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Abstract
As we are going to show here it is not easily understandable how cosmic gases like H-atoms, after the recombination of cosmic 
matter, do thermodynamically behave under the ongoing Hubble-like expansion of the universe. The question namely is not easy 
to answer; how cosmic gas atoms do in fact recognize the expansion of cosmic 3- space. Contemporary mainstream cosmology 
takes for granted that gas atoms do react polytropically or even adiabatically to cosmic volume changes and thus do get more 
and more tenuous and colder in accordance with gas- and thermo- dynamics. However, one has to face the fact that cosmic 
gases at the recombination era are already nearly collisionless over scales of 10 AU, and how gases react to cosmic volume 
changes under such conditions is not a trivial problem. We derive in this article a kinetic transport equation which describes the 
evolution of the gas distribution function f(t, v) in cosmic time t and velocity space of v. This partial differential equation does 
not allow for a solution in form a separation of the two variables t and v, but instead we can find solutions for two moments of 
f(v, t), i.e. the density n(t) and the pressure P(t). Then we show that using kappa-like functions for the cosmic gas we can derive 
such functions as function of their velocity moments, i.e. as functions of cosmic time. It means we understand the kinetic evolution 
of the cosmic gas by understanding the evolution in cosmic time of their moments.
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A Brief View on the Cosmic Matter Recombination Phase
It is generally assumed that before the phase of matter recombi-
nation (say about 380000 years ago) matter and radiation were in 
perfect thermodynamic equilibrium, implying that protons in this 
phase are described by Maxwell distributions f(v, t0) = Max(v, T0) 
and photons are distributed according to a Planckian black body 
spectrum for a common temperature T0. A deeper look into the 
kinetic theory of the physical processes close to and just after the 
recombination phase of electrons and protons, makes evident that 
in a homologously expanding universe the baryon distribution 
function cannot be expected to maintain its Maxwellian shape, 
since its most relevant velocity moments, i.e. the density and the 
temperature, vary in an unexpected nonclassical, non-adiabatic 
manner [1,2]. As consequence of that the entropy of baryons, i.e. 
of H-atoms, in fact does change with cosmic time, in contrast to 
the standard thermodynamical expectation.

We start with a brief look on the phase of cosmic electron - pro-
ton recombinations thought to have occured at about 380000 years 
after the so-called Big-Bang, when the temperatures of the cos-
mic plasma dropped to below 4000 K  [3]. It is assumed that at 
this phase electrons and protons are dynamically and physically 
tightly coupled to each other, since undergoing strong and frequent 

mutual interactions both by Coulomb collisions and by Compton 
collisions with photons. Under such prerequisites a pure thermo-
dynamical equilibrium state seems to be guaranteed, implying that 
protons and electrons are distributed in velocity-space according 
to a Maxwellian velocity distribution, and photons maintain a 
Planckian blackbody spectrum in frequency. Looking at this rele-
vant point more in detail makes it, however, by far not so evident 
that these assumptions are really fulfilled during this period, main-
ly because photons and particles react very differently to the cos-
mological expansion. Photons generally are cooling due to perma-
nently being cosmologically redshifted [4-6]. In contrast particles 
are not directly feeling the expansion of the universe, unless they 
feel it adiabatically by mediation of the changing thermodynamic 
conditions through numerous Coulomb collisions.

Over distances D where the cosmic gas atoms can be considered 
as collision-free, i.e. for D≤ λc (with λc denoting the actual mean 
free path with respect to elastic collisions), they will not feel the 
expansion at all. Only beyond, at distances D˃ λc, those atoms with 
velocities larger than v≤λc H (i.e. the critical Hubble drift!) are 
touching the "collisional wall" of their cosmic environment and 
will start recognizing the cosmic expansion, while others with  v˃ 
λc H are not touching this wall. Hereby the expansion of the uni-
verse is described by the Hubble parameter with H=R /R, where R 

.
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denotes the scale of the universe, and R ̇ its derivative with respect 
to cosmic time t. Or expressing it in other words, if one expands 
the walls of a collision-free gas with a supersonic velocity V>>vs, 
then this gas will not recognize the expansion, only the few parti-
cles of the gas distribution function with velocities v˃ vs can inter-
act with the wall and can react "adiabatically" by returning to the 
system with reduced energy.

