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Abstract
We have shown in recent papers (see Fahr, 2023, Fahr and Heyl, 2023) that the original explosion of the universe cannot 
have had its origin in a mass singularity of relativistically superhot cosmic matter, since the associated extremely strong 
centripetal gravitational field would clearly have impeded the Big-Bang to happen. As we suggest instead, the so called 
paradigmatic "Big-Bang", if it at all ever happened, must rather be caused by something like a positively pressurized 
primordial cosmic vacuum, but not by a singularity-condensed cosmic matter. The question, however, then is, how a 
cosmic vacuum in physical terms has to be constituted that drives the initial explosion of the universe as expected into a 
Hubble – expansion, and, while doing so, in addition generates that amount of cosmic matter which in the present days 
of our universe evidently is all around us and thus needs to have its non-singular origin later in the evolution of the 
universe? As we do show here in this article, this requires a positively pressurized vacuum with pvac = pvac (εvac) ≥ 0 and a 
vacuum energy density εvac that, while performing thermodynamic work at the expansion of the universe, decreases with 
the increase of the scale R of the universe. This, however, is different to the well known ΛCDM -model with a constant 
vacuum energy density which is presently in favour. On the basis of the general energy conservation law we do formulate 
a relation here, that describes the condensation of quantized energy structures in form of elementary masses out of the 
energized vacuum. While the relative energy density of vacuum-condensed masses ρm/ρvac is permanently increasing with 
world time t, the energy density of the vacuum itself permanently decreases. In this paper we look for solutions which on 
the basis of these procedures just lead to the structures which evidently appear in our present-day universe. Not yet solved, 
though touched by us in this paper here, is the question whether or not the elementary abundances of the condensed 
cosmic matter under these conditions also would match the astrophysical observations.
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1. Conditions at the earliest expansion of the universe
Concerning the worldtime-evolution of the cosmic scale function 
R = R(t) one can start from the work by Friedman (1922, 1924) 

and obtain as a start from there the following differential equation 
(see also Fahr, 2023):

Conditions at the earliest expansion of the universe

Concerning the worldtime-evolution of the cosmic scale function R  Rt one can start
from the work by Friedman (1922, 1924) and obtain as a start from there the following
differential equation (see also Fahr, 2023):

R /R  c2
3  4G

c2  13 c2  p  p   #   

with R  Rt denoting the scale of the universe at world time t, and p  pm and
p  pvac being the pressures of cosmic matter and of the cosmic vacuum, the latter given
for thermodynamic reasons by Fahr and Heyl (2023) in the specific form:

p  pvac   3  
3 vac   #   

with  denoting the polytropic constant of the cosmic vacuum, converting pvac into the
associated energy density vac of the cosmic vacuum. Hence with Friedman (1922,1924)
one then obtains:

R /R 
8Gvac

3  4G
c2  13 mc2  pm 

  3
3 vacc2   #   

Since we have shown in Fahr (2023) and Fahr and Heyl (2023) that the initial
explosion of the universe cannot be caused by the initial thermal explosive pressure of
relativistically hot, cosmic matter, since the latter primarily increases, i.e. strengthens,
the centripetal gravity field, since energy at the same time constitutes a source of gravity
(i.e.: kTm~mc2), we here have instead to consider as the suggested alternative, that - not
the gravitationally active thermal pressure pm of cosmic matter -, but the pressure pvac of
the cosmic vacuum is primarilly responsible for the earliest primordial expansion of the
universe.

However, to have the vacuum pressure pvac and energy density vac dominant at the
begin (i.e. at the start of existence of the universe (i.e. R, t  0 ), i.e. meaning vac  m

at scales R  R0, one might assume, since there is a lack of any better information, to
have at this earliest cosmic period a relation for the vacuum energy density valid in the
form:

vacR  vac,0  R0/R3   #   
Also from the paper by Fahr and Heyl (2023), taking into account the decrease of vac

at the scale expansion due to work solely performed by the positive vacuum pressure
pvac with nearly no cooperative action by the cosmic matter, one would independently
derive the following relation:

vacR  vac,0  R0/R5   #   
Thus it appears, as if one in fact had to respect the identity 3    5   , or   2  ,

which for   4 (i.e. positively pressurized vacuum!, different from CDM with its
pressure-less vacuum with   3!) , would lead to   2, or simply meaning the
following scale-behaviour of the vacuum energy density:

vacR  vac,0  R0/R   #   
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with R = R(t) denoting the scale of the universe at world time 
t, and p = pm and    = pvac being the pressures of cosmic matter 

and of the cosmic vacuum, the latter given for thermodynamic 
reasons by Fahr and Heyl (2023) in the specific form:

with ξ denoting the polytropic constant of the cosmic vacuum, 
converting pvac into the associated energy density εvac of the 

cosmic vacuum. Hence with Friedman (1922,1924) one then 
obtains:
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Since we have shown in Fahr (2023) and Fahr and Heyl (2023) 
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instead to consider as the suggested alternative, that – not the 
gravitationally active thermal pressure pm of cosmic matter -, but 
the pressure pvac of the cosmic vacuum is primarilly responsible 

for the earliest primordial expansion of the universe.
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Conditions at the earliest expansion of the universe

Concerning the worldtime-evolution of the cosmic scale function R  Rt one can start
from the work by Friedman (1922, 1924) and obtain as a start from there the following
differential equation (see also Fahr, 2023):

R /R  c2
3  4G

c2  13 c2  p  p   #   

with R  Rt denoting the scale of the universe at world time t, and p  pm and
p  pvac being the pressures of cosmic matter and of the cosmic vacuum, the latter given
for thermodynamic reasons by Fahr and Heyl (2023) in the specific form:

p  pvac   3  
3 vac   #   

with  denoting the polytropic constant of the cosmic vacuum, converting pvac into the
associated energy density vac of the cosmic vacuum. Hence with Friedman (1922,1924)
one then obtains:

R /R 
8Gvac

3  4G
c2  13 mc2  pm 

  3
3 vacc2   #   

Since we have shown in Fahr (2023) and Fahr and Heyl (2023) that the initial
explosion of the universe cannot be caused by the initial thermal explosive pressure of
relativistically hot, cosmic matter, since the latter primarily increases, i.e. strengthens,
the centripetal gravity field, since energy at the same time constitutes a source of gravity
(i.e.: kTm~mc2), we here have instead to consider as the suggested alternative, that - not
the gravitationally active thermal pressure pm of cosmic matter -, but the pressure pvac of
the cosmic vacuum is primarilly responsible for the earliest primordial expansion of the
universe.

