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Abstract
The classical Poincaré conjecture that every homotopy 3-sphere is diffeomorphic to the 3-sphere is confirmed by Perelman 
in arXiv papers solving Thurston’s program on geometrizations of 3-manifolds. A new confirmation of this conjecture 
is given by a method of 4D topology. For this proof, the spun torus-knot of every knot in every homotopy 3-sphere is 
observed to be a ribbon torus-knot in the 4-sphere, where Smooth 4D Poincaré Conjecture and Ribbonness of a sphere-
link with (not necessarily meridian-based) free fundamental group are used. By examining a disk-chord system of a ribbon 
solid torus bounded by the spun torus-knot, it is proved that the knot belongs to a 3-ball in the homotopy 3-sphere. Then 
by Bing’s result, it is confirmed that the homotopy 3-sphere is diffeomorphic to the 3-sphere.
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1. Introduction 
A homotopy 3-sphere is a smooth 3-manifold M homotopy 
equivalent to the 3-sphere S3. The following Poincaré 
Conjecture is positively shown by Perelman in arXiv papers 
solving positively Thurston’s program on geometrizations of 
3-manifolds [1-6].

Poincaré Conjecture
Every homotopy 3-sphere M is diffeomorphic to S3.

     A new confirmation of this result is presented here by 
combining Smooth 4D Poincaré Conjecture and Free Ribbon 
Lemma for an S2-link in the 4-sphere S4 with R. H. Bing’s result 
on Poincaré Conjecture [7,8]. A homotopy 4-sphere is a smooth 
4-manifold X homotopy equivalent to the 4-sphere S4. The 
following conjecture was a folklore conjecture.

Smooth 4D Poincaré Conjecture
Every smooth homotopy 4-sphere X is diffeomorphic to S4. 

The positive proof of this conjecture is shown in [9]. A surface-
link in S4 is a surface L smoothly embedded in S4. When L is 
connected, it is a surface-knot. If all components of L are 
2-spheres, then it is an S2-link. A surface-link L in S4 is trivial if 
L bounds disjoint handlebodies in S4, and a ribbon surface-link 
if L is equivalent to a surface-link obtained from a trivial S2-link 
O by surgery along disjointedly embedded 1-handles on O in 
S4. The following Free Ribbon Lemma is used in Section 3 [10].

Free Ribbon Lemma
Any S2-link L in S4 with free fundamental group π1(S

４＼ L b,) is 
a ribbon S2-link in S4. 

      The proof of this lemma is moved from this preprint version 
to the paper [10] (for completeness of the argument), which is 
done by using Smooth 4D Poincaré Conjecture and Smooth 
Unknotting Conjecture explained as follows:

Smooth Unknotting Conjecture
Every smooth surface-link L in S4 with a meridian-based free 
fundamental group π1(S

4 \ L, b) is a trivial surface-link. 

       The proof of this conjecture is shown by [11-13]. Artin’s 
spinning construction of a knot k in S3 to construct the spun S2-
knot K(k) in the 4-sphere S4 allows us to generalize to a connected 
graph γ in every homotopy 3-sphere M to construct the spun S2-
link K(γ) in a homotopy 4-sphere X(M) which is diffeomorphic 
to S4 by Smooth 4D Poincaré Conjecture, so that X(M) is 
identified with S4 [9]. This construction is applied to a Heegaard 
graph γ of M (associated to a Heegaard splitting of M). Then the 
spun S2-link K(γ) is an S2-link in X(M) with free fundamental 
group (not always meridian-based free group). By Free Ribbon 
Lemma, the spun S2- link K(γ) is a ribbon S2-link in X(M). It is 
observed that for every knot k in every homotopy 3-sphere M, 
there is a Heegaard graph γ of M such that k is contained in the 
loop system of ℓ(γ) of γ. This means that the spun S2-knot K(k) of 
every knot k in every homotopy 3-sphere M is a ribbon S2-knot 
in X(M). Then, by definition, the spun torus-knot T(k) of every 
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knot k in every homotopy 3-sphere M is a ribbon torus-knot in 
X(M). Thus, the spun torus-knot T(k) always bounds a ribbon 
solid torus VR in X(M). By an argument of a disk-chord system of 
VR bounded by the spun torus-knot T(k) in X(M ), the following 
result is shown.

Theorem 1.1 
Every knot k in every homotopy 3-sphere M belongs to a 3-ball 
D3 in  M. 

        By combining Theorem 1.1 with the following result of  Bing 
in it is proved that every homotopy 3-sphere M is diffeomorphic 
to S3 [7,8]. Thus, the proof of Poincaré conjecture is completed.

Bing’s Theorem
A homotopy 3-sphere M is diffeomorphic to S3 if every knot k in 
M belongs to a 3-ball in M. 

     Outline of the proof of Poincaré Conjecture is as follows:
(1st Step) By using Smooth 4D Poincaré Conjecture, show 
that Artin’s spinning construction of every Heegaard graph γ of 
every homotopy 3-sphere M gives a spun S2-link K(γ) in S4 with 
free fundamental group (not always meridian-based free group).
(2nd Step) By Free Ribbon Lemma, the spun S2-link K(γ) is a 
ribbon S2-link in S4.
(3rd Step) Show that every knot k in M is contained in a loop 
system ℓ(γ) of a Heegaard graph γ of M , so that the spun S2-knot 
K(k) of k is a ribbon S2-knot in S4.
(4th Step) By definition of a ribbon surface-knot, show that the 
spun torus-knot T (k) of k in M is a ribbon torus-knot in S4.
(5th Step) By using a ribbon solid torus VR bounded by the spun 
torus-knot T (k) in S4 and a disk-chord system of VR, show that K 
belongs to a 3-ball D3 in M .
(6th Step) By Bing’s theorem, M is diffeomorphic to S3.

