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Introduction
The arithmetic triangle of Pascal has been known since ancient times. 
Figure 1 shows the image of this triangle taken from the ancient 
Chinese manuscript [1]:

Figure 1: The Pascal triangle from the ancient Chinese manuscript

In [2-9], we carried out studies of Pascal’s triangle, its analogues, 
generalizations, and possible applications of this visual geometric 
model. In the paper we proposed a new, stepped form for Pascal’s 
triangle and its bilateral generalization [10]. 

In the proposed paper we suggest various recursive formulas for 
calculating the step-shaped Pascal triangle and various initial 
conditions for describing different processes. We compare our 
geometric constructions with the well-known random walk problem. 
However, our geometric constructions cannot be considered as 
a random or stochastic process. We confirm this graphically and 
by directly computing the number of countering sticks on which 
students begin to study mathematics in the first grade of elementary 
school.

Building Pascal’s triangle in the form of oblique lines
Usually the arithmetic triangle of Pascal [1, 11, and 12] is depicted 
in the form of oblique intersecting lines (arrows). At the intersection 
of the lines are numbers arranged in rows. The number in the next 
row is the sum of the two numbers of the previous row. Rows of 
numbers are usually located in one direction from top to bottom [1, 
11] and Figure 1 or from left to right and Figure 2 [12].

Figure 2: The first four rows of the Pascal triangle constructed with 
the help of oblique lines (arrows): General view (a); separately 
written numbers of Pascal’s triangle (b).
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Abstract
A new deterministic model with the help of geometric constructions and computing sticks (not related to trajectories) is 
proposed for the new justification of consistency of the probabilistic approach to explain the random walk on a plane. A 
new, stepped form of the arithmetic triangle of Pascal based on the construction of horizontal and vertical lines (arrows) is 
suggested, a comparison is made with Pascal’s triangle of the usual form. A two-sided generalization of Pascal’s triangle is 
proposed. Geometric constructions and formulas for calculating the coefficients that fill in these new geometric (arithmetic) 
figures are given. Further types of generalization of the step-shaped Pascal triangle are proposed. Examples of generalized 
initial conditions and generalized recursive formulas for constructing various types of a generalized Pascal triangle are given. 
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The rows in the triangle in this example are denoted by n: n=0,1,2,… 
, the numbers in the row are denoted by p: p=0,1,2,…,n.

The numbers in the Pascal triangle (Figure 2b) are binomial 
coefficients     or combinations Cn

p; they can be found [1, 11, and 
12] using the recursive expression:

                                                                                                (1)

It is necessary to specify the numbers of the zero rows (n=0) or in 
other words the initial conditions:

                                                                                                (2)

for other values of p.

To find the binomial coefficients [1, 11, 12], you can also use the 
Newton formula:

                                                                                               (3)

For example for n=4 and p=3 we have: 

(In Figure 2b     4 is at the intersection of n=4 and p=3.)

The sum of coefficients in the row n is 2n.

Stepped Pascal’s triangle
Figure 3.1 shows the sequential (row by row) construction of 
Pascal’s stepped triangle using ordinary computing sticks from 
which students begin to study mathematics in elementary school:

Figure 3.1: The first rows of a stepped Pascal triangle constructed 
with the help of computing sticks

To build better it is possible to use the computing sticks of two colors. 
In Figure 3.1 the black sticks are horizontal (or along the meridian), 
and the red ones are vertically (or along the parallel). Black and red 
sticks are arranged in vertical alternating rows. Instead of computing 
sticks you can use ordinary sticks of the same length or pencils. The 
ends of the sticks do not differ from each other.

For the case shown in Figure 3.1 only black sticks are successively 
summed. The number of black sticks in a row is summed up 
according to a simple law: if the ends of red sticks look at each 

other; then in the next row the number of black sticks is summed up; 
if the ends of red sticks do not look at each other then the number 
of black sticks repeats the number of red sticks of the previous row. 
The number of red sticks is not summarized but repeats the number 
of black sticks of the previous row.

In the ancient manuscript in Figure 1 the numbers of an arithmetic 
triangle are also indicated with sticks (horizontal dashes) in circles. 
The quantity of sticks in our construction and in the manuscript is 
the same (especially in the initial stage of construction, with further 
construction in the manuscript a combination of horizontal, vertical 
dashes and circles denote Chinese numbers).