However, to have the vacuum pressure pvac and energy density vac dominant at the
begin (i.e. at the start of existence of the universe (i.e. R, t  0 ), i.e. meaning vac  m

at scales R  R0, one might assume, since there is a lack of any better information, to
have at this earliest cosmic period a relation for the vacuum energy density valid in the
form:

vacR  vac,0  R0/R3   #   
Also from the paper by Fahr and Heyl (2023), taking into account the decrease of vac

at the scale expansion due to work solely performed by the positive vacuum pressure
pvac with nearly no cooperative action by the cosmic matter, one would independently
derive the following relation:

vacR  vac,0  R0/R5   #   
Thus it appears, as if one in fact had to respect the identity 3    5   , or   2  ,

which for   4 (i.e. positively pressurized vacuum!, different from CDM with its
pressure-less vacuum with   3!) , would lead to   2, or simply meaning the
following scale-behaviour of the vacuum energy density:

vacR  vac,0  R0/R   #   

Conditions at the earliest expansion of the universe

Concerning the worldtime-evolution of the cosmic scale function R  Rt one can start
from the work by Friedman (1922, 1924) and obtain as a start from there the following
differential equation (see also Fahr, 2023):

R /R  c2
3  4G

c2  13 c2  p  p   #   

with R  Rt denoting the scale of the universe at world time t, and p  pm and
p  pvac being the pressures of cosmic matter and of the cosmic vacuum, the latter given
for thermodynamic reasons by Fahr and Heyl (2023) in the specific form:

p  pvac   3  
3 vac   #   

with  denoting the polytropic constant of the cosmic vacuum, converting pvac into the
associated energy density vac of the cosmic vacuum. Hence with Friedman (1922,1924)
one then obtains:

R /R 
8Gvac

3  4G
c2  13 mc2  pm 

  3
3 vacc2   #   

Since we have shown in Fahr (2023) and Fahr and Heyl (2023) that the initial
explosion of the universe cannot be caused by the initial thermal explosive pressure of
relativistically hot, cosmic matter, since the latter primarily increases, i.e. strengthens,
the centripetal gravity field, since energy at the same time constitutes a source of gravity
(i.e.: kTm~mc2), we here have instead to consider as the suggested alternative, that - not
the gravitationally active thermal pressure pm of cosmic matter -, but the pressure pvac of
the cosmic vacuum is primarilly responsible for the earliest primordial expansion of the
universe.

However, to have the vacuum pressure pvac and energy density vac dominant at the
begin (i.e. at the start of existence of the universe (i.e. R, t  0 ), i.e. meaning vac  m

at scales R  R0, one might assume, since there is a lack of any better information, to
have at this earliest cosmic period a relation for the vacuum energy density valid in the
form:

vacR  vac,0  R0/R3   #   
Also from the paper by Fahr and Heyl (2023), taking into account the decrease of vac

at the scale expansion due to work solely performed by the positive vacuum pressure
pvac with nearly no cooperative action by the cosmic matter, one would independently
derive the following relation:

vacR  vac,0  R0/R5   #   
Thus it appears, as if one in fact had to respect the identity 3    5   , or   2  ,

which for   4 (i.e. positively pressurized vacuum!, different from CDM with its
pressure-less vacuum with   3!) , would lead to   2, or simply meaning the
following scale-behaviour of the vacuum energy density:

vacR  vac,0  R0/R   #   

Conditions at the earliest expansion of the universe

Concerning the worldtime-evolution of the cosmic scale function R  Rt one can start
from the work by Friedman (1922, 1924) and obtain as a start from there the following
differential equation (see also Fahr, 2023):

R /R  c2
3  4G

c2  13 c2  p  p   #   

with R  Rt denoting the scale of the universe at world time t, and p  pm and
p  pvac being the pressures of cosmic matter and of the cosmic vacuum, the latter given
for thermodynamic reasons by Fahr and Heyl (2023) in the specific form:

p  pvac   3  
3 vac   #   

with  denoting the polytropic constant of the cosmic vacuum, converting pvac into the
associated energy density vac of the cosmic vacuum. Hence with Friedman (1922,1924)
one then obtains:

R /R 
8Gvac

3  4G
c2  13 mc2  pm 

  3
3 vacc2   #   

Since we have shown in Fahr (2023) and Fahr and Heyl (2023) that the initial
explosion of the universe cannot be caused by the initial thermal explosive pressure of
relativistically hot, cosmic matter, since the latter primarily increases, i.e. strengthens,
the centripetal gravity field, since energy at the same time constitutes a source of gravity
(i.e.: kTm~mc2), we here have instead to consider as the suggested alternative, that - not
the gravitationally active thermal pressure pm of cosmic matter -, but the pressure pvac of
the cosmic vacuum is primarilly responsible for the earliest primordial expansion of the
universe.

However, to have the vacuum pressure pvac and energy density vac dominant at the
begin (i.e. at the start of existence of the universe (i.e. R, t  0 ), i.e. meaning vac  m

at scales R  R0, one might assume, since there is a lack of any better information, to
have at this earliest cosmic period a relation for the vacuum energy density valid in the
form:

vacR  vac,0  R0/R3   #   
Also from the paper by Fahr and Heyl (2023), taking into account the decrease of vac

at the scale expansion due to work solely performed by the positive vacuum pressure
pvac with nearly no cooperative action by the cosmic matter, one would independently
derive the following relation:

vacR  vac,0  R0/R5   #   
Thus it appears, as if one in fact had to respect the identity 3    5   , or   2  ,

which for   4 (i.e. positively pressurized vacuum!, different from CDM with its
pressure-less vacuum with   3!) , would lead to   2, or simply meaning the
following scale-behaviour of the vacuum energy density:

vacR  vac,0  R0/R   #   
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account the decrease of ρvac at the scale expansion due to work 
solely performed by the positive vacuum pressure pvac with 

nearly no cooperative action by the cosmic matter, one would 
independently derive the following relation:

Thus it appears, as if one in fact had to respect the identity 3 + 
γ = 5 - , or γ = 2 - ξ, which for ξ = 4 (i.e. positively pressurized 
vacuum!, different from ΛCDM with its pressure-less vacuum 

with ξ = 3!) , would lead to γ = -2, or simply meaning the 
following scale-behaviour of the vacuum energy density:

This has to be taken together with the assumption ϱm,0 ≪ ϱvac,0, 
in order to thereby guarantee that the energy density of the 
gravitating cosmic matter at the begin of the universe (i.e. R 
≤ R0) is negligible and the centripetal gravity field, instead of 
growing to infinite strength towards a matter singularity, stays 
moderate, finite - and in fact unimportant!

