Clinical Evaluation of 80 Patients with Solar Keratosis Vs 43 Patients with Squamous Cell Carcinoma of Lower Lips: Basal Cell Carcinoma is a Commonly Associated Disease with no Causal Relation

Khalifa E. Sharquie1*, Dr. Waqas S. Abdulwahhab2 and Mohommed Al Abadie3

1Department of Dermatology, College of Medicine, University of Baghdad. Dermatology center, Medical City 2Teaching Hospital
2Department of dermatology, Al-Qassimi Hospital, Sharjah. College of Medicine, University of Sharjah
3North Cumbria Integrated care NHS foundation Trust &University of Central Lancashire UCLAN Medical school, UK

*Corresponding Author
Khalifa E. Sharquie, Department of Dermatology, College of Medicine, University of Baghdad. Dermatology center, Medical City 2Teaching Hospital.

Submitted: 27 Mar 2023; Accepted: 01 Apr 2023; Published: 26 Apr 2023

Citation: Khalifa E. Sharquie, K. E., Abdulwahhab, W. S., Abadie, M. A. (2023). Clinical Evaluation of 80 Patients with Solar Keratosis Vs 43 Patients with Squamous Cell Carcinoma of Lower Lips: Basal Cell Carcinoma is a Commonly Associated Disease with no Causal Relation. Int J Clin Expl Dermatol, 8(2), 24-38.

Abstract

Background
Solar keratosis, also known as actinic keratosis or senile keratosis, is a skin condition that results from repeated sun exposure and damage, particularly in middle-aged and elderly individuals. It is characterized by rough, scaly, and warty lesions that may be pigmented, erythematous, or both, and can occur as macules, patches, or plaques. Solar keratosis lesions are most commonly found on the face and scalp and can be associated with basal cell carcinoma but not squamous cell carcinoma or solar keratosis of the lower lip. It is more prevalent in fair-skinned individuals who live in areas with high UV radiation, particularly those over 40 years of age.

Objective
The aim of this study was to document all instances of solar keratosis in patients with Fitzpatrick skin types III and IV, using a comprehensive clinical evaluation. Patients with xeroderma pigmentosum were excluded from the study. The study was conducted between 2014-2021 and involved 80 patients with solar keratosis and 43 patients with squamous cell carcinoma of the lower lips. Demographic information, complete medical history, and clinical evaluations were collected, and biopsies were performed on select patients for histopathological confirmation. This was a cross-sectional descriptive study.

Results
The study included 80 patients with solar keratosis, with ages ranging from 50 to 65 years and a mean age of 58 years. Of these patients, 41 (51.3%) were male and 39 (48.7%) were female. The lesions were predominantly located on the face, affecting 58 (72.5%) patients, while 12 (15%) patients had lesions on both the face and scalp, 4 (5%) had lesions on the scalp, forearms, and hands, and 2 (2.5%) had lesions on the eye sclera. Multiple lesions were present in 62 (77.5%) cases, and a butterfly-shaped distribution on the cheeks was observed in 18 (22.5%) patients (8 females and 10 males). The study identified rough, scaly, warty, and pigmented-erythematous rashes in the form of macules, patches, and plaques as the most common characteristics of the solar keratosis lesions. Among the 80 patients with solar keratosis, only 4 (3.5%) had the condition on their lower lip, and none of them had squamous cell carcinoma. In contrast, basal cell carcinoma was observed in 50 (62.5%) of patients affecting both faces and scalps, but no squamous cell carcinoma was detected. Among the 43 patients with squamous cell carcinoma of the lower lips, 2 (4.63%) had associated solar keratosis of the face. The age range of the patients with squamous cell carcinoma was 20-78 years, with a mean of 50 years, and the majority (83.7%) were males.
Conclusions
Solar keratosis is a common condition affecting the face and scalp of elderly patients of both sexes, and is often found in conjunction with basal cell carcinoma but not squamous cell carcinoma. This association between solar keratosis and basal cell carcinoma is coincidental rather than causal, as both are common conditions that often occur together. Importantly, solar keratosis of the face does not transform into basal cell carcinoma. Conversely, squamous cell carcinoma of the lower lip is predominantly a disease of males and is not associated with either solar keratosis or cancers of the face.