In our constructions in Figure 3.1 using computing sticks we used 
a simple but strict pattern (construction algorithm) so the random 
walk [12, 13], fluctuations, stochastic and probabilistic processes 
were not observed. At the same time with the help of our new 
deterministic model of Pascal’s triangle and computing sticks not 
associated with trajectories and one can geometrically substantiate 
the consistency of the probabilistic description of a random walk 
along a straight line [12]. On the contrary by considering the random 
walk it is impossible to substantiate the geometric construction of 
the Pascal triangle.

Figure 3.2 shows a new, stepped form of Pascal’s triangle (the same 
as in Figure 3.1) built with the help of horizontal and vertical lines 
(arrows):

Figure 3.2: The first four whole rows (consist of five half rows n 
and four half rows m) of a stepped Pascal triangle constructed with 
the help of horizontal and vertical lines (arrows): general view (a); 
separately written numbers of stepped triangle (b).

For clarity, the horizontal lines (arrows) are colored (Figures 3.1) 
black and have only one direction: from left to right, and the vertical 
lines (arrows) are colored red and have two directions: top to bottom 
and bottom to top. The black and red arrows are arranged one after 
the other and form the step-shaped Pascal triangle.

Rows in our model are of two kinds. Let’s call them “whole rows” 
and “half rows”. Whole rows consist of two half rows. Whole rows 
in the stepped triangle form both by black and red arrows. The 
rows of black arrows are half rows, denoted by n: n=0,1,2,…. The 
numbers in this half row are indicated by p: p=0,1,2,…,n. The rows 
of red arrows are also half rows, denoted by m: m=0,1,2,….  The 
numbers in this half row are indicated by q: q=0,1,2,…,m. Numbers 
in Pascal’s stepped triangle (Figure 3.2b) are also like in the usual 
Pascal triangle (Figure 2b); binomial coefficients can be found by 
using the expressions (1) and (3) for n and using the expressions 
(4) and (5) for m:  
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                                                                                              (4)

                                                                                              (5)

In principle, expressions (1, 3) and (4, 5) are identical and binomial 
coefficients characterized by black and red arrows coincide (Figure 
3.2).

Bilateral generalization of stepped Pascal’s triangle
Geometric construction
In the previous paragraphs we considered the construction of one-
sided forms of the Pascal triangle. Figure 4.1 shows the sequential 
construction of the stepped generalized two-sided form of Pascal’s 
triangle. 

Building as in Figure 3.1 carried out using horizontal and vertical 
computing sticks:

Figure 4.1: The first rows of a stepped generalized two-sided Pascal 
triangle constructed using horizontal and vertical computing sticks. 
For clarity each fragment of the picture (a - f) contains two rows; 
repeating rows of black horizontal or red vertical sticks.

For the case presented in Figure 4.1 both black and red sticks are 
successively summed. The number of black (or red) sticks in a row 
matrix is summed up according to a simple law: if the ends of black 
(or red) sticks look at each other than in the next row the number of 
red (or respectively black) sticks is added up, if the ends of black 
(or respectively red) sticks do not look at each other than in the 
next row the number of red (or respectively black) sticks repeats the 
quantity of black (or respectively red) sticks of the previous row. 

In our constructions in Figure 4.1 with the help of computing sticks 
we used a simple but strict pattern (construction algorithm) so the 
random walk [12, 13], fluctuations, stochastic and probabilistic 
processes [12, 13], were not observed. At the same time using 
new deterministic model of the stepped generalized two-sided 
form of Pascal’s triangle, and non-trajectory computing sticks one 
can geometrically substantiate the consistency of the probabilistic 

description of a random walk on a plane [12, 13]. On the contrary by 
considering a random walk on a plane it is impossible to substantiate 
the geometric construction of Pascal’s triangle.

Figure 4.2 shows a new, stepped generalized two-sided form of 
Pascal’s triangle (the same as in Figure 4.1) built with the help of 
horizontal and vertical lines (arrows):

Figure 4.2: The first four whole rows (consisting of five half rows 
n’ and four half rows mʹ) of a stepped generalized two-sided Pascal 
triangle constructed using horizontal and vertical lines (arrows). 
For clarity, each fragment of the picture (a - i) contains two rows; 
repeating rows of black horizontal or red vertical arrows.

In the example shown in Figure 4.2 all arrows have two directions: 
horizontal black arrows have a  direction from left to right and right 
to left and vertical red arrows have a direction from top to bottom 
and bottom to top.

The black and red arrows are located one after another and form a 
step-shaped generalized two-sided Pascal’s triangle. The numbers 
with black arrows are successively summed as in the usual Pascal 
triangle. The sum of two numbers with two black arrows gives the 
number with the red arrow; the sum of two numbers with two red 
arrows gives the number with a black arrow, and so on. The previous 
rows in Figure 4.2 are shown by dotted arrows. 