Furthermore an additional problem occurs, since Coulomb colli-
sions redistributing velocities among particles and reconstituting 
the distribution function have a specific property aggravating 
things in this context. Namely the fact that Coulomb collision 
cross sections are strongly dependent on the relative velocity w 
of the colliding particles since being proportional to (1/w4) [8]. 
This has the consequence that high-velocity particles are much 
less collision-dominated compared to low-velocity ones. The lat-
ter even behave as Collison-free at supercritical large velocities 
v ˃ vc. So while the low-velocity branch of the distribution thus 
may still cool adiabatically like a collision-dominated gas and thus 
feels and reacts to the cosmic expansion in an adiabatic form, the 
high-velocity branch in contrast behaves collision-free and hence 
changes in a different, yet unspecified form.

This violates the concept of a joint equilibrium temperature and of 
a resulting mono-Maxwellian velocity distribution function, and 
means that there may be a critical evolutionary phase of the uni-
verse, due to different forms of cooling in the low- and high-ve-
locity branches of the particle velocity distribution function. Such 
a situation does not permit the endurance of a Maxwellian distri-
bution to later cosmic times. Hence we shall now look into this 
interesting evolutionary expansion phase a bit deeper and try to 
draw some first conclusions concerning the cosmic gas behaviour 
in the post-recombination era. We shall also demonstrate here that 
the realistic behaviour of cosmic gases during this phase and later 
depends on the specific form of the Hubble expansion of the uni-
verse, especially an accelerated expansion phase as is often dis-
cussed nowadays will strongly influence the thermodynamics of 
the cosmic gas, creating so-called "over-Maxwellian"- depletions 
of high velocity particles, i.e. distributions with strongly extin-
guished high-velocity particles. Such types of functions we shall 
describe in the forthcoming sections of this paper.

Derivation of the Kinetic Transport Equation for Cosmic Gas-
es
We start out from the generally accepted assumption in modern 
cosmology, that during the collision-dominated phase of the cos-
mic evolution, just before the time of matter recombination, mat-
ter and radiation, due to frequent energy exchange processes, are 
in complete thermodynamic equilibrium, i.e. matter and radiation 
temperatures are identical Tm = Ts =T0. In the following cosmic 
evolution this equilibrium, however, will experience perturbations 
as had already been emphasized in the section above and earlier 
by Fahr and Loch (1991). The upcoming part of the paper shall 
demonstrate now that, even if a Maxwellian distribution would 
actually prevail at the entrance to the collision-free cosmic ex-
pansion phase, it would not persist at times there after. Just after 
the recombination phase when electrons and protons recombine 
to H-atoms, and photons start propagating through cosmic space 
practically without further interaction with matter, the thermody-
namic contact between matter and radiation further on is abolished 

or switched off. This is one reason why the initial Maxwellian 
atom distribution function would not persist in the universe during 
the ongoing collision-free expansion.

To enlucidate this point let us first consider a collision-free particle 
population in an expanding, spatially symmetric Robertson-Walk-
er universe. Hereby it is clear that due to the cosmological princi-
ple and, connected with it, the requirement of spatial homogeneity, 
also the velocity distribution function of the particles must be iso-
tropic in v and independent on the local cosmic place x. Thus, it 
must be of the following general form