If the exponent γ - characterizing the exact scale distribution of 
the vacuum energy density ϱvac(R) had to be selected with γ = 
-1, one would then regain the result of a special R-2- dependence 
of ϱvac(R), which could be expected for a corresponding steady-
state universe with the analogue to Hoyle‘s steady-state-request 

for a matter universe with matter generation at the expansion by 
quantized condensation out of the vacuum (Jordan, 1968, Hönl 
and Dehnen, 1968, Schäfer and Dehnen, 1977), but now with 
an new aspect in the form:  ρvac ~ ρvac (see Fahr and Heyl, 2007, 
Fahr, 2023, or Arghirescu, 2015a/b).

With this information one could then reduce the upper differential 
equation for scales R ˂  R0(t0), i.e. under conditions of dominating 
vacuum energy density, by neglecting the term containing the 
matter density ϱm, despite its later growing importance (R ≥ R0) 
with time, into the following simplified form:

This has to be taken together with the assumption m,0  vac,0 , in order to thereby
guarantee that the energy density of the gravitating cosmic matter at the begin of the
universe (i.e. R  R0) is negligible and the centripetal gravity field, instead of growing to
infinite strength towards a matter singularity, stays moderate, finite - and in fact
unimportant!

If the exponent  - characterizing the exact scale distribution of the vacuum energy
density vacR had to be selected with   1 , one would then regain the result of a
special R2- dependence of vacR , which could be expected for a corresponding
steady-state universe with the analogue to Hoyle‘s steady-state-request for a matter
universe with matter generation at the expansion by quantized condensation out of the
vacuum (Jordan, 1968, Hönl and Dehnen, 1968, Schäfer and Dehnen, 1977), but now
with an new aspect in the form:  vac  vac (see Fahr and Heyl, 2007, Fahr, 2023, or
Arghirescu, 2015a/b).

With this information one could then reduce the upper differential equation for scales
R  R0t0 , i.e. under conditions of dominating vacuum energy density, by neglecting the
term containing the matter density m, despite its later growing importance (R  R0) with
time, into the following simplified form:

R /R 
8Gvac

3  4G
c2 

  3
3 vacc2  4G

3 vac  2    3   #   

Selecting now for instance from the allowed range of values that constitute a positive
vacuum pressure necessary for a cosmic expansion (i.e.   3!, for instance the
polytropic index   4 , one would then be led to the following relation for the earliest
"vacuum-dominated, matter-less" - primordial Hubble expansion:

R /R  4G
3 vac  2    3  4G

3 vac  4G
3 vac,0R0/R3   #   

or meaning

R  4G
3 vac,0R0  R0/R2   #   

which would describe the earliest expansion dynamics R  Rt of the universe up to
scales R  R0. Beyond that evolutionary state the continuation of the expansion is also
additionally influenced by the growing matter density m - a situation which has already
adequately been described by the complete set of the two Friedman equations in the
form presented by Fahr and Heyl (2023).

Hence anyway one can nevertheless say that the earliest cosmic expansion dynamics
is characterized by the following integrated Friedman equation:
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What concerns the adequate relation for R t, we have already obtained from the first
Friedman equation for k  0 (i.e. uncurved universe) :
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and remembering that for R  R0 the vacuum energy density is assumed to strongly
dominate over the mass energy we simply at this phase then would have :
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which leads one to:

This has to be taken together with the assumption m,0  vac,0 , in order to thereby
guarantee that the energy density of the gravitating cosmic matter at the begin of the
universe (i.e. R  R0) is negligible and the centripetal gravity field, instead of growing to
infinite strength towards a matter singularity, stays moderate, finite - and in fact
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If the exponent  - characterizing the exact scale distribution of the vacuum energy
density vacR had to be selected with   1 , one would then regain the result of a
special R2- dependence of vacR , which could be expected for a corresponding
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universe with matter generation at the expansion by quantized condensation out of the
vacuum (Jordan, 1968, Hönl and Dehnen, 1968, Schäfer and Dehnen, 1977), but now
with an new aspect in the form:  vac  vac (see Fahr and Heyl, 2007, Fahr, 2023, or
Arghirescu, 2015a/b).

With this information one could then reduce the upper differential equation for scales
R  R0t0 , i.e. under conditions of dominating vacuum energy density, by neglecting the
term containing the matter density m, despite its later growing importance (R  R0) with
time, into the following simplified form:
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Selecting now for instance from the allowed range of values that constitute a positive
vacuum pressure necessary for a cosmic expansion (i.e.   3!, for instance the
polytropic index   4 , one would then be led to the following relation for the earliest
"vacuum-dominated, matter-less" - primordial Hubble expansion:
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or meaning
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which would describe the earliest expansion dynamics R  Rt of the universe up to
scales R  R0. Beyond that evolutionary state the continuation of the expansion is also
additionally influenced by the growing matter density m - a situation which has already
adequately been described by the complete set of the two Friedman equations in the
form presented by Fahr and Heyl (2023).

Hence anyway one can nevertheless say that the earliest cosmic expansion dynamics
is characterized by the following integrated Friedman equation:
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What concerns the adequate relation for R t, we have already obtained from the first
Friedman equation for k  0 (i.e. uncurved universe) :

R /R2  c2/3 
8Gm
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and remembering that for R  R0 the vacuum energy density is assumed to strongly
dominate over the mass energy we simply at this phase then would have :

R  cR /3  R 8Gvac   #   

which leads one to:

This has to be taken together with the assumption m,0  vac,0 , in order to thereby
guarantee that the energy density of the gravitating cosmic matter at the begin of the
universe (i.e. R  R0) is negligible and the centripetal gravity field, instead of growing to
infinite strength towards a matter singularity, stays moderate, finite - and in fact
unimportant!

If the exponent  - characterizing the exact scale distribution of the vacuum energy
density vacR had to be selected with   1 , one would then regain the result of a
special R2- dependence of vacR , which could be expected for a corresponding
steady-state universe with the analogue to Hoyle‘s steady-state-request for a matter
universe with matter generation at the expansion by quantized condensation out of the
vacuum (Jordan, 1968, Hönl and Dehnen, 1968, Schäfer and Dehnen, 1977), but now
with an new aspect in the form:  vac  vac (see Fahr and Heyl, 2007, Fahr, 2023, or
Arghirescu, 2015a/b).