Let us write down successively the numbers shown in Figure 4.2 
(a - i) in the form of the corresponding tables (matrices) shown in 
Figure 5 (a - i):
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Figure 5: Numbers corresponding to the first four whole rows 
(consisting of five half rows nʹ and four half rows mʹ) of a stepped 
generalized Pascal’s double-sided triangle. For clarity the numbers 
in the fragments of the Figure a, c, e, g, i corresponding to half rows 
nʹ black, and the numbers in the fragments of the Figure b, d, f, h 
corresponding to half rows mʹ red. The dashed arrows in h and i 
show the calculation results given below in examples (Equation 9) 
and (Equation 12). Yellow highlighted areas filled with the usual 
binomial coefficients of the Pascal triangle.

Our generalized two-sided triangle consists (as one-sided triangle 
shown in Figure 3.2) of whole rows (matrices) which in turn consist 
of two half rows. The first whole row consists of two half rows: nʹ=0, 
mʹ=0, the second row of: nʹ=1, mʹ=1,  the third row of: nʹ=2, mʹ=2, 
etc. Numbers located in half rows (matrices) are indicated by a pair of 
numbers pʹ and qʹ. For the half rows nʹ: pʹ=0,1,2,…,nʹ; qʹ=0,1,2,…,nʹ. 
For the half rows mʹ: pʹ=0,1,2,…,m’; qʹ=0,1,2,…,mʹ+1.

All nʹ- rows and mʹ- rows can be denoted as k - rows. In this case 
k=2nʹ will be even rows and k=2mʹ+1 odd rows.

Note that nʹ- rows (nʹ- matrices) have a square shape, and mʹ- rows 
(mʹ- matrices) have a rectangular shape. The sum of coefficients in 
the row nʹ(matrix nʹ) is 22nʹ. The sum of coefficients in the row mʹ 
(matrix mʹ) is 22mʹ+1).

Figure 6 shows three-dimensional histograms of two half rows 
(matrices) shown in Figure 5h, i:

Figure 6: Three-dimensional histograms of half rows (matrices) 
shown in Figure 5h, i. The dashed arrows show the calculation 

results given below in examples (Equation 9 and 12).

Calculation formulas and initial conditions
we write out the calculation formulas (similar to the formulas (1, 3, 
4, and 5)) and the initial conditions (similar to conditions (2)) for 
our bilateral generalized stepped Pascal’s triangle:

Denote a number located in the nʹ - half row (in the nʹ - matrix) as                  
       then we write the recursive expression to calculate it:

                                                                                              (6)

It is necessary to specify the numbers of the zero row (n=0) or the 
initial conditions:

                                                                                              (7)

for other values of  pʹ and qʹ.	

The generalized Newton formula for our generalized Pascal triangle 
will be:

                                                                                               (8)

For example for nʹ=4, pʹ=2, qʹ=1 we have:

                                                                                               (9)

(It is shown by dotted arrows in Figure 5i and Figure 6i.)	

Denote the number located in the mʹ - half row (in the mʹ- matrix) as       
          then we write the recursive expression to calculate it:

                                                                                              (10)

The generalized Newton formula for our generalized Pascal triangle 
will be:

                                                                                               (11)

For example for mʹ=3, pʹ=2, qʹ=2 we have:

                                                                                                (12)

(It is shown by dotted arrows in Figure 5h and Figure 6h.)
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From the joint consideration of expressions (6) and (10) we 
can obtain an expression for the successive construction of our 
generalized triangle using square matrices only for nʹ- series:

                                                                                                   (13)

Numerical examples and generalizations
Example 1
Let us give an illustrative numerical example performed in MS Excel 
using the formula (13). For clarity we repeat the example given in 
Figures 5, 6 but we assume that in the initial conditions p’ and q’ are 
increasing series of numbers starting not necessarily from zero but 
our initial unit in the row nʹ=0 (in a square matrix nʹ=0) is located 
in the central part of this matrix in Figure 7:

Figure 7: Graphic description of the placement of the initial 
conditions of the zero row (nʹ=0) in the central part of the square 
matrix pʹ=qʹ=5.

The terms on the right-hand side of expression (13) can be placed 
in each of the four small squares (as in MS Excel program) of the 
square matrix:

Figure 8: Graphic description of expression (13). Placing the right-
hand side of expression in a square-shaped matrix.  Each of the four 
cells contains all four components of the right side of expression 
(13). Recursive formulas (13) are placed in all rows (matrices) 
starting with the first: nʹ=1,2,3,….