Keywords: Solar keratosis, Basal Cell Carcinoma, Squamous Cell Carcinoma, P53.

Introduction
Actinic keratoses were first described in 1826 by Dubreuilh. They are also called solar keratoses or senile keratoses [1,2]. A few years later, Freudenthal proposed the term “keratoma senilis” to describe the lesions, and in 1958 Pinkus renamed the lesions “actinic keratoses” [3]. In spite of the fact that they are classically regarded as pre-neoplastic lesions, some authors have suggested that they may actually be in situ neoplasms since they derive from clonal DNA modifications in keratinocytes [2,4]. SK are caused by Keratinocyte proliferation with varying degrees of dysplasia in the epidermis, which is referred to as intraepithelial keratinocyte dysplasia; in addition, the tumors can turn malignant into non-melanoma skin cancer, especially with SCC, and they tend to occur most often in areas that are exposed to the sun [1,5]. In summary, actinic keratoses (AKs) are also known as solar or senile keratoses and were first described in 1826 by Dubreuilh. They are considered pre-neoplastic lesions that may be in situ neoplasms derived from clonal DNA modifications in keratinocytes. The distinction between AKs and thin SCCs is not clear, as AKs are considered embryonic SCCs [2]. The highest rates of AKs are observed in Caucasians over 40 years of age particularly those who live near the equator with Australia having the highest prevalence followed by the United States and Europe[6-8]. The prevalence of AKs among Caucasians in Australia is estimated to be between 40% and 60%, and in the United States, it is between 11.5% and 26% [9,10]. An English population-based study discovered that men over 40 years old have a 15% prevalence of actinic keratoses, and women have a 5.9% prevalence. [11] A study in Spain found that 28.6% of patients over the age of 45 had actinic keratoses, according to the study and that there is a lower prevalence of AKs among Asians [11,12]. For example, according to South Korean statistics, the rate ranges from 0.02% in 40-year-olds to 0.09% in 60-year-olds to 0.21% in 70-year-olds [13]. It is interesting to note that despite most people in Iraq having skin types III and IV, solar keratosis is still a common problem [14,15].

In albinos and patients carrying other genodermatoses with defective DNA repair genes, such as xeroderma pigmentosum, Rothmund-Thompson syndrome, Cockayne’s syndrome, and Bloom’s syndrome, lesions may appear during their first decade of life, and they may have a greater risk of aggressiveness and risk from their lesions [1,16]. Due to the high level of UV exposure men are exposed to during their lifetimes, it is believed that SK is more common in men [17]. Fair-skinned individuals (types I and II) are more prone to developing actinic keratoses due to their sensitivity to harmful effects of UV radiation on the skin as well as their increased vulnerability to sun damage due to their increased vulnerability to the sun [17,18]. It has been found that solar keratoses are caused by a combination of environmental factors, genetics, and individual factors [9]. The main factor is excessive UV radiation, which acts as a complete carcinogen, causing tumor growth and contributing to cancer [5,7]. As a result of UV radiation, a number of molecular signaling cascades are activated, resulting in modifications in the levels of regulatory cytokines, immunosuppressive effects, as well as impaired differentiation and apoptosis of Cells [5]. As a consequence of these effects, mutations are seen in the P53 protein, which controls the cell cycle and is responsible for DNA damage repair as well as mutations in the telomerase gene, which results in an increase in proinflammatory cytokine production [19]. The relationship between inflammation and the development of Solar keratoses is closely linked. Accordingly, Inflammation, oxidative stress, immunosuppression, inhibited apoptosis, deregulation of the cell cycle, cell proliferation, and remodeling of the tissues are all factors that can affect tissue function and appearance are all mechanisms that lead to the onset of SK [5,7].

