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Abstract
This article is Part 4 of the author’s linear elastic glucose behavior study, which focuses on fasting plasma glucose 
(FPG) component. It is the continuation of his previous three studies, Parts 1, 2, and 3, on linear elastic postprandial 
plasma glucose (PPG) behaviors. 
 
Here is his defined linear elastic FPG equation: 
FPG = GH.f-modulus * Weight
 
Where Weight is the input component (similar to stress) and FPG is the output component (similar to strain). The 
close relationship between Weight and FPG can also be found in his previous published medical papers (Reference 
10). 
 
GH.f-modulus is a newly defined coefficient to connect both weight and FPG, similar to the theory of elasticity in 
engineering:
 
Stress = Young’s modulus * Strain
 
Where Young’s modulus connects both stress and strain except Young’s modulus and GH.f-modulus are reciprocal 
to each other. 

The author is able to connect this biomedical FPG equation with 
the basic concept of linear elasticity, which involves stress, along 
with the Young’s modulus of strength of materials in structural & 
mechanical engineering. He uses the collected data of daily body 
weight and daily FPG data from three type 2 diabetes (T2D) pa-
tients with separate severity levels of obesity and diabetes with-
in three different time ranges. In addition, he uses an identical 
8-month period of collected data for the three patients to conduct 
his analysis. He demonstrated once again that using GH.f-mod-
ulus, a “pseudo-linear” relationship connecting both weight and 
FPG exists in all three clinical cases, except the value of this coef-
ficient depends on the individual patient’s severity level of chronic 
diseases, specifically obesity and diabetes.
 
The main objectives of this study is threefold. First, it is to of-

fer a simpler FPG prediction equation to the patients. Second, it 
is to prove that similar to GH.p-modulus for PPG, the coefficient 
of GH.f-modulus indeed varies with the severity of chronic dis-
eases in these clinical cases. Third, this constant coefficient of 
GH.f-modulus also differs from one-time range to another due to 
dynamic behavior, because blood is a living organic material. 
 
The 7-month average value of each monthly M2 variables (i.e., 
GH-modulus) are 3.7, 2.6, and 1.0, and with an average measured 
PPG values at 122 mg/dL, 114 md/dL, and 109 mg/dL, for Case A, 
Case B, and Case C, respectively, which are ranked according to 
the severity of their diabetes conditions. 
 
In summary, the higher the M2, the higher values of both x (carbs/
sugar intake amount) and y (incremental PPG amount) become, 
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and the higher predicted and measured PPG values are. The key 
conclusion from these three clinical observations is that the M2 
values are varying based on the patients’ body conditions (liver 
and pancreas), especially their diabetes severity. This is similar 
to the different inorganic materials having the different Young’s 
modules values, such as nylon ~3 versus steel ~200. 
 
The article represents the author’s special interest in using 
math-physical and engineering modeling methodologies to in-
vestigate various biomedical problems. The methodology and 
approach are a result of his specific academic background and 
various professional experiences prior to the start of his medical 
research work in 2010. Therefore, he has been trying to link his 
newly acquired biomedical knowledge over the past decade with 
his previously acquired knowledge of mathematics, physics, com-
puter science, and engineering for over 40 years. 
 
The human body is the most complex system he has dealt with, 
which includes aerospace, navy defense, nuclear power, com-
puters, and semiconductors. By applying his previous acquired 
knowledge to his newly found interest of medicine, he can dis-
cover many hidden facts or truths inside the biomedical systems. 
Many basic concepts, theoretical frame of thoughts, and practical 
modeling techniques from his fundamental disciplines in the past 
can be applied to his medical research endeavor. After all, science 
is based on theory from creation and proof via evidence, and as 
long as we can discover hidden truths, it does not matter which 
method we use and which option we take. This is the foundation of 
the GH-Method: math-physics medicine. 
 
The author has spent four decades as a practical engineer and un-
derstands the importance of basic concepts, sophisticated theories, 
and practical equations, which serve as the necessary background 
of all kinds of applications. Therefore, he spent his time and ener-
gy to investigate glucose related subjects using variety of methods 
he studied in the past, including this particular interesting stress-
strain approach. On the other hand, he also realizes the importance 
and urgency on helping diabetes patients to control their glucoses. 
That is why, over the past few years, he has continuously sim-
plified his findings about diabetes and try to derive more useful 
formulas and simple tools for meeting the general public’s interest 
on controlling chronic diseases and their complications to reduce 
their pain and probability of death. 
 