     In Section 2, Artin’s spinning construction of a connected 
graph in a homotopy 3-sphere is explained. In Section 3, an 
argument of a disk-chord system of a ribbon solid torus bounded 
by a ribbon torus-knot  is explained. In Section 4, the proof of 
Theorem 1.1 is done.

2. Artin’s Spinning Construction of a Connected Graph in a 
Homotopy 3- Sphere
      Throughout this section, M denotes a homotopy 3-sphere 
unless otherwise mentioned. For a homotopy 3-sphere M , let 
M(o) be the compact once-punctured manifold cl(M \ B) of M for 
a 3-ball B in M. Let 
   S = ∂B = ∂M (o)

be the boundary 2-sphere of M(o). The closed smooth 4-manifold 
X(M) defined by
  X(M ) = M (o) × S1 ∪ S × D2 
is called the spun manifold of M with axis 4-submanifold S × D2. 
As a convention, the 3-submanifold M (o) × 1 of the product M (o) 
× S1 is identified with M (o). In particular, a point (q, 1) ∈ M (o) × 
1 is identified with the point q ∈ M (o). This 4-manifold X(M) is 
a smooth homotopy 4-sphere by the van Kampen theorem and a 
homological argument and hence X(M) is diffeomorphic to the 
4-sphere S4 by Smooth 4D Poincaré Conjecture. From now on, 

the identification X(M) = S4 is fixed. A legged loop with base 
point v is the union k ∪ ω of a loop k and an arc ω joining the 
base point v with a point of k. The arc ω is called a leg. A legged 
loop system with base point v is the union 

of n legged loops ℓi ∪ ωi (i = 1, 2, . . . , n) meeting only at 
the same base point v. Let          denote be the 
loop system of the legged loop system γ. Let                        and  
       A regular neighborhood B of ω∗ in M is taken 
as a 3-ball B used for the compact once-punctured manifold 
M(o) = cl(M \ B) of M. Deform the subgraph γ ∩ B of γ so that 

for a regular neighborhood arc system a′* of v∗ in ℓ∗. Let

be the set of 2n points in the boundary 2-sphere S of M(o). The 
spun S2-link of the graph γ is the S2-link K(γ) in the 4-sphere 
X(M) defined by

Lemma 2.1 
The inclusion M (o) \ a(γ) ⊂ X(M ) \ K(γ) induces an isomorphism

sending a meridian system of the proper arc system a(γ) in M (o) 
to a meridian system of K(γ), where the base point v+ is taken in 
S \ a'∗

Proof of Lemma 2.1 
Note that there is a canonical isomorphism

Then the desired isomorphism σ is obtained by applying the van 
Kampen theorem between (M(o)\a(γ))×S1 and (S \a(γ))×D2. This 
completes the proof of Lemma 2.1.

        Here is a note on Lemma 2.1.

Note 2.2 
Ageneral connected graph γ with Euler characteristic χ(γ) = 1 − 
n in M is deformed into a legged loop system γ in M by choosing 
a maximal tree to shrink to a base point v. Note that there are 
only finitely many maximal trees of γ such that the loop systems 
ℓ(γ) of the resulting legged loop systems γ are distinct as links. 
By Lemma 2.1, we can obtain finitely many distinct spun S2-
links in S4 with isomorphic fundamental groups obtained by 
taking different maximal trees of the connected graph γ. This is 
a detailed explanation on the spun S2-link of a connected graph 
associated with a maximal tree in [23, p.204] when M = S3.
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ȧ(γ) = ∂a∗ = ∂a′∗

be the set of 2n points in the boundary 2-sphere S of M (o). The spun S2-link of the
graph γ is the S2-link K(γ) in the 4-sphere X(M) defined by

K(γ) = a(γ)× S1 ∪ ȧ(γ)×D2.

4

2. Artin’s spinning construction of a connected graph in a homotopy 3-
sphere

Throughout this section, M denotes a homotopy 3-sphere unless otherwise men-
tioned. For a homotopy 3-sphereM , letM (o) be the compact once-punctured manifold
cl(M \B) of M for a 3-ball B in M . Let

S = ∂B = ∂M (o)

be the boundary 2-sphere of M (o). The closed smooth 4-manifold X(M) defined by

X(M) = M (o) × S1 ∪ S ×D2

is called the spun manifold of M with axis 4-submanifold S ×D2. As a convention,
the 3-submanifold M (o) × 1 of the product M (o) × S1 is identified with M (o). In
particular, a point (q, 1) ∈ M (o) × 1 is identified with the point q ∈ M (o). This
4-manifold X(M) is a smooth homotopy 4-sphere by the van Kampen theorem and
a homological argument and hence X(M) is diffeomorphic to the 4-sphere S4 by
Smooth 4D Poincaré Conjecture. From now on, the identification X(M) = S4 is
fixed. A legged loop with base point v is the union k ∪ ω of a loop k and an arc ω
joining the base point v with a point of k. The arc ω is called a leg. A legged loop
system with base point v is the union