The results of the calculations (similar to those shown in Figure 
5a, c, e, g, i, and Figure 6i) are shown in histograms in Figure 9:

Figure 9: Three-dimensional histograms of nʹ-rows (nʹ-matrices) in 
accordance with the initial conditions (7) and Figure 7 as well as 
the recursive expression (13) and Figure 8.

In fact in Example 1 using the geometrical construction of the 
generalized Pascal triangle (deterministic model) we obtained the 
same results for nʹ- rows as we can constructed using the probability 
theory (probability model) for a random walk and Brownian motion 
on the plane of the square [12, 13]. However in the previous 
paragraphs 3.1 and 3.2 we considered the second case for mʹ - 
rows corresponding to a random walk on the plane of the rectangle.

Example 2
Let us give an illustrative numerical example performed in MS Excel 
using the more complex (compared to expression (13)) formula (14):

                                                                                                 (14)

The terms on the right-hand side of expression (14) can be placed 
in each of the twelve small squares of the matrix (as in MS Excel 
program) which is close in shape to the octagon:

Figure10: Graphic description of expression (14). Placing the right 
side of expression (14) in a matrix that is close in shape to the octagon 
(the octagon in turn is closer to the circle than the square in Figure 
8): in each of the twelve cells all twelve terms of the right side of 
expression (14) are placed. Recursive formulas (14) are placed in 
all rows (matrices) starting with the first: nʹ=1,2,3,….

We assume the initial conditions are the same as in Example 1 
(Figure 7).

The calculation results are shown in histograms in Figure 11:

Figure 11: Three-dimensional histograms of nʹ- rows (nʹ- matrices) 
in accordance with the initial conditions (7) and Figure 7 as well as 
the recursive expression (14) and Figure 10.

From consideration of Examples 1 and 2 it can be seen that in the 
sequential construction of Example 1 we obtain three-dimensional 
figures at the base of which lies a square. In Example 2 the base 
of the figure is an octagon closer in shape to a circle than a square. 

Using the method of construction of bilateral generalization stepped 
Pascal’s triangle we can more accurately describe different processes 
if we generalize the initial conditions (expression (7), Figure 7) and 
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recursive formulas (expressions (13) and (14), Figures 8 and 10).

Figures 12 and 13 shows a graphic representation of examples of 
generalized initial conditions and generalized formulas respectively:

Figure 12: Examples of graphical descriptions of generalized initial 
conditions

Figure 13: Examples of a graphic description of generalized 
formulas: a figure close to a dodecagon (a dodecagon is closer in 
shape to a circle than the octagon in Figure 10) (a); a figure close to 
a 16-square (a 16-square in turn is closer in shape to a circle than a 
dodecagon) (b); dumbbell-shaped figure (c); ring (d). 

We can continue the generalization of recursive formulas; if before 
the terms for example in the expression (13) additionally put some 
coefficients:

                                                                                                    (15)

where for example: a=2,b=3,14,c=-1,d=5, and so on.

It is possible to carry out similar constructions for mʹ- series of 
generalized cases, and sequences of alternating series: nʹ=0, mʹ=0, 
nʹ=1, mʹ=1, nʹ=2,…, as shown in Figure 5.

Conclusions
Thus, the formulas for describing the two-sided stepped generalized 
Pascal triangle turned out to be quite simple because our visual 
geometric deterministic models are simpler than probabilistic 
models [12, 13]. On the basis of our new model of bilateral stepped 
Pascal triangle a substantiation (not associated with trajectories) 
of the consistency of the probabilistic approach is given to explain 
the random walk on a plane using geometric constructions and 
computing sticks for children. 

Perhaps our new geometric constructions and recursive formulas 
will find application to understand the development of processes in 
biology in optics and acoustics and also in other areas for example 
in technology [8, 14 and 15].

In our work, we referred [12] only to the great Russian mathematician 
Andrey Kolmogorov. However, A. Kolmogorov solved only half the 
problem of random walk and Brownian motion. The great American 
mathematician Norbert Wiener [16], who perfectly knew Russian 
and another 20 different languages, went to the Soviet Union to help 
Kolmogorov. Unfortunately, the historical fact is that A. Kolmogorov 
did not accept N. Wiener, therefore the problem of random walk and 
Brownian motion was not fully resolved. The science of Cybernetics 

was recognized in the Soviet Union as pseudoscience.
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