Introduction 
This article is Part 4 of the author’s linear elastic glucose behavior 
study, which focuses on fasting plasma glucose (FPG) component. 
It is the continuation of his previous three studies, Parts 1, 2, and 
3, on linear elastic postprandial plasma glucose (PPG) behaviors. 
 
Here is his defined linear elastic FPG equation:
 
FPG = GH.f-modulus * Weight
 
Where Weight is the input component (similar to stress) and FPG 
is the output component (similar to strain). The close relationship 
between Weight and FPG can also be found in his previous pub-
lished medical papers (Reference 10). 
 
GH.f-modulus is a newly defined coefficient to connect both weight 

and FPG, similar to the theory of elasticity in engineering:
 
Stress = Young’s modulus * Strain
 
Where Young’s modulus connects both stress and strain except 
Young’s modulus and GH.f-modulus are reciprocal to each other. 
 
The author is able to connect this biomedical FPG equation with 
the basic concept of linear elasticity, which involves stress and 
strain, along with the Young’s modulus of strength of materials in 
structural & mechanical engineering. He uses the collected data 
of daily body weight and daily FPG data from three type 2 dia-
betes (T2D) patients with separate severity levels of obesity and 
diabetes within three different time ranges. In addition, he uses an 
identical 8-month period of collected data for the three patients 
to conduct his analysis. He demonstrated once again that using 
GH.f-modulus, a “pseudo-linear” relationship connecting both 
weight and FPG exists in all three clinical cases, except the value 
of this coefficient depends on the individual patient’s severity level 
of chronic diseases, specifically obesity and diabetes.
 
The main objectives of this study is threefold. First, it is to of-
fer a simpler FPG prediction equation to the patients. Second, it 
is to prove that similar to GH.p-modulus for PPG, the coefficient 
of GH.f-modulus indeed varies with the severity of chronic dis-
eases in these clinical cases. Third, this constant coefficient of 
GH.f-modulus also differs from one-time range to another due to 
dynamic behavior, because blood is a living organic material. 
 
Patients with varying chronic diseases would have different coef-
ficient of GH.f-modulus. Both Case A and Case B are long-term 
T2D patients; however, their weights are still within the boundary 
of normal and slightly overweight with BMI around 25. Therefore, 
using 14 semi-annual periods for Case A and 10 months for Case 
B, their coefficients are the same at 0.67. However, due to Case A’s 
stringent lifestyle management to control his diabetes, his weight 
and glucoses, including FPG, have reduced significantly, especial-
ly in 2020 where his coefficient became 0.59 in comparison with 
Case B’s 0.66. 
 
Case C is another story. His extreme-obese condition (BMI at 
40.7) is much more serious than his diabetes conditions with a 
4-year history. In order to compensate for his heavy weight, he 
must have a lower value of the GH.f-modulus (his coefficient of 
0.36 is at 54% level of 0.67 for both Case A and Case B) in order 
to match with his measured FPG level (almost normal). 
 
At first glance of this coefficient, it appears that it as a variable, 
rather than a constant. However, by examining their values with-
in a reasonable time span, they do not vary that much. That is 
why it is called a “pseudo-linear” relationship. Once we have 
collected sufficient data for a particular time period, we can then 
easily figure out the suitable coefficients for both FPG and PPG, 
i.e. GH.f-modulus and GH.p-modulus respectively, to be used in 
glucose predictions.  
 
Methods 
Background
To learn more about the author’s GH-Method: math-physical med-
icine (MPM) methodology, readers can refer to his article to under-
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stand his developed MPM analysis method in Reference 1. 
 
Highlights of his Related Research
In 2015 and 2016, the author decomposed the PPG waveforms 
(data curves) into 19 influential components and identified carbs/
sugar intake amount and post-meal walking exercise contributing 
to approximately 40% of PPG formation, respectively. Therefore, 
he could safely discount the importance of the remaining ~20% 
contribution by the 16 other influential components. 
 
In March of 2017, he also detected that body weight contributes 
to over 85% to fasting plasma glucose (FPG) formation. Further-
more, he identified the correlation coefficient between weight and 
FPG are higher than 90% for different diabetes patients. In addi-
tion, he has found other 4 secondary contribution factors of FPG 
formation. 
 
In 2019, all of his developed prediction mathematical models for 
both FPG and PPG have achieved high percentages of prediction 
accuracy, but he also realized that his prediction models are too 
difficult for use by the general public. Their theoretical background 
and sophisticated methods would be difficult for healthcare profes-
sionals and diabetes patients to understand, let alone use them in 
their daily life for diabetes control. Therefore, he supplemented his 
complex models with a simple linear equation of predicted FPG 
and predicted PPG (see References 2, 3, and 4). 
 