There is compelling evidence that anti-inflammatory therapy has proven to be effective in treating actinic keratoses Inflammatory processes are mediated through the arachidonic acid pathway, the production of proinflammatory cytokines, and the activation of mast cells and inhibitory factors of macrophage migration, which are all components of the inflammatory process; It has been shown that these mediators can lead to lipid peroxidation, an increase in T lymphocytes and Langerhans cells intradermally, an increase in P53 and Bcl-2, and a decrease in Fas (cd95) and Fas-ligand, both of which are necessary for initiating apoptosis in UV-mutated cells [5,21]. It appears that inflammation and the development of actinic keratoses are closely related in lesions that have progressed to SCC; in some cases, actinic keratoses undergo an inflammatory phase before becoming invasive [20]. In the most common form of the condition, SK appears as erythematous macules, papules, or plaques, usually with poorly defined borders, and they may be covered by dry scales that adhere to them. Occasionally, these conditions can be better diagnosed by palpation than by visual inspection, and the degree of hyperkeratosis that they present can vary [1,22]. Solar keratoses (SK) are skin lesions that can appear as either single or multiple lesions with varying colors ranging from pink erythematous to brownish in pigmented actinic keratoses [23]. They are typically asymptomatic, but some patients may experience discomfort such as burning, pain, bleeding, and pruritus. SK is commonly observed in areas of the skin that are chronically exposed to photo-exposed, including the face, scalp in the bald area,
manifestations of SK, including hyperkeratotic, atrophic, pigment-
ed, lichenoid, and cutaneous horns, as well as actinic cheilitis [24].
In cases of severe photodamage, SK may be multiple and poorly
delineated, and in such cases, the lesions cannot be counted. As
a consequence of the prolonged exposure to carcinogenic agents,
especially UV radiation, field cancerization occurs, which is char-
acterized by pre-neoplastic changes of the epithelium; the field
cancerization is comprised of lesions of various phases, ranging
from subclinical actinic keratoses to stage 4 skin cancers [25,26].
Histopathologically, SKs are characterized by the presence of ab-
normal and pleomorphic keratinocytes in the basal layer of the
epidermis, as well as defective maturation of keratinocytes in the
superficial layers of the epidermis, leading to a variety of clinical
manifestations and abnormal epidermal architecture. This results
in an increase in the number of mitoses and a loss of polarity of the
keratinocytes [27]. There are three different ways in which actinic
keratoses can develop, the most relevant of which is the transition
to SCC. A significant portion, however, remains stable during the
evolution of the disease and may also involute spontaneously, but
recurrences are common as the disease evolves [5,28]. The risk of
malignant transformation in SKs ranges from 0.1% to 16%. There-
fore, when evaluating the risk of malignant transformation of SK
in patients presenting with multiple lesions, the risk will be higher
than that described for patients who present with one lesion [29,
30]. The risk of developing BCC, SCC, and melanoma in patients
with solar Keratosis is higher than the risk in the general popula-
tion [30,31]. In accordance with the proposed mechanism for ex-
plaining spontaneous remission of actinic keratoses, a sufficient
immune response could lead to the destruction of the lesions, and
at the same time, a reduction in UV radiation exposure may also
play a role [29]. The treatment for SK consists of either surgical
destruction of the lesions, such as excision, curettage, cryosurgery,
and a variety of cosmetic resurfacing procedures can be performed,
including medium and deep chemical peels, dermabrasion, and la-
sfer ablative resurfacing [32-34]. Topical treatments for solar ker-
atosis include various options such as 5-fluorouracil (5-FU) cream
at concentrations of 5%, Imiquimod cream at 3.75%, diclofenac
gel, PDT with topical delta-aminolevulinic acid, Ingenol mebutate
gel (Picato), Zinc Sulphate 25% cream, and Podophyllin Solution
25%. These therapies are designed to target the affected area and
help eliminate the abnormal cells [35-40]. Interestingly, while
both basal cell carcinoma (BCC) and solar keratosis are known to
be associated with sun exposure, the occurrence of combined or
collision tumors is rarely reported in literature and often seen in
individuals with syndromes like Xeroderma pigmentosa [41,42].
Several theories exist regarding the pathogenesis of collision le-
sions. One theory suggests that a single cell type (pluripotent cell)
can differentiate in more than one direction, leading to a composite
or intermingling lesion when it causes a biphasic or biphenotypic
collision [43]. As another explanation, there is the possibility of two
separate but adjacent neoplasms occurring at the same time
because of exposure to certain carcinogenic stimuli, or paracrine
factors released from one neoplasm affecting vulnerable cells ad-
ient to it as a result. [44]