Where n(I) denotes the time-variable, cosmic density, only de-
pending on the world time t, and f ̅(v, t) is the normalized, time-de-
pendent, isotropic velocity distribution function with the property: 
ʃf ̅(v, t)d3v=1. If we now do take into account that particles, moving 
freely with their velocity v into their v-associated direction over a 
distance l, at their new place have to restitution the actual cosmic 
distribution there, despite the differential Hubble flow and the ex-
plicit time-dependence of f, then a locally prevailing co-variant 
distribution function f(v‘ , t´) must exist such with the property 
that the two associated functions f(v‘ , t´) and f(v, t) are related to 
each other in a Liouville-conform way [9]. To quantify this re-
quired relation needs some special care, since particles that are 
freely moving in a homologously expanding Hubble universe, do 
in this specific case at their motions not conserve their associated 
phasespace volumes d6 ϕ= d³vd³x as they usually do in gas dynam-
ics, since in a homologously expanding cosmic space no particle 
Lagrangian L(v, x) does exist, as usually does in gas dynamics, and 
thus no Hamiltonian canonical relations of their dynamical coordi-
nates v and x are valid.

As consequence Liouville‘s theorem does not require that the dif-
ferential 6D-phase space volumes d6 ϕ are identical, but that the 
conjugated differential phase space densities are identical to guar-
antee particle conservation [10]. This is expressed by the follow-
ing relation:

When arriving at the place x´ these particles, after passage over a 
distance l are incorporated into a particle population which has a 
relative Hubble drift with respect to the origin of the particle given 
by vH = l ∙H, co-aligned with v. Thus the original particle velocity 
v registered at the new place x´ appears locally tuned down to v‘ = 
v - l ∙ H , since at the present place x´, deplaced from the original 
place x by the increment l, all velocities have to be judged with 
respect to the new local reference frame (standard of rest) with 
its differential Hubble drift of (l ∙H) with respect to the particle´s 
origin.

If all of that is taken into account, it can be shown that one finally 
is lead to the following kinetic transport equation [1, 2]:

Which should enable one to derive the resulting distribution func-
tion as function of the velocity v and of the cosmic time t. As it 
was shown already by Fahr (2021), the above kinetic transport 

→

→
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equation does not allow for a solution in the form of a separation 
of variables, i.e. putting f(v, t)= ft(t) . fv(v), but one rather needs a 
different, non-straightforward method of finding a kinetic solution 
of this above transport equation Equ.(1) [1, 2].

Cosmic Kappa-Functions 
One way which may prove to be promising here, is to think of 
kappa-functions as the underlying distribution functions at cosmic 
times after the matter recombination. These latter functions a pri-
ori have the advantage of covering all kinetic function phenomena 
spanned between pure power law functions and pure Maxwellian 
functions which have to be expected at times after matter recom-
bination in the universe (t ≥ t0!) [11, 2 and 10]. Let us therefore 
now have a look on this latter type of functions with respect to its 
applicability in cosmology.

Starting from an isotropic kappa-distribution in the frame of the 
plasma bulk motion which latter has to dissappear anyway in a 
Robertson-Walker universe (i.e. due to the cosmological principle 
requiring full 3D- space symmetry!). Local bulk motions would 
evidently violate this cosmological principle. These types of re-
quired functions are generally given in the following form [10].

Here n denotes the particle density, K and θ denote two indepen-
dent, typical kappa-function parameters, and Γ=Γ(x)  means the 
well-known mathematical Gamma-function. The above distri-
bution function fk (v) is typical for deviations from the normally 
expected thermodynamical, collision-dominated equilibrium situ-
ation which latter would be characterized by a Maxwellian distri-
bution and would automatically be contained in the upper function 
family with the case k →∞.