With this information one could then reduce the upper differential equation for scales
R  R0t0 , i.e. under conditions of dominating vacuum energy density, by neglecting the
term containing the matter density m, despite its later growing importance (R  R0) with
time, into the following simplified form:
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Selecting now for instance from the allowed range of values that constitute a positive
vacuum pressure necessary for a cosmic expansion (i.e.   3!, for instance the
polytropic index   4 , one would then be led to the following relation for the earliest
"vacuum-dominated, matter-less" - primordial Hubble expansion:

R /R  4G
3 vac  2    3  4G

3 vac  4G
3 vac,0R0/R3   #   

or meaning

R  4G
3 vac,0R0  R0/R2   #   

which would describe the earliest expansion dynamics R  Rt of the universe up to
scales R  R0. Beyond that evolutionary state the continuation of the expansion is also
additionally influenced by the growing matter density m - a situation which has already
adequately been described by the complete set of the two Friedman equations in the
form presented by Fahr and Heyl (2023).

Hence anyway one can nevertheless say that the earliest cosmic expansion dynamics
is characterized by the following integrated Friedman equation:

R t  R 0  4G
3 vac,0R0  

0
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3 vac,0R0  
0
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What concerns the adequate relation for R t, we have already obtained from the first
Friedman equation for k  0 (i.e. uncurved universe) :

R /R2  c2/3 
8Gm

3   #   

and remembering that for R  R0 the vacuum energy density is assumed to strongly
dominate over the mass energy we simply at this phase then would have :

R  cR /3  R 8Gvac   #   

which leads one to:

Selecting now for instance from the allowed range of values 
that constitute a positive vacuum pressure necessary for a 
cosmic expansion (i.e. ξ > 3!), for instance the polytropic index 

ξ = 4, one would then be led to the following relation for the 
earliest "vacuum-dominated, matter-less" - primordial Hubble 
expansion:

or meaning

which would describe the earliest expansion dynamics R = R(t) 
of the universe up to scales R ≃ R0. Beyond that evolutionary 
state the continuation of the expansion is also additionally 
influenced by the growing matter density ρm - a situation which 
has already adequately been described by the complete set of 
the two Friedman equations in the form presented by Fahr and 
Heyl (2023).

Hence anyway one can nevertheless say that the earliest cosmic 
expansion dynamics is characterized by the following integrated 
Friedman equation:

.
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This has to be taken together with the assumption m,0  vac,0 , in order to thereby
guarantee that the energy density of the gravitating cosmic matter at the begin of the
universe (i.e. R  R0) is negligible and the centripetal gravity field, instead of growing to
infinite strength towards a matter singularity, stays moderate, finite - and in fact
unimportant!

If the exponent  - characterizing the exact scale distribution of the vacuum energy
density vacR had to be selected with   1 , one would then regain the result of a
special R2- dependence of vacR , which could be expected for a corresponding
steady-state universe with the analogue to Hoyle‘s steady-state-request for a matter
universe with matter generation at the expansion by quantized condensation out of the
vacuum (Jordan, 1968, Hönl and Dehnen, 1968, Schäfer and Dehnen, 1977), but now
with an new aspect in the form:  vac  vac (see Fahr and Heyl, 2007, Fahr, 2023, or
Arghirescu, 2015a/b).

With this information one could then reduce the upper differential equation for scales
R  R0t0 , i.e. under conditions of dominating vacuum energy density, by neglecting the
term containing the matter density m, despite its later growing importance (R  R0) with
time, into the following simplified form:

R /R 
8Gvac

3  4G
c2 

  3
3 vacc2  4G

3 vac  2    3   #   

Selecting now for instance from the allowed range of values that constitute a positive
vacuum pressure necessary for a cosmic expansion (i.e.   3!, for instance the
polytropic index   4 , one would then be led to the following relation for the earliest
"vacuum-dominated, matter-less" - primordial Hubble expansion:

R /R  4G
3 vac  2    3  4G

3 vac  4G
3 vac,0R0/R3   #   

or meaning

R  4G
3 vac,0R0  R0/R2   #   

which would describe the earliest expansion dynamics R  Rt of the universe up to
scales R  R0. Beyond that evolutionary state the continuation of the expansion is also
additionally influenced by the growing matter density m - a situation which has already
adequately been described by the complete set of the two Friedman equations in the
form presented by Fahr and Heyl (2023).

Hence anyway one can nevertheless say that the earliest cosmic expansion dynamics
is characterized by the following integrated Friedman equation:

R t  R 0  4G
3 vac,0R0  

0

t
R0/R2dt  4G

3 vac,0R0  
0

t
R0/R2 dR

R
  #   

What concerns the adequate relation for R t, we have already obtained from the first
Friedman equation for k  0 (i.e. uncurved universe) :

R /R2  c2/3 
8Gm

3   #   

and remembering that for R  R0 the vacuum energy density is assumed to strongly
dominate over the mass energy we simply at this phase then would have :

R  cR /3  R 8Gvac   #   

which leads one to:

This has to be taken together with the assumption m,0  vac,0 , in order to thereby
guarantee that the energy density of the gravitating cosmic matter at the begin of the
universe (i.e. R  R0) is negligible and the centripetal gravity field, instead of growing to
infinite strength towards a matter singularity, stays moderate, finite - and in fact
unimportant!

If the exponent  - characterizing the exact scale distribution of the vacuum energy
density vacR had to be selected with   1 , one would then regain the result of a
special R2- dependence of vacR , which could be expected for a corresponding
steady-state universe with the analogue to Hoyle‘s steady-state-request for a matter
universe with matter generation at the expansion by quantized condensation out of the
vacuum (Jordan, 1968, Hönl and Dehnen, 1968, Schäfer and Dehnen, 1977), but now
with an new aspect in the form:  vac  vac (see Fahr and Heyl, 2007, Fahr, 2023, or
Arghirescu, 2015a/b).

With this information one could then reduce the upper differential equation for scales
R  R0t0 , i.e. under conditions of dominating vacuum energy density, by neglecting the
term containing the matter density m, despite its later growing importance (R  R0) with
time, into the following simplified form:

R /R 
8Gvac
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  3
3 vacc2  4G

3 vac  2    3   #   

Selecting now for instance from the allowed range of values that constitute a positive
vacuum pressure necessary for a cosmic expansion (i.e.   3!, for instance the
polytropic index   4 , one would then be led to the following relation for the earliest
"vacuum-dominated, matter-less" - primordial Hubble expansion:

R /R  4G
3 vac  2    3  4G

3 vac  4G
3 vac,0R0/R3   #   

or meaning

R  4G
3 vac,0R0  R0/R2   #   

which would describe the earliest expansion dynamics R  Rt of the universe up to
scales R  R0. Beyond that evolutionary state the continuation of the expansion is also
additionally influenced by the growing matter density m - a situation which has already
adequately been described by the complete set of the two Friedman equations in the
form presented by Fahr and Heyl (2023).