Patients and Methods

Two groups of patients were included, the first group consisted of
eighty patients complaining of solar keratosis gathered during the
period from 2014-2021 years in this descriptive, cross-sectional
clinical and histopathological study. The Declaration of Helsinki
was followed during the study. A formal informed consent form
was obtained from all patients after a discussion about the nature of
the study had taken place with them. The close-up photo was
taken at the same place with a fixed distance and illumination.
In addition, all included patients accepted the idea to share their
photos in this present work. Excluding patients with xeroderma
pigmentosum in this study. A thorough full history to establish the
right clinical diagnosis with a well-established examination was
done. Name, age, gender, residence, occupation especially with
outdoor activities, history of smoking, alcohol intake, and past
medical and drug history were taken from all patients. The type of
lesions, duration of the disease, site, size, morphology, color, num-ber of lesions, and lymph node examination were also evaluated.
All patients included were Fitzpatrick skin type III and IV and any
signs of sun damage were recorded [45]. Histopathological evalua-
tion was carried out in selected cases.

The second group included forty-three patients with squamous
cell carcinoma of lower lips that were screened for solar keratosis
of the face as a comparative study with solar keratosis during the
same period time. Symptoms related to the lesions such as pain,
itching, and tenderness were evaluated. All demographic features
were recorded. Shave or incisional biopsies were done for histo-
pathological assessment and were carried out in all cases as a con-
firmatory test.

Results

The first group comprised 80 patients with varying subtypes of
solar keratosis, aged between 50-65 years with an average age of
58 years. Among them, 41 (51.3%) were male and 39 (48.7%) were female. Most of the lesions were found on the face (58 pa-
tients, 72.5%), while 12 patients (15%) had lesions on both the
face and scalp, 4 patients (5%) had lesions on the scalp, forearms,
and hands, and 2 patients (2.5%) had lesions on the eye sclera. The
majority of cases (62 patients, 77.5%) had multiple lesions, and 18
patients (22.5%) had butterfly-shaped lesions on their cheeks (8
females and 10 males). The lesions were characterized as rough,
scaly, warty, pigmented-erythematous rashes, which could be mac-
ules, patches, or plaques. Only 4 patients (5%) had solar keratosis
on their lower lip, and no patients had squamous cell carcinoma of
the lips. However, 50 patients (62.5%) had basal cell carcinoma
affecting both their face and scalp, while no cases of squamous
cell carcinoma were observed. The second group consisted of 43
patients with squamous cell carcinoma of the lower lip, aged be-
tween 20-78 years with an average age of 50 years. Among them,
36 patients (83.7%) were male and 7 patients (16.2%) were fe-
male, and only 2 patients (4.65%) had associated solar keratosis
on their face during the same time period.
Table (1): Showing the socio-demographic features in first and second group of patients