Stress, Strain, & Young’s Modulus
Prior to his medical research work, he was an engineer in the vari-
ous fields of structural engineering (aerospace, naval defense, and 
earthquake engineering), mechanical engineering (nuclear power 
plant equipment’s, and computer-aided-design), and electronics 
engineering (computers, semiconductors, graphic software, and 
software robot). 
 
The following excerpts come from internet public domain, includ-
ing Google and Wikipedia: 
 
“Strain - ε
Strain is the "deformation of a solid due to stress" - change in di-
mension divided by the original value of the dimension - and can 
be expressed as
ε = dL / L 
where
ε = strain (m/m, in/in)
dL = elongation or compression (offset) of object (m, in)
L = length of object (m, in)
 
Stress - σ
Stress is force per unit area and can be expressed as
σ = F / A 
where
σ = stress (N/m2, lb/in2, psi)
F = applied force (N, lb)
A = stress area of object (m2, in2)
 
Stress includes tensile stress, compressible stress, shearing stress, 
etc. 

 E, Young's modulus
It can be expressed as:
 
E = stress / strain
 = σ / ε
 = (F / A) / (dL / L)
 
where
E = Young's Modulus of Elasticity (Pa, N/m2, lb/in2, psi) was 
named after the 18th-century English physicist Thomas Young. 
 
Elasticity
Elasticity is a property of an object or material indicating how it 
will restore it to its original shape after distortion. A spring is an 
example of an elastic object - when stretched; it exerts a restoring 
force, which tends to bring it back to its original length (Figure 1). 

Figure 1:  Stress-Strain-Young’s modulus, Elastic Zone vs. Plastic 
Zone

Plasticity
When the force is going beyond the elastic limit of material, it is 
into a plastic zone which means even when force is removed, the 
material will not return back to its original state (Figure 1). 
 
Based on various experimental results, the following table lists 
some Young’s modulus associated with different materials:
 
Nylon: 2.7 GPa
Concrete: 17-30 GPa
Glass fibers: 72 GPa
Copper: 117 GPa
Steel: 190-215 GPa
Diamond: 1220 GPa
 
Young’s modules in the above table are ranked from soft material 
(low E) to stiff material (higher E).”



www.opastonline.comJ App Mat Sci & Engg Res, 2021        Volume 4 | Issue 4 | 46

Professor James Andrews taught the author linear elasticity at the 
University of Iowa and Professor Norman Jones taught him non-
linear plasticity at Massachusetts Institute of Technology. These 
two great academic mentors provided him the necessary founda-
tion knowledge to understand these two important subjects in en-
gineering. 
 
Linear Elastic FPG Behavior
In this particular study, he uses the analogy of relationship among 
stress, strain, and Young’s modulus to illustrate a similar relation-
ship between body weight and predicted FPG via a newly defined 
coefficient of GH.f-modulus, which is listed below: 
GH.f-modulus= FPG / Weight
 
Young’s modulus E= stress / strain
 
Where FPG is the amount of predicted FPG (note: the predicted 
FPG can also be replaced by the measured FPG in order to con-
duct a sensitivity study of FPG behaviors). 
 
Data Collection
Case A (the author) is a 73-year-old male with a 25-year history of 
T2D. From 7/1/2015 to 10/31/2020 (1,962 days), he has collected 
2 data per day, weight and FPG. He utilized these data to conduct 
his linear elastic FPG behavior research. 
 
In addition, on 5/5/2018, he started to use a continuous glucose 
monitoring (CGM) sensor device to collect 96 glucose data each 
day. Within this time period, he uses a sensor device to collect 28 
FPG data per day from 00:00 to 07:00 at each 15-minutes time 
interval. Based on his research, this averaged sensor FPG value is 
within 1% of margin (i.e., 99% accuracy) from his measured FPG 
at the wake-up moment using finger piercing and test strip method 
(Finger FPG).
 
The period of 7/1/2015 to 10/31/2020 is his “best-controlled” dia-
betes period, where his average daily glucoses is maintained at 116 
mg/dL (<120 mg/dL). He named this as his “linear elastic zone” of 
diabetes health. Especially, due to his
 
It should also be noted that in 2010, his average glucose was 280 
mg/dL and HbA1C was 10%, while taking three diabetes medi-
cations. Please note that the strong chemical interventions from 
various diabetes medications could seriously alter glucose physi-
cal behaviors. He called the period prior to 2015 as his “nonlinear 
plastic zone” of diabetes health. 
 
