a global pandemic that affected millions of 
people and caused significant social and economic disruption [5]. 
As of March 8, 2023, there had been over 445 million confirmed 
cases of COVID-19 worldwide, with over 6 million deaths [6].

Tuberculosis, or TB, is a bacterial infection that primarily affects 
the lungs but can affect other parts of the body as well [7]. When 
an infected person coughs or sneezes, the virus spreads through 
the air and can cause coughing, fever, and weight loss. TB can 
be treated with antibiotics, even though the drug resistance is 
a growing concern. An estimated 10 million people worldwide 
became ill with tuberculosis in 2020, with 1.5 million dying as 
a result of the disease [8] and due to Covid-19, more deaths are 
expected in 2022 and 2023.

Pneumonia is another type of respiratory disease that affects the 
lungs and is caused by a virus, bacteria, or fungi [9]. The three 

types of Pneumonia affect both children and adults even though, 
viral pneumonia is most common in children below 5 years of 
age and adults with weak immunity [10]. On the other hand, 
bacterial pneumonia remains the leading cause of mortalities 
in children and a major cause of illnesses in adults. In United 
States (US), community acquired pneumonia is estimated to be 
4 - 5 million cases annually, with over 1 million hospitalizations 
and 50,000 deaths [11]. Fungal pneumonia is less common, 
and is serious to people with weak immunity. In recent years, 
fungal pneumonia incidences have increased due to decline in 
immunity as a result to the growing infections of HIV/AIDS, 
and Cancer among other factors [12].

These lung conditions: Covid-19, Pneumonia, and Tuberculosis 
have serious health consequences and can be fatal if untreated 
or mismanaged. However, misdiagnosis [13], shortage of 
healthcare professionals [14], and the high cost of treatment 
[15] continue to be significant challenges. To begin with, lung 
diseases can be difficult to accurately diagnose, particularly 
in the early stages, and are frequently misdiagnosed as other 
respiratory conditions, causing disease progression by delaying 
proper treatment. Second, there is frequently a shortage of 
healthcare professionals with specialized training in the 
diagnosis and treatment of lung diseases, especially in low and 
middle-income countries. Finally, the cost of treatment for lung 
diseases, particularly Covid-19, Tuberculosis and Pneumonia, 
can be high and may not be covered by health insurance, making 
it difficult for some patients to access necessary care.
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Healthcare technology has become increasingly important and 
widespread in the medical industry in recent years, particularly 
in the management and treatment of lung conditions. Chest 
X-rays, CT scans, and ultrasound are examples of imaging 
technologies that have been widely used to diagnose and 
monitor lung diseases. Chest X-rays and CT scans, for example, 
have been used to diagnose and monitor opacity in COVID-19 
patients, while ultrasound has been used to diagnose and 
monitor pneumonia [16]. Telemedicine has also been widely 
used during the COVID-19 pandemic for remote consultations, 
symptom monitoring, and treatment. Patients suffering from lung 
diseases can now consult with healthcare providers via video 
conferencing, reducing the risk of transmission and ensuring 
timely treatment [17]. Finally, Artificial Intelligence (AI) 
and Machine Learning (ML) have been used to analyze large 
datasets of patient data, allowing for more precise diagnosis and 
treatment of lung diseases at a reduced cost [18].

1. Introduction
Chest X-ray (CXR) images are the most commonly used imaging 
for the diagnosis of many lung conditions as mentioned in [3] and 
[4]. CXR images are more preferred to Computed Tomography 
(CT) scans as they expose the patients to ionizing radiation [19]. 
These images require experts for interpretation [20], and as the 
number of patients suffering from these diseases rises, these 
experts, who are few, are forced to overwork and in the process, 
result to delayed diagnoses and timely reporting of results [21]. 
Also, due to subjectivity nature of these diseases, experts are likely 
to produce varying results for same CXR image interpretation 
[22].Treatment of lung diseases can be expensive, particularly 
if one condition is overlooked and requires additional healthcare 
costs down the line and to overcome such problems, automation 
for multiple lung diseases detection can help streamline the 
diagnostic process and enable healthcare providers make more 
informed decisions about treatment without relying solely on 
experts. This can help to reduce waiting times, improve patient 
outcomes, and reduce the burden on radiologists while enabling 
faster and more efficient diagnoses. This can be achieved with 
the help of Computer Aided Diagnosis (CAD) [23] which can 
be improved through Computer Vision (CV) and Deep Learning 
(DL) approaches [24].