γ = ∪n
i=1ℓi ∪ ωi

of n legged loops ℓi ∪ ωi (i = 1, 2, . . . , n) meeting only at the same base point v.
Let ℓ(γ) = ∪n

i=1ℓi = ℓ∗ denote the loop system of the legged loop system γ. Let
ω∗ = ∪n

i=1ωi and v∗ = ℓ∗ ∩ ω∗. A regular neighborhood B of ω∗ in M is taken as
a 3-ball B used for the compact once-punctured manifold M (o) = cl(M \ B) of M .
Deform the subgraph γ ∩ B of γ so that

ω∗ ⊂ B, ω∗ ∩ S = v∗ and ℓ∗ ∩ B = ℓ∗ ∩ S = a′∗

for a regular neighborhood arc system a′∗ of v∗ in ℓ∗. Let

a(γ) = ∪n
i=1ai = a∗

for a proper arc ai = cl(ℓi \ a′i) (i = 1, 2, . . . , n) in M (o). Let
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Lemma 2.1. The inclusion M (o) \ a(γ) ⊂ X(M) \K(γ) induces an isomorphism

σ : π1(M \ γ, v+) → π1(X(M) \K(γ), v+)

sending a meridian system of the proper arc system a(γ) in M (o) to a meridian system
of K(γ), where the base point v+ is taken in S \ a∗

Proof of Lemma 2.1. Note that there is a canonical isomorphism

π1(M
(o) \ a(γ), v+) ∼= π1(M \ γ, v+).

Then the desired isomorphism σ is obtained by applying the van Kampen theorem
between (M (o)\a(γ))×S1 and (S\ȧ(γ))×D2. This completes the proof of Lemma 2.1.
□

Here is a note on Lemma 2.1.

Note 2.2. A general connected graph γ with Euler characteristic χ(γ) = 1 − n in
M is deformed into a legged loop system γ in M by choosing a maximal tree to
shrink to a base point v. Note that there are only finitely many maximal trees of γ
such that the loop systems ℓ(γ) of the resulting legged loop systems γ are distinct as
links. By Lemma 2.1, we can obtain finitely many distinct spun S2-links in S4 with
isomorphic fundamental groups obtained by taking different maximal trees of the
connected graph γ. This is a detailed explanation on the spun S2-link of a connected
graph associated with a maximal tree in [6, p.204] when M = S3.

When a homotopy 3-sphere M is given by a Heegaard spitting V ∪ V ′ pasting
along a Heegaard surface F = ∂V = ∂V ′ of genus n, a legged loop system γ with loop
system ℓ(γ) of 2n loops is constructed as follows. A spine of a handlebody V of genus
n is a legged loop system γV in F = ∂V with base point v such that the inclusion
map γV → V induces an isomorphism π1(γ, v) → π1(V, v). A regular neighborhood V̇
of γV in F is a planar surface in F . By [4, Theorem 10.2], there is a diffeomorphism
(V̇ × [0, 1], V̇ × 0) → (V, V̇ ) sending every point (x, 0) ∈ V̇ × 0 to x ∈ V̇ . The surface
V̇ is called a spine surface of V . Let γV and γV ′ be spines of the handlebodies V and
V ′ in F with the same base point v, respectively. A Heegaard graph of M is a legged
loop system γ = γM in M with base point v which is the union of legged loop systems
γ+
V and γ+

V ′ obtained from γV and γV ′ by pushing γV \ v and γV ′ \ v into the interiors
IntV and IntV ′, respectively. The following lemma is obtained.
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       When a homotopy 3-sphere M is given by a Heegaard 
spitting V ∪ V’ pasting along a Heegaard surface F = ∂V = ∂V′ 
of genus n, a legged loop system γ with loop system ℓ(γ) of 2n 
loops is constructed as follows. A spine of a handlebody V of 
genus n is a legged loop system γv in F = ∂V with base point v 
such that the inclusion map γv → V induces an isomorphism π1 
(γ, v) → π1(V, v). A regular neighborhood V of γv in F is a planar 
surface in F. By [22, Theorem 10.2], there is a diffeomorphism 
(V × [0, 1], V × 0) → (V, V ) sending every point (x, 0) ∈ V × 0 to 
x ∈ V. The surface V is called a spine surface of V. Let γv and γv′ 
be spines of the handlebodies V and V′ in F with the same base 
point v, respectively. A Heegaard graph of M is a legged loop 
system γ = γm in M with base point v which is the union of legged 
loop systems γ+

V and γ+
V′ obtained from γV  and γV , by pushing γv 

\ v and γv′ \ v into the interiors IntV and IntV', respectively. The 
following lemma is obtained.

Lemma 2.3
For every Heegaard graph γ of every homotopy 3-sphere M , the 
fundamental group π1(X(M) \ K(γ), v+) of the spun S2-link K(γ) in 
the 4-sphere X(M) is a free group of rank 2n.

Proof of Lemma 2.3
The closed complement cl(M \ N (γ)) for a regular neighborhood 
N (γ) of γ in M is diffeomorphic to the handlebody F (o) × [−1, 1] 
for the once-punctured surface F (o) of F. Since the fundamental 
group π1(F

(o) × [0, 1], v+) with base point v+ taken in (∂F (o)) × [0, 
1] is a free group of rank 2n, the desired result is obtained from  
Lemma 2.1. 