The second set of data comes from his wife (Case B) with a 22-

year history of T2D. She began to collect her glucose data via fin-
ger-piercing method (finger glucose) since 1/1/2014. On 1/1/2020, 
she began using the same brand of CGM sensor device to collect 
her sensor FOG data at the same rate of 28 FPG data per day since 
1/1/2020. She discontinued her diabetes medication in 2020. 
 
Case C is 47-year-old male with a BMI over 40 (obesity) and a 
4-year history of T2D (new and non-severe diabetes). He started 
to collect his glucose data using the same model of CGM sensor on 
3/18/2020. He has never taken any diabetes medications. 
 
The following lists the different time spans of his four analysis:
 
(1) Case A:
From 1/1/2014 to 10/31/2020, every 6 months (semi-annually)
(2) Case B:
From 1/1/2020 to 10/31/2020, every month (monthly)
(3) Case C:
From 3/1/2020 to 10/31/2020, every month (monthly)
(4) Case A, Case B, and Case C
From 3/1/2020 to 10/31/2020, every month (monthly)
 
He then calculates the value of GH.f-modules by dividing FPG by 
Weight for each time period. Using the averaged GH.f-modulus 
as a constant to plug it into the following equation to obtain the 
predicted FPG. 
 
Predicted FPG= Weight * GH.f-modulus
 
Finally, he compared the predicted FPG with the measured FPG to 
obtain prediction accuracies for each time period.

Results 
Figure 2 shows the raw data and the combined two charts; Weight 
versus FPG and the coefficient of GH.f-modulus, into one diagram 
for Case A (male patient with 14 semi-annual periods). His aver-
age weight is 173 lbs. and average FPG is 117 mg/dL. His aver-
age GH.f-modulus is a constant of 0.67 with a variance between 
0.55 and 0.74. It should be noted that his significantly lower coef-
ficient of 0.55 in the second half of 2020 is the direct result of his 
COVID-19 quarantined life. The compatible moving trend (i.e., 
high correlation) between weight and FPG over these periods is 
quite obvious. His average predicted FPG using the constant of 
0.67 (i.e., a constant GH.f-modulus) is also 117 mg/dL, but with 
a variance range of FPG prediction error margin between -8% to 
+5%, excluding significantly positive contribution on his overall 
health conditions from a stabilized 2020 quarantined lifestyle. 
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Figure 2:  Case  A data & charts

Figure 3 depicts the raw data and the combined two charts, Weight 
versus FPG and the coefficient of GH.f-modulus, into one dia-
gram for Case B (female patient with 10 monthly periods). Her 
average weight is 155 lbs. and average FPG is 104 mg/dL. Her 
average GH.f-modulus is a constant of 0.67 as well (same as Case 
A) with a variance between 0.63 and 0.70. It should be noted that 
her relatively more evenly distributed GH.f-modulus is due to the 
relatively smaller changes of her health conditions since 2010 in-
stead of the 7-year-time period for Case A. The compatible moving 
trend (i.e., high correlation) between Weight and FPG over these 
10 months is also quite evident. Her average predicted FPG using 
the constant of 0.67 (i.e., a constant GH.f-modulus) is also 104 
mg/dL, but with a variance range of FPG prediction error margin 
between -5% to +6%.

Figure 3:  Case  B data & charts

Figure 4 illustrates the raw data and the combined two charts, 
Weight versus FPG and the coefficient of GH.f-modulus, into one 
diagram for Case C (younger male patient with 8 monthly peri-
ods). His average weight is 292 lbs. (extremely obese) and average 
FPG is 105 mg/dL (similar to Case B). His average GH.f-modulus 
is a constant of 0.36 due to his obesity, with a variance between 
0.34 and 0.40. The compatible moving trend (i.e., high correla-
tion) between Weight and FPG over these 8 months is also quite 
obvious. It should be highlighted that he has reduced his monthly 
average weight from 301 lbs. in January 2020 to 273 lbs. in Octo-
ber 2020. This significant weight reduction effort has assisted him 
with his average FPG reduction from 120 mg/dL in March 2020 to 
95 mg/dL in October 2020. His average predicted FPG using the 
constant of 0.36 (i.e., a constant GH.f-modulus) is also 105 mg/dL, 
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but with a variance range of FPG prediction error margin between 
-9% to +5%.

Figure 4:  Case C data & charts

Figure 5 reflects the results of a special analysis by using a consis-
tent time (monthly data from 3/1/2020 to 10/31/2020) for Cases A, 
B, and C. The key objective of conducting this timeframe analy-
sis is to compare their GH.f-modulus over the same 8-month-time 
frame. 
 