Calculating now on the basis of the above distribution function fk 
(v) the associated pressure moment Pk, by carrying out the neces-
sary velocity-space integration, then leads to the following [1, 2]:

with m denoting the particle mass. This then shows, however, that 
kappa distributions with kappa-function parameters k and Θ nev-
ertheless do lead to the same pressure moment Pk (i.e. isobaric 
functions!), – if! the k associated parameter Θ (i.e. the "thermal" 
spread of the function) is a specific function of k, i.e. Θ=Θ(k), and 
if! this function Θ(k) is given through the following relation:

This then opens up another possibility, or if preferred an other way 
around, one namely can keep Pk as a function parameter of the dis-
tribution function and can express Θ as function of the remaining 
function parameters k, nk, Pk in the form:

This for instance is generally practised in writing Maxwellians 
Max (v) as functions of their two velocity moments nMax and TMax = 
PMax/ (KnMax) in the form:

In this sense, the above kappa-type distribution function could as 
well be expressed through its parameter k and the function mo-
ment’s nk and Pk in the form:

Now it turns out from a recent paper that, prior to the knowledge of 
the distribution function fk(v) itself, one can show that the moments 
of the above function, starting from the kinetic transport equation 
Equ.(1) for gases in an expanding universe, can be found without 
having available the solution of this kinetic transport equation first 
[1, 2]. From the corresponding moment transport equations of this 
equation the moments nk(t) and Pk(t) can be derived, and with the 
Hubble constant H0 = R0/R0 (the problem of treating the Hubble 
parameter as a constant will be discussed in the next section) , lead 
to the following results for the time-dependence of these moments 
[1, 2]:

and:

This requires prior to solving Equation (1) that the kinetic distribu-
tion function, whatever form it has, has to obey the following fact:

If we now take this knowledge and introduce it into the upper kap-
pa-function we then obtain the following form for it:

or after some mathematical rearrangements:

We now introduce the following quantity; - one could call it: the 
mean thermal particle energy E0 at the cosmic time t = t0:

and obtain the upper distribution function in the following form:

.
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Or when expressing, since being more practical, the mean thermal 
energy by E0 = (1/2)mv02 one obtains:

And thus finally obtaining the differential velocity space density, 
with introduction of the normalized variable x = v/v0, by

The above function is essentiallly well defined concerning its 
v - and t - dependencies, - up to the missing knowledge on the 
time-dependence of the parameter x = x(t). Assuming, however, 
the prevalence of a Maxwellian distribution at time t = to to would 
imply that x(t0) = x0 ≥10, and then expecting for later cosmic times 
t = to due to the Hubble-drift influence more low-velocity-loaded 
"over-Maxwellian ´ized" distributions should suggest that the k- 
parameter perhaps continues to increase according to 
                          k(t) = k0 exp [H˄ (t - t0)]
This then leads to the results shown in Figures 1 and 2.

Figure 1: The cosmic baryon distribution function in the times t1= 
1year, t2 = 10years, and t3 = 100years after the matter recombina-
tion at t = t0.

Figure 2: Differential velocity space density of the cosmic bary-
ons at times t1= 1year, t2 = 10years, and t3 = 100years after the 
cosmic matter recombination at time t0.

In our Figures 1 and 2 we have assumed that the parameter x at-
tains a dependence on cosmic time according to  

with x0 =10, and it is shown, how within 1, 10, 100 years the cosmic 
distribution function would then change its velocity profile starting 
from a Maxwellian tending to more centrally piled "over-Maxwel-
lians", i.e. just the opposite to non-equilibrium, power law distri-
butions.

The basis hereby in Figure 1 is a Hubble constant of H0 = 70km/s/
Mpc which is confirmed for the present time. If this Hubble con-
stant is used by us for the time after matter recombination t ≥ t0, it 
means and requires that the Hubble constant H = H0 more or less 
should not have changed since these times till now - at first glance 
a rather astonishing and audacious assumption. - But astonishingly 
enough this is in fact a viable assumption as we are going to show 
now in the next section.