      It is noted that this free group in Lemma 2.3 is not necessarily 
a meridian-based free group. Here is an example.

Figure 1: A legged loop system γ in S3 with free fundamental 
group of rank 2

Example 2.4 
Let γ be a legged loop system with base point v in M = S3 
illustrated in Figure 1 with π1(M \γ,v+) a free group of rank 2. In 
fact, a trivial legged loop system is obtained by sliding an edge 
along another edge, so that π1(M \ ℓ(γ), v+) is a free group of rank 
2. A regular neighborhood V of γ in M and the closed complement 
V ′ = cl(M \ V) constitute a genus 2 Heegaard splitting V ∪ V ′ of 
M by noting that the 3-manifold V' is a handlebody of genus 2 
by the loop theorem and the Alexander theorem (cf. e.g., [23]). 
Thus, the union V ∪ V ′ is a genus 2 Heegaard splitting of M . 
Since the legged loop system γ with base point v is a spine of V 

by sliding the base point v into ∂V, there is a Heegaard graph 
γM of M with γ as γ+

V . By Lemma 2.3, the spun S2-link K(γM) in 
the 4-sphere X(M) = S4 has the free fundamental group π1(X(M) 
\ K(γM), v+) of rank 4, which does not admit any meridian basis 
because the spun S2-link K(γM) in S4 contains, as a component, 
the spun trefoil S2-knot whose fundamental group is known to be 
not infinite cyclic.

     Given a proper arc system a∗ in M (o), there is a legged loop 
system γ in M with the proper arc system a(γ) = a∗ in M (o). The 
spun S2-link K(γ) in X(M) is uniquely determined by the arc 
system a∗ and thus denoted by S(a∗). The following lemma is 
used toward the final step of the proof of Poincaré conjecture.

Lemma 2.5
Let a∗ be a proper arc system in a compact once-punctured 
manifold M(o) = cl(M \ B) of a homotopy 3-sphere M. If the spun 
S2-link S(a∗) in the 4- sphere X(M) is a trivial S2-link, then the 
proper arc system a∗ is in a boundary-collar S × [0, 1] of M(o).

Proof of Lemma 2.5
By Lemma 2.1, the fundamental group π1(M

(o) \ a(γ),v+) is a 
meridian-based free group. Consider the 2-sphere S as the 
boundary

∂(d × [0, 1]) = d × 0 ∪ (∂d) × [0, 1] ∪ d × 1

of the product d × [0, 1] for a disk d so that d × 0 contains one end 
of the proper arc system a∗ and d×1 contains the other end of the 
proper arc system a∗. Let (E; E0, E1) be the triplet obtained from 
(M(o), d × 0, d × 1) by removing a tubular neighborhood of a∗ in 
M(o). For v+ ∈ E0, the inclusion E0 ⊂ E induces an isomorphism

π1(E0, v
+) → π1(E, v+).

By [22, Theorem 10.2], E is diffeomorphic to the connected sum 
of the product E0 × [0, 1] and a homotopy 3-sphere. This means 
that the proper arc system a∗ is in a boundary-collar S × [0, 1]. 
This completes the proof of Lemma 2.5.

3. A Ribbon Surface-Link and a Disk-Chord System of A 
Ribbon Handle Body  System
     By combining Lemmas 2.3 with Free Ribbon Lemma in 
Section 1, the following lemma is obtained.

Lemma 3.1 
The spun S2-link K(γ) of every Heegaard link γ of every homotopy 
3-sphere M is a ribbon S2 link in X(M).

       The following lemma makes a connection between a knot in 
M and a Heegaard graph of M.

Lemma 3.2 
For every knot k in every homotopy 3-sphere M, there is a 
Heegaard graph γ of M such that the knot k is equivalent to a 
component of the loop system ℓ(γ) of γ in M.

Lemma 2.3. For every Heegaard graph γ of every homotopy 3-sphere M , the funda-
mental group π1(X(M) \K(γ), v+) of the spun S2-link K(γ) in the 4-sphere X(M)
is a free group of rank 2n.

Proof of Lemma 2.3. The closed complement cl(M \ N(γ)) for a regular neigh-
borhood N(γ) of γ in M is diffeomorphic to the handlebody F (o) × [−1, 1] for the
once-punctured surface F (o) of F . Since the fundamental group π1(F

(o) × [0, 1], v+)
with base point v+ taken in (∂F (o)) × [0, 1] is a free group of rank 2n, the desired
result is obtained from Lemma 2.1. □

It is noted that this free group in Lemma 2.3 is not necessarily a meridian-based
free group. Here is an example.