Listed below are the values of the GH.f-modulus for each patient 
over the 8-month period in 2020, which are listed in the order of 
(Case A, Case B, and Case C):

Figure 5:  GH.f-modulus during the consistent 8-month time span 
of Cases A, B, and C 

March 2020: (0.63, 0.64, 0.40)
April 2020: (0.66, 0.66, 0.36)
May 2020: (0.58, 0.69, 0.35)
June 2020: (0.58, 0.64, 0.35)
July 2020: (0.56, 0.68, 0.36)
August 2020: (0.58, 0.63, 0.38)
September 2020: (0.59, 0.68, 0.34)
October 2020: (0.56, 0.68, 0.35)
 
Average GH.f: (0.59, 0.66, 0.36)
 
Although the coefficient changes from month to month, the mag-
nitude of its changes are not significant. The results for Case C 
is the same as in Figure 4, but the results for Case B is smaller 
than in Figure 3 due to a shorter 8-month period used. The most 
significant difference is for Case A. The 14 semi-annual analysis 
has an average GH.f-modulus of 0.67, while his 8-month analysis 
has an average GH.f-modulus of 0.59. The 12% difference is a 
result from the different time spans chosen, which demonstrate the 
characteristics of organic blood material. There are more sources 
of influences than blood alone. In reality, weight and glucose are 
involved with many internal organs and hormones produced by 
the body. 
 
Discussion 
Patients with varying chronic diseases would have different coef-
ficient of GH.f-modulus. Both Case A and Case B are long-term 
T2D patients; however, their weights are still within the boundary 
of normal and slightly overweight with BMI around 25. Therefore, 
using 14 semi-annual periods for Case A and 10 months for Case 
B, their coefficients are the same at 0.67. However, due to Case A’s 
stringent lifestyle management to control his diabetes, his weight 
and glucoses, including FPG, have reduced significantly, especial-
ly in 2020 where his coefficient became 0.59 in comparison with 
Case B’s 0.66. 
 
Case C is another story. His extreme-obese condition (BMI at 
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40.7) is much more serious than his diabetes conditions with 4 
years of short history. In order to compensate for his heavy weight, 
he must have a much lower value of the GH.f-modulus (his coeffi-
cient of 0.36 is at 54% level of 0.67 for both Case A and Case B) in 
order to match with his measured FPG level at 105 mg/dL (normal 
glucose level). 
 
At first glance of this coefficient, it appears that it as a variable, 
rather than a constant. However, by examining their values within 
a reasonable time span, they do not vary that much. That is why 
it is called a “pseudo-linear” relationship. Once we have collect-
ed sufficient data for a particular time period, we can then easily 
figure out the suitable coefficients for both FPG and PPG respec-
tively, i.e. GH.f-modulus and GH.p-modulus, to be used in glucose 
predictions.

Conclusions 
The article represents the author’s special interest in using 
math-physical and engineering modeling methodologies to in-
vestigate various biomedical problems. The methodology and 
approach are a result of his specific academic background and 
various professional experiences prior to the start of his medical 
research work in 2010. Therefore, he has been trying to link his 
newly acquired biomedical knowledge over the past decade with 
his previously acquired knowledge of mathematics, physics, com-
puter science, and engineering for over 40 years. 
 
The human body is the most complex system he has dealt with, 
which includes aerospace, navy defense, nuclear power, com-
puters, and semiconductors. By applying his previous acquired 
knowledge to his newly found interest of medicine, he can dis-
cover many hidden facts or truths inside the biomedical systems. 
Many basic concepts, theoretical frame of thoughts, and practical 
modeling techniques from his fundamental disciplines in the past 
can be applied to his medical research endeavor. After all, science 
is based on theory from creation and proof via evidence, and as 
long as we can discover hidden truths, it does not matter which 
method we use and which option we take. This is the foundation of 
the GH-Method: math-physics medicine. 
 
The author has spent four decades as a practical engineer and un-
derstands the importance of basic concepts, sophisticated theories, 
and practical equations, which serve as the necessary background 
of all kinds of applications. Therefore, he spent his time and ener-
gy to investigate glucose related subjects using variety of methods 
he studied in the past, including this particular interesting stress-
strain approach. On the other hand, he also realizes the importance 
and urgency on helping diabetes patients to control their glucoses. 
That is why, over the past few years, he has continuously sim-
plified his findings about diabetes and try to derive more useful 

formulas and simple tools for meeting the general public’s interest 
on controlling chronic diseases and their complications to reduce 
their pain and probability of death. 
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