In the recent past, DL and traditional machine learning 
approaches have been widely employed in the classification 
of medical images into either normal or abnormal instances, 
allowing experts to specialize in the analysis of abnormal images 
and classify them accordingly [21]. These classification are 
conducted in two steps: the first step involves extracting image 
features with image descriptors and second step involves feeding 
those features to a classifier like Support Vector Machines 
(SVM), and K-Nearest Neighbors (KNN) [25].The problem with 
traditional ML approaches is that the accuracy of classification 
task depends on the manual feature extraction techniques [26].
Another approach employed for image classification tasks is 
DL, which allows automatic feature extraction and classification 
in one step through use of convolution, pooling and fully 
connected layers [26]. This has been evidenced in the works of 
[27] to classify Pneumonia images and normal images, and [28] 

in detection of lung cancer from normal instances among others. 
These DL approaches however are computationally expensive 
[29] and suffers from over-fitting and low transfer capability 
[26] and to achieve better results, they necessitate need for large 
amounts of labelled datasets [30] which is sometimes, difficult 
to acquire.

To overcome the challenges with DL, Deep Transfer Learning 
(DTL), which can also be used in medical image processing is 
used [31].DTL does not involve training models from scratch, 
however, it uses pre-trained models similarly to the ones trained 
on classical DL models like Convolution Neural Network(CNN) 
to solve one problem, and then, use them to solve different 
but related problems [32].These DTL approaches have been 
widely used in the medical analysis of lung diseases which is 
evidenced in several works. For instance, in the works of [33] 
to automatically classify and detect Covid-19, Pneumonia, and 
Tuberculosis and similarly, in the works of [34] for the detection 
of different types of Pneumonia from chest radiographs. Also, 
ensembled DTL approaches were adopted by [35] to rapidly aid 
diagnosis of Covid-19 from chest radiographic images which 
were also used by [36]. From most of the works, DTL possess 
several advantages over DL and traditional ML approaches 
which are: (1) Requires small dataset for training [37], (2) High 
performance [38] and, (3) less training time [39]. In solving 
domain problems, DTL adopts strategies like freezing layers 
[40], fine tuning [41] and usage of fixed feature extractor (freeze 
all layers except for final fully connected layer). From the 
understanding of DTL, the research questions to be addressed 
are
1) What is the role of DTL in the detection of lung diseases?
2) What is the current state of the art DTL methods used?
3) What are the advantages of using DTL for lung disease 
detection?
The rest of the paper is organized as follows: In Section III, 
we present the methodological approach followed in filtering 
relevant state of the art works, in Section IV we present relevant 
state of the art related works, and in Section V we present the 
summary and Future works.

2. Methodology
The study used a database with information from over 60 scientific 
articles published between 2016 and 2023 to address the research 
questions in this domain. These articles were obtained from 
a variety of sources, including Google Scholar, IEEE Xplore, 
ScienceDirect, PubMed, and Springer. The articles were chosen 
based on search phrases related to” Covid-19”,” Pneumonia”,” 
Tuberculosis,”” Lung diseases”,” deep learning”,” machine 
learning”,” transfer learning”,” deep transfer learning”,” Chest 
x-rays”, and other keyword combinations related to lung 
diseases’ detection.