Figure 1: A legged loop system γ in S3 with free fundamental group of rank 2

Example 2.4. Let γ be a legged loop system with base point v in M = S3 illustrated
in Fig. 1 with π1(M \γ, v+) a free group of rank 2. In fact, a trivial legged loop system
is obtained by sliding an edge along another edge, so that π1(M \ ℓ(γ), v+) is a free
group of rank 2. A regular neighborhood V of γ in M and the closed complement
V ′ = cl(M \ V ) constitute a genus 2 Heegaard splitting V ∪ V ′ of M by noting that
the 3-manifold V ′ is a handlebody of genus 2 by the loop system theorem and the
Alexander theorem (cf. e.g., [6]). Thus, the union V ∪ V ′ is a genus 2 Heegaard
splitting of M . Since the legged loop system γ with base point v is a spine of V
by sliding the base point v into ∂V , there is a Heegaard graph γM of M with γ as
γ+
V . By Lemma 2.3, the spun S2-link K(γM) in the 4-sphere X(M) = S4 has the

free fundamental group π1(X(M) \K(γM), v+) of rank 4, which does not admit any
meridian basis because the spun S2-link K(γM) in S4 contains, as a component, the
spun trefoil S2-knot whose fundamental group is known to be not infinite cyclic.
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Proof of Lemma 3.2 
     By considering k as a polygonal loop in M, there is a 
triangulation T of M whose 1-skeleton T(1) contains the knot k. 
The graph T(1) is deformed into a legged loop system γ in M so 
that k is a component of the loop system k(γ′). Let V′ be a regular 
neighborhood of γ′ in M which is a handlebody. The legged 
loop system γ′ is deformed into a spine γV′ of the handlebody 
V′. The closed complement V = cl(M \ V') is also a handlebody, 
so that there is a Heegaard splitting V ∪ V′ of M. Hence there is 
a Heegaard graph γ of M obtained from γV and γV′ such that k is 
equivalent to a component of the loop system ℓ(γ). 

By Lemma 3.2, there is a Heegaard graph γ of M whose loop 
system contains the knot k. By Lemma 3.1, the spun S2-link 
K(γ) is a ribbon S2-link in X(M), so that the spun S2-knot K(k) 
is a ribbon S2-knot in X(M) because any component of a ribbon 
S2-link in S4 is a ribbon S2-knot in S4 by definition. Thus, the 
following result is obtained.

Lemma 3.3 
      For every knot k in every homotopy 3-sphere M , the spun 
S2-knot K(k) is a ribbon S2-knot in X(M). 

     For a knot k in the interior of M (0) = cl(M \ B) for a 3-ball B, 

the spun torus-knot of k is a torus-knot T (k) in X(M) given by the 
inclusions T (k) = k × S1 ⊂ M(o) × S1 ⊂ M(o) × S1 ∪ S × D2 = X(M).
The spun torus-knot T (k) in X(M) is uniquely constructed up to 
choices of a 3-ball B. The following lemma is important to our 
purpose.

Lemma 3.4 
For every knot k in every homotopy 3-sphere M , the spun torus-
knot T(k) is a ribbon torus-knot in X(M).

Proof of Lemma 3.4 
From construction, the spun S2-knot K(k) in X(M) is obtained 
from T(k) by the unique 2-handle surgery, so that the spun torus-
knot T(k) is obtained from the spun S2-knot K(k) by the converse 
1-handle surgery. By definition, the spun torus-knot T(k) is a 
ribbon torus-knot, completing the proof. 

       Assume that a ribbon surface-link L is obtained from a 
trivial oriented S2-link O by surgery along a 1-handle system h∗ 
of disjointedly embedded oriented 1-handles hj (j = 1, 2, . . . , s) 
(for some s) on O in S4. A ribbon handlebody system bounded by 
a ribbon surface-link is discussed here [15]. Let B∗ be a system 
of disjoint 3-balls Bi (  = 1, 2, . . . , m) in S4 bounded by O. 

Figure 2: Two arcs of k near a disk di drawn as thick lines

consists of two disks, called the attaching disks of hj to O. A meridian disk of the
1-handle hj is a proper disk in hj parallel to any one of the attaching disks. By
an isotopic deformation of the 1-handle system h∗, the intersection h∗ ∩ IntBi can
be assumed to be a meridian disk system (possible empty) in h∗, whose number of
meridian disks is called the ribbon index of h∗ in Bi. A ribbon handlebody system of
a ribbon surface-link L is the union

VR = B∗ ∪ h∗,

which is an immersed handlebody system bounded by L in S4. The ribbon index
of VR is the total number of the ribbon indexes of h∗ in Bi for all i. The disk-chord
system of a ribbon surface-link L is the pair (d∗, α∗) of a disk system d∗, called a based
disk system, and an arc system α∗, called a chord system, in S4 obtained from the
ribbon handlebody system VR = B∗ ∪ h∗ by shrinking the 3-ball Bi into a disk di for
every i and then shrinking the 1-handle hj into a core arc αj of hj spanning the loop
system o∗ = ∂d∗, called a based loop system, for every j. See Fig. 2 (1) for a situation
around a disk in a based disk system. From construction, the ribbon index of h∗ in
Bi is equal to the number of the transverse intersection points α∗ ∩ Intdi, called the
chord index of α∗ in di. The chord index of the disk-chord system (d∗, α∗) is the total
number of the chord indexes of α∗ in di for all i. By the orientations of L and S4, the
based disk system d∗ can be uniquely oriented, and the ribbon handlebody system
VR and the ribbon surface-link L are uniquely recovered from the disk-chord system
(d∗, α∗) by thickening the chord system α∗ and the based disk system d∗, where an
argument in [5] is needed for uniqueness of the embedded 1-handle system. Let