Hence anyway one can nevertheless say that the earliest cosmic expansion dynamics
is characterized by the following integrated Friedman equation:
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What concerns the adequate relation for R t, we have already obtained from the first
Friedman equation for k  0 (i.e. uncurved universe) :

R /R2  c2/3 
8Gm
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and remembering that for R  R0 the vacuum energy density is assumed to strongly
dominate over the mass energy we simply at this phase then would have :

R  cR /3  R 8Gvac   #   

which leads one to:

This has to be taken together with the assumption m,0  vac,0 , in order to thereby
guarantee that the energy density of the gravitating cosmic matter at the begin of the
universe (i.e. R  R0) is negligible and the centripetal gravity field, instead of growing to
infinite strength towards a matter singularity, stays moderate, finite - and in fact
unimportant!

If the exponent  - characterizing the exact scale distribution of the vacuum energy
density vacR had to be selected with   1 , one would then regain the result of a
special R2- dependence of vacR , which could be expected for a corresponding
steady-state universe with the analogue to Hoyle‘s steady-state-request for a matter
universe with matter generation at the expansion by quantized condensation out of the
vacuum (Jordan, 1968, Hönl and Dehnen, 1968, Schäfer and Dehnen, 1977), but now
with an new aspect in the form:  vac  vac (see Fahr and Heyl, 2007, Fahr, 2023, or
Arghirescu, 2015a/b).

With this information one could then reduce the upper differential equation for scales
R  R0t0 , i.e. under conditions of dominating vacuum energy density, by neglecting the
term containing the matter density m, despite its later growing importance (R  R0) with
time, into the following simplified form:
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Selecting now for instance from the allowed range of values that constitute a positive
vacuum pressure necessary for a cosmic expansion (i.e.   3!, for instance the
polytropic index   4 , one would then be led to the following relation for the earliest
"vacuum-dominated, matter-less" - primordial Hubble expansion:
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3 vac  2    3  4G

3 vac  4G
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or meaning

R  4G
3 vac,0R0  R0/R2   #   

which would describe the earliest expansion dynamics R  Rt of the universe up to
scales R  R0. Beyond that evolutionary state the continuation of the expansion is also
additionally influenced by the growing matter density m - a situation which has already
adequately been described by the complete set of the two Friedman equations in the
form presented by Fahr and Heyl (2023).

Hence anyway one can nevertheless say that the earliest cosmic expansion dynamics
is characterized by the following integrated Friedman equation:
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What concerns the adequate relation for R t, we have already obtained from the first
Friedman equation for k  0 (i.e. uncurved universe) :

R /R2  c2/3 
8Gm
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and remembering that for R  R0 the vacuum energy density is assumed to strongly
dominate over the mass energy we simply at this phase then would have :

R  cR /3  R 8Gvac   #   

which leads one to:

This has to be taken together with the assumption m,0  vac,0 , in order to thereby
guarantee that the energy density of the gravitating cosmic matter at the begin of the
universe (i.e. R  R0) is negligible and the centripetal gravity field, instead of growing to
infinite strength towards a matter singularity, stays moderate, finite - and in fact
unimportant!

If the exponent  - characterizing the exact scale distribution of the vacuum energy
density vacR had to be selected with   1 , one would then regain the result of a
special R2- dependence of vacR , which could be expected for a corresponding
steady-state universe with the analogue to Hoyle‘s steady-state-request for a matter
universe with matter generation at the expansion by quantized condensation out of the
vacuum (Jordan, 1968, Hönl and Dehnen, 1968, Schäfer and Dehnen, 1977), but now
with an new aspect in the form:  vac  vac (see Fahr and Heyl, 2007, Fahr, 2023, or
Arghirescu, 2015a/b).

With this information one could then reduce the upper differential equation for scales
R  R0t0 , i.e. under conditions of dominating vacuum energy density, by neglecting the
term containing the matter density m, despite its later growing importance (R  R0) with
time, into the following simplified form:
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Selecting now for instance from the allowed range of values that constitute a positive
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If we now use the favoured upper dependence of the vacuum energy on R, i.e
vac  vac,0  R0/R2, then we arrive at the surprisingly simple relation:
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meaning that the initial scale expansion speed R for scales R  R0 is const. and given
by R  8Gvac,0R0

2 . Consequently the initial scale expansion is described by the simple
formula:
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with t0  0! as the actual "Big-Bang"- event time, i.e. the beginning of the universal or
cosmic time. The initial Hubble parameter for the earliest epoch of the cosmic expansion
is therefore given by:
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which means that one finds the usual, well known relation valid also in this earliest
phase, saying that the inverse of the Hubble parameter, i.e. 1/H  R/R  , even in this
earliest cosmic epoch, equals the actual age of this young universe, which in this case
simply is   t .

Since for all our further derivations we consider the case of a pressurized vacuum
which, as we have shown (Fahr and Heyl, 2023), automatically does perform
thermodynamic work at the ongoing cosmic scale expansion, the energy density vac of
the vacuum in the universe has to diminish at the cosmic expansion, while to the
contrast the relative energy density m/vac of massive cosmic matter has to
correspondingly increase in such a way as not to violate the energy conservation law of
the whole cosmic "matter - vacuum" - system. Thus, as we have shown before, the
following relation (at least in case of subrelativistic matter generation, i.e. kTm  mc2!)
has to be fulfilled:

  vac   m   #   
and also perhaps in the interest of Hoyle ‘s steady state request - namely to keep the

"face of the universe" always unchanged - not to disadvantage any sooner or later
cosmic spectator - with Hoyle‘s relation:
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As soon as matter generation in fact in Hoyle‘s style prevails in the universe, one then
obtains a corresponding scale-behaviour of the matter density given by (Fahr and Heyl,
2023)
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vac  vac,0  R0/R2, then we arrive at the surprisingly simple relation:

R  R 8Gvac  8Gvac,0R0
2  const.   #   

meaning that the initial scale expansion speed R for scales R  R0 is const. and given
by R  8Gvac,0R0

2 . Consequently the initial scale expansion is described by the simple
formula:
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with t0  0! as the actual "Big-Bang"- event time, i.e. the beginning of the universal or
cosmic time. The initial Hubble parameter for the earliest epoch of the cosmic expansion
is therefore given by:
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which means that one finds the usual, well known relation valid also in this earliest
phase, saying that the inverse of the Hubble parameter, i.e. 1/H  R/R  , even in this
earliest cosmic epoch, equals the actual age of this young universe, which in this case
simply is   t .