<table>
<thead>
<tr>
<th>Character</th>
<th>Number</th>
<th>Percentage (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Patients with solar Keratosis</td>
<td>(n=80)</td>
<td></td>
</tr>
<tr>
<td>Age in years:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Range</td>
<td>50-65 years</td>
<td></td>
</tr>
<tr>
<td>- Mean</td>
<td>58 years</td>
<td></td>
</tr>
<tr>
<td>Sex:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Males</td>
<td>41 (51.3)</td>
<td></td>
</tr>
<tr>
<td>- Females</td>
<td>39 (48.7)</td>
<td></td>
</tr>
<tr>
<td>Patients with squamous cell carcinoma of lower lips (n=43)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ages</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Range</td>
<td>20-78 years</td>
<td></td>
</tr>
<tr>
<td>- Mean</td>
<td>50 years</td>
<td></td>
</tr>
<tr>
<td>Sex:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Males</td>
<td>36 (83.7)</td>
<td></td>
</tr>
<tr>
<td>- Females</td>
<td>7 (16.3)</td>
<td></td>
</tr>
</tbody>
</table>

Table (2): Showing the clinical features of the first and second group of patients

<table>
<thead>
<tr>
<th>Character</th>
<th>Number</th>
<th>Percentage (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Solar Keratosis</td>
<td>(n=80)</td>
<td></td>
</tr>
<tr>
<td>Lesion location:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Face</td>
<td>58 (72.5)</td>
<td></td>
</tr>
<tr>
<td>- Face and scalp</td>
<td>12 (15)</td>
<td></td>
</tr>
<tr>
<td>- Scalp with forearms and hands</td>
<td>4 (5)</td>
<td></td>
</tr>
<tr>
<td>- Eye sclera</td>
<td>2 (2.5)</td>
<td></td>
</tr>
<tr>
<td>- Lower lips</td>
<td>4 (5)</td>
<td></td>
</tr>
<tr>
<td>Associated Carcinoma:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Basal cell carcinoma</td>
<td>50 (62.5)</td>
<td></td>
</tr>
<tr>
<td>- Squamous cell carcinoma</td>
<td>0 (0)</td>
<td></td>
</tr>
<tr>
<td>The number of lesions:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Multiple lesions</td>
<td>62 (77.5)</td>
<td></td>
</tr>
<tr>
<td>- Butterfly on cheeks</td>
<td>18 (22.5)</td>
<td></td>
</tr>
<tr>
<td>Patients with squamous cell carcinoma of lower lips (n=43)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Association with solar keratosis of face:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Yes</td>
<td>2 (4.65%)</td>
<td></td>
</tr>
<tr>
<td>- No</td>
<td>41 (95.4%)</td>
<td></td>
</tr>
</tbody>
</table>
Figure-1- 50-year-old female with butter fly like solar keratosis.
Figure-2- 47-year-old farmer female sowing numerous facial solar keratoses.
Figure-3- 67-year-old male with multiple solar keratosis and basal cell carcinoma of scalp.
Figure-4- 58-year-old patient with solar keratosis of hands and forearms.
Figure-5- 60-year-old male with butterfly solar keratosis with solar keratosis of eye sclera and basal cell carcinoma.
Figure-5: 60-year-old male with butterfly solar keratosis with solar keratosis of eye sclera and basal cell carcinoma.

Figure-6: 50-year-old female with multiple solar keratosis and basal cell carcinoma.