∆2 ⊂ ∆3 ⊂ ∆4

be the inclusions such that ∆4 is a 4-ball in S4, ∆3 is a proper 3-ball of ∆4 and ∆2
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The intersection hj ∩ O consists of  two disks, called the attaching 
disks of hj to O. A meridian disk of the 1-handle hj is a proper 
disk in hj parallel to any one of the attaching disks. By an isotopic 
deformation of the 1-handle system h∗, the intersection h∗ ∩ IntBi 
can be assumed to be a meridian disk system (possible empty) in 
h∗, whose number of meridian disks is called the ribbon index of 
h∗ in Bi. A ribbon handlebody system of a ribbon surface-link L is 
the union VR = B∗ ∪ h∗, which is an immersed handlebody system 
bounded by L in S4. The ribbon index of VR is the total number 
of the ribbon indexes of h∗ in Bi for all i. The disk-chord system 
of a ribbon surface-link L is the pair (d∗, α∗) of a disk system d∗, 
called a based disk system, and an arc system α∗, called a chord 
system, in S4 obtained from the ribbon handlebody system VR = 
B∗ ∪ h∗ by shrinking the 3-ball Bi into a disk di for every i and 
then shrinking the 1-handle hj into a core arc αj of hj spanning the 
loop system o∗ = ∂d∗, called a based loop system, for every j. See 
Figure 2 (1) for a situation around a disk in a based disk system. 
From construction, the ribbon index of h∗ in Bi is equal to the 
number of the transverse intersection points α∗ ∩ Intdi, called 
the chord index of α∗ in di. The chord index of the disk-chord 
system (d∗, α∗) is the total number of the chord indexes of α∗ in 
di for all i. By the orientations of L and S4, the based disk system 
d∗ can be uniquely oriented, and the ribbon handlebody system 
VR and the ribbon surface-link L are uniquely recovered from 
the disk-chord system (d∗, α∗) by thickening the chord system 

α∗ and the based disk system d∗, where an argument is needed 
for uniqueness of the embedded 1-handle system [16]. Let ∆2 
⊂ ∆3 ⊂ ∆4 be the inclusions such that ∆4 is a 4-ball in S4, ∆3 is 
a proper 3-ball of ∆4 and ∆2 is a proper disk of ∆3. A disk-chord 
system (d∗, α∗) of L in S4 can be moved into Int∆3 isotopically 
by first moving a neighborhood of the based disk system d∗ into 
Int∆3 and then moving the remaining part of the arc system α∗ 
into Int∆3 [15]. So, assume that a disk-chord system (d∗, α∗) of 
L is in Int∆3. The ribbon handlebody system VR and the ribbon 
surface-link L are uniquely realized from a disk-chord system 
(d∗, α∗) of L in Int∆4. A chord graph of L is the graph o∗ ∪ α∗ 
in Int∆3 obtained from a disk-chord system (d∗, α∗) in Int∆3 by 
taking o∗ = ∂d∗. A chord diagram of L is a diagram C(o∗, α∗) in 
Int∆2 for a chord graph o*∪ α* of L in Int∆3. A ribbon surface-link 
L in S4 is uniquely realized in Int∆4 from a chord graph o∗ ∪ α∗ of 
L in Int∆3 and also from a chord diagram C(o∗, α∗) of L in Int∆2, 
because the based loop system o∗ in Int∆3 constructs uniquely 
the trivial S2-link O by the Horibe-Yanagawa lemma in [15]. On 
the other hand, a ribbon handlebody system VR of L cannot be 
uniquely recovered because in general a disjoint disk system d∗ 
in the interior of ∆3 with ∂d∗ = o∗ is not unique [15]. So, to fix a 
ribbon handlebody system VR of L, every loop of the based loop 
system o∗ should be fixed as it is shown in Figure. 2 (2). The 
following observation is obtained from the above argument.
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Observation 3.5 
A ribbon surface-link L and a ribbon handlebody system VR in S4 
are uniquely realized in Int∆4 from a disk-chord system (d∗, α∗) 
in Int∆3, and also from a chord graph o∗ ∪ α∗ in Int∆3 or a chord 
diagram C(o∗, α∗) in Int∆2 by fixing every loop of the based loop 
system o∗ as it is shown in Figure 2 (2).

     A chord diagram has the advantage of being easy to handle. 
For example, the moves on chord diagrams for equivalent ribbon 
surface-links are known in [18-21]. A ribbon handlebody VR 
bounded by a ribbon torus-knot T is called a ribbon solid torus. 
The following lemma is an easy exercise of the moves on chord 
diagrams in [18] and used in Section 4.

Lemma 3.6 
Every ribbon solid torus of ribbon index n bounded by a ribbon 
torus- knot T in Int∆4 is deformed into a ribbon solid torus VR 
with ∂VR = T which is realized by a disk-chord system (d∗, α∗) in 
Int∆3 of Int∆4 where

such that
(1) the chord αi connects oi to oi+1 for every i (i = 1, 2, . . . , n) 
with on+1 = o1, and
(2) the chord index of α∗ to di is equal to 1 for every i.