Since for all our further derivations we consider the case of a pressurized vacuum
which, as we have shown (Fahr and Heyl, 2023), automatically does perform
thermodynamic work at the ongoing cosmic scale expansion, the energy density vac of
the vacuum in the universe has to diminish at the cosmic expansion, while to the
contrast the relative energy density m/vac of massive cosmic matter has to
correspondingly increase in such a way as not to violate the energy conservation law of
the whole cosmic "matter - vacuum" - system. Thus, as we have shown before, the
following relation (at least in case of subrelativistic matter generation, i.e. kTm  mc2!)
has to be fulfilled:

  vac   m   #   
and also perhaps in the interest of Hoyle ‘s steady state request - namely to keep the

"face of the universe" always unchanged - not to disadvantage any sooner or later
cosmic spectator - with Hoyle‘s relation:

 b,d 
b,d
R R  mH   m   #   

As soon as matter generation in fact in Hoyle‘s style prevails in the universe, one then
obtains a corresponding scale-behaviour of the matter density given by (Fahr and Heyl,
2023)
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and hence for massive cosmic matter densities m (baryonic b and dark d as well)
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If we now use the favoured upper dependence of the vacuum energy on R, i.e
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meaning that the initial scale expansion speed R for scales R  R0 is const. and given
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which means that one finds the usual, well known relation valid also in this earliest
phase, saying that the inverse of the Hubble parameter, i.e. 1/H  R/R  , even in this
earliest cosmic epoch, equals the actual age of this young universe, which in this case
simply is   t .

Since for all our further derivations we consider the case of a pressurized vacuum
which, as we have shown (Fahr and Heyl, 2023), automatically does perform
thermodynamic work at the ongoing cosmic scale expansion, the energy density vac of
the vacuum in the universe has to diminish at the cosmic expansion, while to the
contrast the relative energy density m/vac of massive cosmic matter has to
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the whole cosmic "matter - vacuum" - system. Thus, as we have shown before, the
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which means that one finds the usual, well known relation valid also in this earliest
phase, saying that the inverse of the Hubble parameter, i.e. 1/H  R/R  , even in this
earliest cosmic epoch, equals the actual age of this young universe, which in this case
simply is   t .

Since for all our further derivations we consider the case of a pressurized vacuum
which, as we have shown (Fahr and Heyl, 2023), automatically does perform
thermodynamic work at the ongoing cosmic scale expansion, the energy density vac of
the vacuum in the universe has to diminish at the cosmic expansion, while to the
contrast the relative energy density m/vac of massive cosmic matter has to
correspondingly increase in such a way as not to violate the energy conservation law of
the whole cosmic "matter - vacuum" - system. Thus, as we have shown before, the
following relation (at least in case of subrelativistic matter generation, i.e. kTm  mc2!)
has to be fulfilled:

  vac   m   #   
and also perhaps in the interest of Hoyle ‘s steady state request - namely to keep the

"face of the universe" always unchanged - not to disadvantage any sooner or later
cosmic spectator - with Hoyle‘s relation:

 b,d 
b,d
R R  mH   m   #   

As soon as matter generation in fact in Hoyle‘s style prevails in the universe, one then
obtains a corresponding scale-behaviour of the matter density given by (Fahr and Heyl,
2023)

mR  m0  R0/R2   #   
and hence for massive cosmic matter densities m (baryonic b and dark d as well)

this should mean :
m  mt,R0  Ro/R2   #   

and furthermore:and furthermore:

  vac   m,0  Ro/R2  2m,0  R0
2/R3R  Ro/R2   m,0  2m,0  H   #   

The energy conservation law for subrelativistic matter thus consequently would
require:

4R3m/3  4R3vac/3  E  const.   #   
leading to:

mR0t  vacR0tR0
2  3

4R  const.   #   

or:

mR0tR0
2  3

4R  const.vacR0tR0
2   #   

For the begin of the universe we had already (Fahr and Heyl, 2023) derived a vacuum
energy density behaviour according to:

vacR  vac,0  R0/R5   #   

which with the further above proposed index   4 (i.e. positively pressurized vacuum!)
then finally leads to:

mR0, tR0
2  3

4R const  vacR0, t  R0/R   #   

How to conciliate these above relations?

Forgetting at the moment thermal energy parts of condensed matter, the total energy
in the universe, taking vacuum energy and matter energy together, should be given by:

E  4c2/3  vac  m  R3

which would then lead us - including a matter-generation process (material fall-out
from the vacuum!), like a particle production out of a free quantized Dirac field in a static
spherical Einstein universe (discussed by Schäfer and Dehnen, 1977) or a subrelativistic
matter condensation out of the cosmic vacuum (see e.g. Arghirescu, 2015a/b), - to
something like:

E  4c2/3  vac,0  exp1  t
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with  denoting the actual matter-condensation rate, at present here given by a
constant vac,0/m,0  exp regulating the ratio of vacuum over mass energy density at
the world reference scale R0.

At the world time t  t0 with the cosmic scale R  R0 one would thus with the above
regulation have the following mass/energy densities:

0R0  vac,0  exp1  t
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At scales R ≪ R0, i.e. t → 0, one would instead have connected with the early scale-relation at that early time:scale-relation at that early time:
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the following relations given for the matter density mR and for the vacuum density
vacR at times t  0 :

mR  m,0  exp t
t0  1  m,0  exp   #   

vacR  vac,0  exp1  t
t0   vac,0  exp   #   

i.e. both these densities do at these earliest cosmic times t  t0 neither depend on t
nor R, but are constant, while at scales R  R0 , i.e. t  , one should instead have
time-dependent densities given by:
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making it evident that at some later time t  t0 the universe finally will become a pure
-matter dominated universe.

Looking now at those cosmic phases with R  R0, when, due to the meanwhile
increased matter densities - and probably also increased matter temperatures Tm -, at
least under the assumption of pressure-equivalent, - i.e. "isobaric" mass condensations
with dp  dpvac  dpm  0! -, fusion reactions between different condensed matter
components mi,mj might have arranged or rearranged scale-dependent elemental
abundances Xi,j  Xi,jR (H,D,Tr,He3,He4,Li etc., see e.g. Kolb and Turner, 1990) , then
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need a physical basis for the change of the matter temperature Tm with the scale of the
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Aspects of cosmic nucleosynthesis
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making it evident that at some later time t ≫ t0 the universe 
finally will become a pure -matter dominated universe.