The Hubble Constant in the Early Universe
For Friedman-Lemaitre-Robertson-Walker cosmologies (FLRW) 
the Hubble parameter H =R ̇/R can be given in form of the follow-
ing differential equation 1 [5, 11]:

where G is Newton‘s gravitational constant, and ρB,ρD, ρv, ρ˄ denote 
the equivalent cosmic mass densities of baryons, of dark matter, of 
photons, and of the vacuum energy. In case all of these quantities 
do count, then it is complicated to find a solution for H and R(t) 
over all cosmic times, because ρB may vary proportional to R-3, ρD 
most probably also according to R-3, but  ρv is generally thought to 
vary according to R-4 [5-7]. Amongst these quantities, the cosmic 
vacuum energy density ρ˄ is perhaps physically the least certain 
quantity, but if it is described with Einstein´s cosmological con-
stant ˄, then it represents a positive, constant energy density, i.e 
its mass equivalent ρ˄ hence would as well be a positive constant 
quantity.

From recent supernova SN1a observations it has been concluded 
that at the present cosmic era and most probably already some-
times ago we were and are in an accelerated expansion phase of 
the universe, expressing the fact that ρΛ is the dominant quantity 
amongst the upper ingredients in the universe. If this can be taken 
as the truth also back to the times of matter recombination, then 
in fact we can assume that the above differential equation can be 
written in the much more simplified form:

in fact then describing the expansion of the universe by the ex-
pression:
 

Taking the above result and reminding the result that we derived in 
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x=x0 exp [H0 (t-t0)]



the section before for the first moment of the baryon distribution 
function, i.e. the density nk(t), given by:

We obtain a somewhat astonishing result, meaning that in an ac-
celeratedly expanding universe like the one with H =HΛ the local 
density is falling off with the inverse of the fourth power of the 
scale of the universe. This should mean that the total mass MU of 
the universe is not constant, but decreasing like:

However, the reader must be warned, since the concept of a total 
mass MU of the universe is by far not clearcut, it rather must be 
deeply discussed how precisely the meaning of MU should defined. 
It turns out that it must be understood as the value of all masses 
"instantaneously or simultaneously" surrounding each arbitrary 
point in the FLRW- universe and its precise formulation leads to 
unexpected complications [13-16]. So for instance in Fahr and 
Heyl it leads to the following expression

and evaluates to:

expressing the fact that the "so-called" total mass of the universe 
has a Machian character and increases with the size RU of the uni-
verse. If therefore it could be concluded that each mass of a parti-
cle increases in the same way as the mass of the universe, then the 
mass density is again falling off with
and no problem remains.

Conclusions 
In the aforegoing sections of this paper we have started from the 
kinetic transport equation (Equ. (1)) for the distribution function 
f(v, t) of a baryon gas embedded in the cosmic FLRWspace- time 
metrics of an expanding universe. We first could show that this dif-
ferential equation does not allow for a solution by separation of the 
variables in the form f(v, t) = fv(v) ∙ ft (t), but could demonstrate that 
the kinetic transport equation Equ.(1) allows to derive solutions 
for two of its velocity moments , namely the baryon density nk(t) 
and the baryon pressure pk(t), prior to the solution of f(v, t) itself. 
Based on the knowledge we have then presented the kinetic distri-
bution function in form of a general isotropic kappa-function f(v, 
t) = fk(v, x(t), Θ(t)) that by use of its already known moments then 
can be written in the form f(v, t) = nk(t). fk(v, k(t), Pk(t)). As we can 
show here, to overcome the Hubble drift between two reference 
points bridged by moving baryons in the expanding universe, high 
velocity branches of the distribution function are systematically 
suppressed, and the velocity spread of the distribution function de-
creases with increasing cosmic times t, a phenomenon which we 
may call "super-Maxwellisation". This is seen in Figures 1 and 2 
showing the resulting distribution function for times t1= 1year, t2 = 

10years, and t3 = 100years ars after the time t0 of the cosmic matter 
recombination. The cosmic particles with increasing cosmic times 
are systematically more concentrated at the low velocity region 
of velocity space, which is also described by the temperature de-
crease with time according to the result derived from the moments:

Telling that in an expansing universe with a constant Hubble-con-
stant H˄ the co smic gas temperatures Tk (t) should permanently 
decrease and finally even fall down to the absolute zero-point [17-
20].
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