      The disk-chord system (d∗, α∗) in Lemma 3.6 is called a 
circular primitive disk-chord system or briefly a CP disk-chord 
system (see Figure 3 (1), (2) for examples). The spine of a disk-
chord system (d∗, α∗) is a graph Γ obtained from d∗ ∪ α∗ by 
shrinking every disk di into a vertex vi for every i. A regular 
maximal tree of Γ is a tree τ+ in Γ obtained from a maximal tree 
τ of Γ by taking a regular neighborhood of τ in Γ. A regular 
maximal tree of a disk-chord system (d∗, α∗) is a disk-chord 
system τ+ (d∗, α∗) obtained from a regular maximal tree τ+ of the 
spine Γ by making every vertex vi in τ + back to the original disk 
di for every i. Let ∂τ+(d*, α*) =∂ τ+ be the set of all the degree 1 
vertexes of τ+. The arc system e∗ = cl(Γ \ τ+) = cl((d∗ ∪ α∗) \ τ 

+(d∗, 
α∗)) is called the complementary arc system of a regular maximal 
tree τ+(d∗, α∗) in a disk-chord system (d∗, α∗).

is a proper disk of ∆3. A disk-chord system (d∗, α∗) of L in S4 can be moved into
Int∆3 isotopically by first moving a neighborhood of the based disk system d∗ into
Int∆3 and then moving the remaining part of the arc system α∗ into Int∆3 (see [17,
II.3.61]). So, assume that a disk-chord system (d∗, α∗) of L is in Int∆3. The ribbon
handlebody system VR and the ribbon surface-link L are uniquely realized from a
disk-chord system (d∗, α∗) of L in Int∆4. A chord graph of L is the graph o∗ ∪ α∗ in
Int∆3 obtained from a disk-chord system (d∗, α∗) in Int∆3 by taking o∗ = ∂d∗. A
chord diagram of L is a diagram C(o∗, α∗) in Int∆2 for a chord graph o∗ ∪α∗ of L in
Int∆3. A ribbon surface-link L in S4 is uniquely realized in Int∆4 from a chord graph
o∗ ∪α∗ of L in Int∆3 and also from a chord diagram C(o∗, α∗) of L in Int∆2, because
the based loop system o∗ in Int∆3 constructs uniquely the trivial S2-link O by the
Horibe-Yanagawa lemma in [17]. On the other hand, a ribbon handlebody system VR

of L cannot be uniquely recovered because in general a disjoint disk system d∗ in the
interior of ∆3 with ∂d∗ = o∗ is not unique (see [17, Lemma I.1.4]). So, to fix a ribbon
handlebody system VR of L, every loop of the based loop system o∗ should be fixed
as it is shown in of Fig. 2 (2). The following observation is obtained from the above
argument.

Observation 3.5. A ribbon surface-link L and a ribbon handlebody system VR in
S4 are uniquely realized in Int∆4 from a disk-chord system (d∗, α∗) in Int∆3, and also
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every loop of the based loop system o∗ as it is shown in Fig. 2 (2).

A chord diagram has the advantage of being easy to handle. For example, the
moves on chord diagrams for equivalent ribbon surface-links are known in [7, 8, 9, 10].
A ribbon handlebody VR bounded by a ribbon torus-knot T is called a ribbon solid
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such that

(1) the chord αi connects oi to oi+1 for every i (i = 1, 2, . . . , n) with on+1 = o1, and

(2) the chord index of α∗ to di is equal to 1 for every i.
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The disk-chord system (d∗, α∗) in Lemma 3.6 is called a circular primitive disk-
chord system or briefly a CP disk-chord system (see Fig. 3 (1), (2) for examples). The
spine of a disk-chord system (d∗, α∗) is a graph Γ obtained from d∗ ∪ α∗ by shrinking
every disk di into a vertex vi for every i. A regular maximal tree of Γ is a tree τ+ in Γ
obtained from a maximal tree τ of Γ by taking a regular neighborhood of τ in Γ. A
regular maximal tree of a disk-chord system (d∗, α∗) is a disk-chord system τ+(d∗, α∗)
obtained from a regular maximal tree τ+ of the spine Γ by making every vertex vi in
τ+ back to the original disk di for every i. Let τ̇+(d∗, α∗) = τ̇+ be the set of all the
degree 1 vertexes of τ+. The arc system

e∗ = cl(Γ \ τ+) = cl((d∗ ∪ α∗) \ τ+(d∗, α∗))

is called the complementary arc system of a regular maximal tree τ+(d∗, α∗) in a
disk-chord system (d∗, α∗).

Figure 3: CP disk-chord systems of ribbon solid tori (1), (2) bounded by the spun
torus-kot of the trefoil knot (3)

4. Main result: Proof of Theorem 1.1

Throughout this section, the proof of Theorem 1.1 is done. Let k be a knot in
a homotopy 3-sphere M . If k is a trivial knot in M , then the knot k belongs to
a 3-ball D3 in M . So, assume that k is a non-trivial oriented knot in M . Since
the spun torus-knot T (k) is a ribbon torus-knot in X(M) by Lemma 3.4, there is a
ribbon solid torus VR of some ribbon index n with ∂VR = T (k) in Int∆4 which is
realized by a CP disk-chord system (d∗, α∗) of chord index n in Int∆3 and a chord
diagram C(d∗, α∗) in Int∆2 by Observation 3.5. Since there is a meridian-preserving
isomorphism π1(M \ k, v+) → π1(X(M) \T (k), v+) by the van Kampen theorem, the
longitude of k in M represents an infinite order element in the fundamental group
π1(X(M)\T (k), v+). This implies that an oriented meridian loop of VR is a uniquely
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Figure 3: CP disk-chord systems of ribbon solid tori (1), (2) bounded by the spun torus-kot of the trefoil knot (3)