The search results were reviewed to select those that were 
relevant to our work and to eliminate those that were not. The 
analysis of the articles was done while taking into consideration 
the lung disease detected in the study, data set used, state of the 
art method used and the performance obtained based on different 
evaluation metrics used.
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2.1 Related Works
Many studies have been conducted over the past few years 
for the detection and automatic classification of different lung 
conditions. Some of the studies carried out are presented:
Panwar et al. [42] proposed a deep transfer learning model 
nCOVnet made from the original VGG16 model to detect 
Covid-19 from Chest X-ray images. The only data pre-processing 
technique used for images was resizing to 224x224x3, and 
during the training of the model, data leakages were avoided by 
manually splitting the train and test data set which was evaluated 
using AUC of ROC, training accuracy and confusion matrix 
giving an overall accuracy score of 88%. The data set used 
was quite small comprising of 337 totals images, with only 192 
Covid-19 positive cases.

Three deep transfer learning approaches (ResNet, XCeption and 
DenseNet) were studied in the detection of patients with Covid-19, 
Pneumonia, and TB using Chest X-rays [43]. The authors used 
histogram equalization to minimize bias in the data set, and at 
the same time, normalized the data. The study achieved high 
performance accuracy of 98.2%, 94.21%, and 93.67%, obtained 
in training, validation, and testing sets respectively with ResNet 
achieving the highest overall performance. However, the data 
set used was little and imbalanced and comprised of 1229 chest 
X-ray images with 42 COVID-Medium images, 40 COVID-
Mild images, 36 COVID-Severe images, 348 regular images, 
263 tuberculosis images, and 500 pneumonia images.

Oguz et al. [44] used 1345 CT scan images obtained from a 
research hospital and applied them to different deep learning 
methods like ResNet-50, ResNet-101, AlexNet, GoogleNet, 
and other classification methods like SVM, Random Forest, 
Decision Trees, etc. to reduce diagnosis time for COVID-19. Pre-
processing activities involved reducing the dimensions of the 
CT images through maximum pooling and applying the ReLU 
activation function to each convolution layer. The experimental 
results have shown that ResNet-50 and SVM performed better 
than other models with 96.3% accuracy and an F1-score of 
95.87%. This work is however limited due to the size of data 
used and might not generalize well to new data.

Kassania et al. [45] compared different deep transfer learning 
approaches (MobileNet, DenseNet, Xception, ResNet, 
InceptionV3, InceptionResNetV2, VGGNet, NASNet) in 
the automatic prediction of COVID-19 Pneumonia cases in 
Chest x-rays and CT scans. The images used were resized and 
normalized. The data set had 274 images with 137 images of 
positive Covid-19 cases and 137 images of health patients. 
Densenet-121 achieved high performance with a classification 
accuracy of 99% followed by ResNet50 with 98% classification 
accuracy. Despite the high performance, the study focused on 
detecting two conditions i.e. Covid-19 and Normal instances, 
and also, used little data set.

The more classes used the lower the accuracy of the model. This 
was evidenced in the works of Hussain et al. [46] who proposed 
a deep CNN model ’CoroDet’ with 22 layers. The total data set 
used had a total of 7390 images where 2843 were for COVID-19 

case,3108 for normal cases and 1439 for pneumonia (both viral 
and bacterial) cases. Without pre-procesing the data, they applied 
their deep CNN model to 2 (Covid-19, Pneumonia), 3(Covid-19, 
PneumoniaBacteria, Normal), and 4(Covid-19, Pneumonia-
Bacteria, Normal, Pneumonia-Viral) class classifications.Their 
model achieved an accuracy of 99.1%, 94.2% and 91.2% for 2, 
3 and 4 class classifications respectively. However, these results 
can be improved by increasing the data, balancing the class 
instances and pre-processing the data to minimize noise.

In the works of Haritha et al. [47], pre-trained models appeared 
to perform better in the detection of Covid-19 cases. The 
researchers developed CheXNet model from the original 
DenseNet121 to detect any anomalies in the chest x-ray dataset 
which was re-scaled, and augmented through flipping, rotating, 
and zooming to increase the size of the training set leading to 
achieving an accuracy score of 99.9%. This was however limited 
due to use of small data sets which comprised of 1824 Chest 
x-ray images (912 for Covid-19 cases and 912 for Non-Covid 
cases).