Figure-6: 50-year-old female with multiple solar keratosis and basal cell carcinoma.
Figure-7- 30-year-old female with squamous cell carcinoma lips but with no solar keratoses of face.
Figure-8- 28-year-old male with squamous cell carcinoma lips but with no solar keratosis of face.
Discussion
Solar keratosis is a type of skin tumor that is predominantly found on sun-exposed skin surfaces. It is a major problem among fair-skinned Europeans, while in Middle Eastern countries, where skin types III and IV are more common, solar keratosis is less prevalent due to the protective effects of melanin. However, recent studies have shown that people in middle and older age groups in these regions are not immune to this condition. Previous studies on the coexistence of solar keratosis with basal cell carcinoma (BCC) and squamous cell carcinoma (SCC) mainly included patients with skin types I and II. This study is the first in the Middle East to investigate the relationship between solar keratosis, BCC, and SCC among patients with skin types III and IV. In other countries such as Finland, Germany, Greece, Italy, Malta, Poland, Scotland, and Spain, a study of 343 patients with solar keratosis, 409 with SCC, 602 with BCC, 360 with invasive melanoma, 119 with in situ melanoma, and 686 controls found that 58% of patients with solar keratosis and a history of previous SCC had coexisting SCC. BCC coexistence was found in 30% of cases, while coexistence with melanoma in situ and invasive melanoma was detected in 12% and 6%, respectively. These studies suggest that prolonged exposure to UV radiation or sunlight is a significant contributor to the development of premalignant skin lesions. UV exposure can induce variations in the tumor suppressor gene TP53, which is a reliable marker of solar keratosis. Histological, immunohistochemical, and molecular studies of solar keratosis suggest a related pathogenesis to Bowen disease and SCC. BCC has also been observed to be predisposed to UVR, and there is an association between BCC and a wide range of sun-induced skin lesions, including solar keratosis on the face, actinic cheilitis, solar lentigines, facial telangeiactasias, and cutis rhomboidalis nuchae when exposed to UVR. It has been proposed that pluripotent epidermal stem cells resulting from chronic exposure to UV light are responsible for the development of antigenically different skin tumors in the same patient. The Iraqi population has relatively low incidence rates of NMSC, melanoma, and other forms of skin cancers due to the presence of skin types III and IV, which provide melanin photoprotection to the skin[49,50] In a study performed by Sharquie et al. suggested the most common skin tumor in the Iraqi population is BCC followed by SCC, basosquamous, keratoacanthoma, and lastly seborrheic keratosis. [14] In the present study, the prevalence of solar keratosis is quite high among middle-aged and elderly individuals who are between ages 50 and 65 years, and males (51.3%) are prone to developing these lesions almost comparable to women (48.7%) because almost all people have outdoor activity and chronic exposure to the sun. Most of the lesions were occurring on the face (72.5%), which is consistent with what has been reported in the literature [1-5]. One of the most important results concluded from this study is that there was no co-existence association between solar keratosis and SCC in all eighty patients. And similarly, in forty-three patients with SCC of the lower lip as a comparative study, facial SK was reported in just only 4.6% of the patients, while a common association between SK and BCC was reported in 62.5% of BCC in SK cases.

BCC and SK are both common disease types, so the association between them is more likely to be coincidental than cause-related or due to other unknown causes. Most recently Sharquie et al. conducted a study in a series of 140 patients with BCC and showed solar keratosis was only detected in 14.3% with BCC while in the present study patients with SCC of lower lips had only 4.65% of cases associated with solar keratosis [51]. Accordingly, patients with primary BCC and SCC are more protective and immune to developing solar keratosis during the course of the disease. But when patients who already have solar keratosis are more liable to have BCC as observed in the present work. This controversial association could not be well explained but we can speculate that patients with primary onset of BCC and SCC are more immune to develop solar keratosis. In addition, several other factors may play a role, including skin color type, ethnicity, and intensity of UV exposure, in the formation of this association and in affecting mutations in pluripotent epidermal stem cells. However, there are still many studies to be conducted to prove this hypothesis.

Conclusion
Solar keratosis is a disease of the face and scalp of elderly patients with almost equal sexes that is commonly associated with basal cell carcinoma but not squamous cell carcinoma and this association is coincidental rather than cause-related as both BCC and SK are common diseases. So Solar keratosis of the face does not change into basal cell carcinoma. But patients with facial solar keratosis were not associated with either solar keratosis or squamous cell carcinoma of the lower lip. While patients with squamous cell carcinoma of the lower lips is a disease of males who are immune to developing either solar keratosis or cancers of the face. Lastly patients with primary onset of BCC or SCC will not develop solar keratosis during the course of the disease.

References

51. Sharquie KE, Waqas SA. Pigmented basal cell carcinoma develops De nova without pre-existing solar keratosis in skin type 111 and 1V. Journal of Pakistani Association of Dermatologists.2023

Copyright: ©2023 Khalifa E. Sharquie, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.