Looking now at those cosmic phases with R ≤ R0, when, due to 
the meanwhile increased matter densities - and probably also 
increased matter temperatures Tm -, at least under the assumption 
of pressure-equivalent, - i.e. "isobaric" mass condensations 

with dp = dpvac + dpm = 0! -, fusion reactions between different 
condensed matter components mi,mj might have arranged or 
rearranged scale-dependent elemental abundances Xi,j = Xi,j(R) 
(H, D, Tr, He3, He4, Li etc., see e.g. Kolb and Turner, 1990), then 
for this expansion phase (t → 0) one can start from the following 
cosmic conditions:

with matter densities at R ≤ R0 given by:

Furthermore one had perhaps to pay attention to an energy-
conserving matter-generation process which would probably 

require the validity of both of the following two relations:

and for a pressure-equivalent materialisation:

which makes evident that for a complete description of this 
cosmic period one would need a physical basis for the change 
of the matter temperature Tm with the scale of the universe, 
associated with the process of matter condensation out of the 
cosmic vacuum.

3. Aspects of cosmic nucleosynthesis
Looking now specifically at the inherent nucleosynthetic 
processes (Meyer, 1988, Goenner, 1994 , Kolb and Turner, 
1990) during the earliest expansion phase of the universe (t ˂ t0) 
under conditions of a vacuum energy dominance, we can use the 
following thermodynamic relation (see Fahr and Heyl, 2023):

Looking now specifically at the inherent nucleosynthetic processes ( Meyer, 1988,
Goenner, 1994 , Kolb and Turner, 1990) during the earliest expansion phase of the
universe t  t0 under conditions of a vacuum energy dominance, we can use the
following thermodynamic relation (see Fahr and Heyl, 2023) :

d
dR vac  mR3  pvac  pm d

dR R3   #   

Where pm is the thermal pressure of the cosmic matter condensed out of the vacuum,
i.e. given by ( total energy density m of matter reduced by the rest-mass energy density
mc2):

pm  nkTm 
m
m  mm

m  mc2  m  mc2   #   

which allows to write the temperature of the "isobarically-condensed" cosmic matter in
the following form:

Tm 
m
m  mm

m  mc2  m
mk

m  mc2   #   

This then leads us back to the upper thermodynamic relation, now given in the
following combined form:

d
dR vac  mR3   3  

3 vac  m  mc2 d
dR R3   #   

where the following findings could perhaps be used for the region R  R0:

mR  m,0  exp t
t0  1

vacR  vac,0  exp1  t
t0    #   

perhaps connected with the relation already used by us earlier (Fahr and Heyl, 2023),
but now extended to the case of matter condensation out of the vacuum:

dpvac   3  m
3 dvac

in order to correctly take account of the thermodynamic change of the vacuum
pressure connected with a corresponding change of the vacuum energy density vac .
However, dependend on the form of the materialisation of vacuum energy density, it
could be recommended to allow hereby for a vacuum-polytrope m which is different
from   4 due to the non-thermodynamical influence at the matter condensation out of
the vacuum. Perhaps in case of an "isobaric" matter condensation one could require that
the associated change of vacuum pressure is compensated by the associated change of
the material pressure in the form:

 dpvac 
3  
3 dvac  dpm
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which allows to write the temperature of the "isobarically-condensed" cosmic matter in
the following form:

Tm 
m
m  mm

m  mc2  m
mk

m  mc2   #   

This then leads us back to the upper thermodynamic relation, now given in the
following combined form:

d
dR vac  mR3   3  

3 vac  m  mc2 d
dR R3   #   

where the following findings could perhaps be used for the region R  R0:

mR  m,0  exp t
t0  1

vacR  vac,0  exp1  t
t0    #   

perhaps connected with the relation already used by us earlier (Fahr and Heyl, 2023),
but now extended to the case of matter condensation out of the vacuum:

dpvac   3  m
3 dvac

in order to correctly take account of the thermodynamic change of the vacuum
pressure connected with a corresponding change of the vacuum energy density vac .
However, dependend on the form of the materialisation of vacuum energy density, it
could be recommended to allow hereby for a vacuum-polytrope m which is different
from   4 due to the non-thermodynamical influence at the matter condensation out of
the vacuum. Perhaps in case of an "isobaric" matter condensation one could require that
the associated change of vacuum pressure is compensated by the associated change of
the material pressure in the form:

 dpvac 
3  
3 dvac  dpm

Looking now specifically at the inherent nucleosynthetic processes ( Meyer, 1988,
Goenner, 1994 , Kolb and Turner, 1990) during the earliest expansion phase of the
universe t  t0 under conditions of a vacuum energy dominance, we can use the
following thermodynamic relation (see Fahr and Heyl, 2023) :

d
dR vac  mR3  pvac  pm d

dR R3   #   

Where pm is the thermal pressure of the cosmic matter condensed out of the vacuum,
i.e. given by ( total energy density m of matter reduced by the rest-mass energy density
mc2):

pm  nkTm 
m
m  mm

m  mc2  m  mc2   #   

which allows to write the temperature of the "isobarically-condensed" cosmic matter in
the following form:

Tm 
m
m  mm

m  mc2  m
mk

m  mc2   #   

This then leads us back to the upper thermodynamic relation, now given in the
following combined form:

d
dR vac  mR3   3  

3 vac  m  mc2 d
dR R3   #   

where the following findings could perhaps be used for the region R  R0:

mR  m,0  exp t
t0  1

vacR  vac,0  exp1  t
t0    #   

perhaps connected with the relation already used by us earlier (Fahr and Heyl, 2023),
but now extended to the case of matter condensation out of the vacuum:

dpvac   3  m
3 dvac

in order to correctly take account of the thermodynamic change of the vacuum
pressure connected with a corresponding change of the vacuum energy density vac .
However, dependend on the form of the materialisation of vacuum energy density, it
could be recommended to allow hereby for a vacuum-polytrope m which is different
from   4 due to the non-thermodynamical influence at the matter condensation out of
the vacuum. Perhaps in case of an "isobaric" matter condensation one could require that
the associated change of vacuum pressure is compensated by the associated change of
the material pressure in the form:

 dpvac 
3  
3 dvac  dpm

Looking now specifically at the inherent nucleosynthetic processes ( Meyer, 1988,
Goenner, 1994 , Kolb and Turner, 1990) during the earliest expansion phase of the
universe t  t0 under conditions of a vacuum energy dominance, we can use the
following thermodynamic relation (see Fahr and Heyl, 2023) :

d
dR vac  mR3  pvac  pm d

dR R3   #   

Where pm is the thermal pressure of the cosmic matter condensed out of the vacuum,
i.e. given by ( total energy density m of matter reduced by the rest-mass energy density
mc2):

pm  nkTm 
m
m  mm

m  mc2  m  mc2   #   

which allows to write the temperature of the "isobarically-condensed" cosmic matter in
the following form:

Tm 
m
m  mm

m  mc2  m
mk

m  mc2   #   

This then leads us back to the upper thermodynamic relation, now given in the
following combined form:

d
dR vac  mR3   3  

3 vac  m  mc2 d
dR R3   #   

where the following findings could perhaps be used for the region R  R0:

mR  m,0  exp t
t0  1

vacR  vac,0  exp1  t
t0    #   

perhaps connected with the relation already used by us earlier (Fahr and Heyl, 2023),
but now extended to the case of matter condensation out of the vacuum:

dpvac   3  m
3 dvac

in order to correctly take account of the thermodynamic change of the vacuum
pressure connected with a corresponding change of the vacuum energy density vac .
However, dependend on the form of the materialisation of vacuum energy density, it
could be recommended to allow hereby for a vacuum-polytrope m which is different
from   4 due to the non-thermodynamical influence at the matter condensation out of
the vacuum. Perhaps in case of an "isobaric" matter condensation one could require that
the associated change of vacuum pressure is compensated by the associated change of
the material pressure in the form:

 dpvac 
3  
3 dvac  dpm

Where pm is the thermal pressure of the cosmic matter condensed 
out of the vacuum, i.e. given by (total energy density ϵm of matter 

reduced by the rest-mass energy density ρmc2):

which allows to write the temperature of the "isobarically-condensed" cosmic matter in the following form:

This then leads us back to the upper thermodynamic relation, now given in the following combined form:

where the following findings could perhaps be used for the region R ≤ R0:
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Looking now specifically at the inherent nucleosynthetic processes ( Meyer, 1988,
Goenner, 1994 , Kolb and Turner, 1990) during the earliest expansion phase of the
universe t  t0 under conditions of a vacuum energy dominance, we can use the
following thermodynamic relation (see Fahr and Heyl, 2023) :

d
dR vac  mR3  pvac  pm d

dR R3   #   

Where pm is the thermal pressure of the cosmic matter condensed out of the vacuum,
i.e. given by ( total energy density m of matter reduced by the rest-mass energy density
mc2):

pm  nkTm 
m
m  mm

m  mc2  m  mc2   #   

which allows to write the temperature of the "isobarically-condensed" cosmic matter in
the following form:

Tm 
m
m  mm

m  mc2  m
mk

m  mc2   #   

This then leads us back to the upper thermodynamic relation, now given in the
following combined form:

d
dR vac  mR3   3  

3 vac  m  mc2 d
dR R3   #   

where the following findings could perhaps be used for the region R  R0:

mR  m,0  exp t
t0  1

vacR  vac,0  exp1  t
t0    #   

perhaps connected with the relation already used by us earlier (Fahr and Heyl, 2023),
but now extended to the case of matter condensation out of the vacuum:

dpvac   3  m
3 dvac

in order to correctly take account of the thermodynamic change of the vacuum
pressure connected with a corresponding change of the vacuum energy density vac .
However, dependend on the form of the materialisation of vacuum energy density, it
could be recommended to allow hereby for a vacuum-polytrope m which is different
from   4 due to the non-thermodynamical influence at the matter condensation out of
the vacuum. Perhaps in case of an "isobaric" matter condensation one could require that
the associated change of vacuum pressure is compensated by the associated change of
the material pressure in the form:

 dpvac 
3  
3 dvac  dpm

Looking now specifically at the inherent nucleosynthetic processes ( Meyer, 1988,
Goenner, 1994 , Kolb and Turner, 1990) during the earliest expansion phase of the
universe t  t0 under conditions of a vacuum energy dominance, we can use the
following thermodynamic relation (see Fahr and Heyl, 2023) :

d
dR vac  mR3  pvac  pm d

dR R3   #   

Where pm is the thermal pressure of the cosmic matter condensed out of the vacuum,
i.e. given by ( total energy density m of matter reduced by the rest-mass energy density
mc2):

pm  nkTm 
m
m  mm

m  mc2  m  mc2   #   

which allows to write the temperature of the "isobarically-condensed" cosmic matter in
the following form:

Tm 
m
m  mm

m  mc2  m
mk

m  mc2   #   

This then leads us back to the upper thermodynamic relation, now given in the
following combined form:

d
dR vac  mR3   3  

3 vac  m  mc2 d
dR R3   #   

where the following findings could perhaps be used for the region R  R0:

mR  m,0  exp t
t0  1

vacR  vac,0  exp1  t
t0    #   

perhaps connected with the relation already used by us earlier (Fahr and Heyl, 2023),
but now extended to the case of matter condensation out of the vacuum:

dpvac   3  m
3 dvac

in order to correctly take account of the thermodynamic change of the vacuum
pressure connected with a corresponding change of the vacuum energy density vac .
However, dependend on the form of the materialisation of vacuum energy density, it
could be recommended to allow hereby for a vacuum-polytrope m which is different
from   4 due to the non-thermodynamical influence at the matter condensation out of
the vacuum. Perhaps in case of an "isobaric" matter condensation one could require that
the associated change of vacuum pressure is compensated by the associated change of
the material pressure in the form:

 dpvac 
3  
3 dvac  dpm

perhaps connected with the relation already used by us earlier 
(Fahr and Heyl, 2023), but now extended to the case of matter 

condensation out of the vacuum:

in order to correctly take account of the thermodynamic change 
of the vacuum pressure connected with a corresponding change 
of the vacuum energy density ϵvac. However, dependend on the 
form of the materialisation of vacuum energy density, it could be 
recommended to allow hereby for a vacuum-polytrope ξm which 

is different from ξ = 4 due to the non-thermodynamical influence 
at the matter condensation out of the vacuum. Perhaps in case 
of an "isobaric" matter condensation one could require that the 
associated change of vacuum pressure is compensated by the 
associated change of the material pressure in the form:

Since up to now in our knowledge in none of the available 
papers treating the problem of matter condensation from cosmic 
vacuum energy (Jordan, 1968, Schaefer and Dehnen, 1977, 
Prigogine et al., 1988, Overduin and Fahr, 2001, Fahr and 
Heyl, 2007, Arghirescu, 2015) it has been discussed in detail, 
how exactly the thermodynamic status of the newly appearing 
condensed matter has to be described, for entropy reasons we 
could at this moment simply assume that the condensed matter 
is produced out of the vacuum as pressurized matter with the 
actual pressure pm = pvac of the vacuum from which it condensed. 
This at least will guarantee that the cosmic matter creation 
process is entropy-irrelevant with dh/dt = 0 as e.g. Prigogine et 
al. (1988) require, since otherwise the unified system of "matter 
and vacuum" taken as a joint natural system would not fullfill 
the second law of thermodynamics, but would decrease the 
system‘s entropy by following the natural occurences. We shall 
leave this problem for consecutive publications and thus finish 
our investigations here.
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