Sai et al. [48] proposed a deep transfer learning CNN method for 
detecting viral Pneumonia, bacterial Pneumonia, and Covid-19. 
Using a pre-trained ResNet-50V2 model, chest radiographs 
(5856 images) were trained on 100 epochs resulting in accuracy 
and test score of 94%. The high accuracy was achieved through 
an increase in the number of epochs and the addition of a dropout 
layer after the dense layer.

In an attempt to classify whether a person has lung disease or 
not, Bharati et al. [49] developed a hybrid deep-learning model 
using CNN, VGG16, data augmentation, and spatial transformer 
networks. Using attributes of age, chest x-ray images, a person’s 
gender, and view position, their hybrid model obtained a 
validation accuracy of 73% despite the noisy and complex 
data used. To improve detection accuracy, Rajagopal et al. [50] 
proposed the usage of an Arithmetic Optimization algorithm 
(AOA) on deep CNN and further reduces the noise of images 
by applying an “Anisotropic Diffusion Filter Based Unsharp 
Masking and crispening scheme”. Lung Cancer, Tuberculosis, 
and Pneumonia are also detectable through imaging, Khobragade 
et al. [51] proposed an automatic detection of these diseases 
using an artificial feed-forward neural network. To ensure better 
performance of the model, the histogram equalization technique 
was used in the improvement of image intensity and contrast. 
This resulted in an accuracy of 92%. An ensemble learning 
method of random forest, SVM, and Logistic regression was 
utilized by Ravi et al. [52] in the lung disease detection and 
achieved an accuracy of 98% while Bhosale et al. [53] developed 
an ensemble deep transfer learning CNN model for the detection 
of obstructive pulmonary diseases with an accuracy of 99.70%.

Artificial Neural Networks (ANN) aids in the detection of 
respiratory diseases diagnosed with chest radiographs. Usha 
et al. [54] developed a model for Tuberculosis detection. The 
contraction path technique was used with 4 blocks each having 
convolution layers, activation functions, and max pooling. 
This resulted in an accuracy of 81%. NonLinear and Fisher’s 
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discriminant techniques were adopted by Seixas et al. [55] to 
detect pleural Tuberculosis based on clinical grounds. Two 
Deep transfer learning CNN networks, AlexNet and GoogleNet 
were used in the classification of chest radiographs to detect 
pulmonary Tuberculosis according to Lakhani et al. [56] with 
radiologists assisting in cases where discrepancies occurred. 
Ahsan et al. [57] applied deep transfer learning model of VGG 
16 to detect whether patients have Tuberculosis or not. Sigmoid 
activation was used in the output layer while Adam optimizer 
was used to update weighs resulting in an accuracy of 80% in 
the model. Liu et al. [58] used shuffle sampling technique to 
deal with the unbalanced data set in the classification of different 
TB manifestations, and achieved a classification accuracy of 
85.68%.

3. Summary and Future Works
The reviewed research works demonstrate the efficacy of 
employing deep transfer learning approaches in the detection 
of lung diseases. Deep transfer learning models mostly used 
include ResNet-50, VGG-16, InceptionV3, ResNet-18 and 
DenseNet-121 among others [48] [49] [59].

To improve the performance of models, the researchers have 
utilized techniques like transfer learning, data augmentation 
and hyper-parameter tuning [59] [60]. TL has been used as the 
base step to allow training of the pretrained models on new 
datasets [60]. Data augmentation techniques have been applied 
to generate new training samples by applying transformations to 
the existing data set [59] [61]. Hyperparameter tuning optimized 
the parameters that control the behavior of deep learning 
models, such as the learning rate or the number of layers [59] 
[62]. Despite the advancements of research in this field, there are 
still pre-existing gaps:
1) The studies reviewed relatively use small data sets, for 
instance [42].
2) Most of the studies reviewed focuse on detecting one lung 
disease [42] [44].
3) In the experimental analysis of different deep and transfer 
learning approaches, data imbalance [58] issue remains a key 
problem and this could result to biased results obtained in many 
researches.
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