4. Main Result: Proof of Theorem 1.1
      Throughout this section, the proof of Theorem 1.1 is done. Let 
k be a knot in a homotopy 3-sphere M. If k is a trivial knot in M , 
then the knot k belongs to a 3-ball D3 in M. So, assume that k is a 
non-trivial oriented knot in M. Since the spun torus-knot T(k) is a 
ribbon torus-knot in X(M) by Lemma 3.4, there is a ribbon solid 
torus VR of some ribbon index n with ∂VR = T (k) in Int∆4 which 
is realized by a CP disk-chord system (d∗, α∗) of chord index n in 
Int∆3 and a chord diagram C(d∗, α∗) in Int∆2 by Observation 3.5. 
Since there is a meridian-preserving isomorphism π1(M \ k, v+) 
→ π1(X(M) \ T (k), v+) by the van Kampen theorem, the longitude 
of k in M represents an infinite order element in the fundamental 
group π1(X(M)\ T (k), v+). This implies that an oriented meridian 
loop of VR is a uniquely determined loop in T (k) up to isotopies 
of T(k), and the CP disk-chord system (d∗, α∗) is assumed that k 
meets di with just one boundary arc and just one interior point 
transversely for every i, as in Figure 2 (1) (see also Figure 3 
(1), (2) for examples). Assume that k is in IntM(o). The following 
lemma is obtained.

Sublemma 4.1 
The disk system di (i = 1, 2, . . . , n) is deformed into IntM(o) by 
an isotopy of X(M) keeping the knot k fixed.

Proof of Sublemma 4.1 
For every i, let ci be a simple arc in di connecting the point 
k ∩Int(di) to a point in the arc k ∩ ∂di. The arc system ci (i = 
1, 2, . . . , n) is deformed into a bi-collar neighborhood M(o) 
× [−1, 1] of M(o) with M(o) × 0 = M(o) in X(M) by an isotopy 
keeping M(o) fixed. Then the arc system ci (i = 1, 2, . . . , n) is 
projected into M(o) by a general position argument. A deformed 
disk system di (i = 1, 2, . . . , n) in M(o) is obtained from the 
arc system ci(i = 1, 2, . . . , n) in M(o) by widening them as a 
small disk system, completing the proof of Sublemma 4.1. 

     By Sublemma 4.1, consider that the CP disk-chord system 
(d∗, α∗) of VR is in M(o). The spine Γ of (d∗, α∗) is a degree 4 graph 
in M (o). For every regular maximal tree τ+ of Γ, there is a disk δ2 
in M(o) with ∂ τ+ = τ+ ∩ ∂δ2 such that a neighborhood of every 
degree 4 vertex of τ+ in δ2 gives Figure 2 (1) in τ +(d∗, α∗). The disk 
δ2 is called a regular support disk for τ+(d∗, α∗). This disk δ2 is 
moved into the 2-sphere S = ∂M(o). Let δ3 = δ2 ×[0, 1] be a collar 
of δ2 in M(o) which is a 3-ball with δ3 ∩ S = δ2 × 0 = δ2. Let e∗ be 
the complementary arc system of τ+(d∗, α∗) in (d∗, α∗) consisting 
of arcs ei (i = 1, 2, . . . , n+1), where n is the chord index of the 
CP disk-chord system (d∗, α∗) which is determined by the Euler 
characteristics χ(Γ) = −n. The knot k in M(o) is deformed in M(o) so 
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that the intersection t = k ∩ δ3 is a tangle in δ3 whose projection 
image under the canonical projection

δ3 = δ2 × [0, 1] → δ2

is the regular maximal tree τ + in the regular support disk δ2 by 
pushing τ +(d∗, α∗) \ ∂τ+(d∗, α∗) into δ2×(0, 1) and then by creating 
a crossing point by the move from (1) to (3) in Figure 2. Then the 
regular maximal tree τ + in δ2 can be regarded as a tangle diagram 
of t in δ2. Let [t, τ +] be the disk union between the tangle t and 
the graph τ + in the preimage of τ + under the canonical projection 
δ3 → δ2. The following sublemma is essentially observed for an 
inbound arc diagram [17].

Sublemma 4.2 The spun S2-link T(t) of a tangle t in δ3 in the 
4-disk

bounds a ribbon 3-ball system

which extends to a ribbon solid torus VR of the spun torus-knot 
T(k) such that the compact complement cl(VR \ VR) is a disjoint 
3-ball system bounded by the spun S2-link S(e∗) in X(M).

Proof of Sublemma 4.2 
If t is a 1-string tangle with τ+ a simple arc, then VR = [t, τ +] × S1 
∪ τ+ × D2 is a 1-handle thickening t, that is a ribbon 3-ball with 
ribbon index 0. If t is a 2-string tangle with τ+ just one degree 
4 vertex graph, then t is the 2-tangle in Figure 2 (3) and VR′  
is a ribbon 3-ball system with ribbon index 1 giving the disk 
chord system of Figure 2 (1). In the general case of t and τ+, as 
a combination result of these two observations, V′R is a ribbon 
3-ball system giving a disk-chord system τU(d∗, α∗) in the 4-disk 
U4 such that τU(d∗, α∗) is diffeomorphic to the regular maximal 
tree τ+(d∗, α∗) of (d∗, α∗) in δ3. Let δ4 be a 4-ball in U with δ3 as a 
proper 3-ball. The following sublemma is needed.

Sublemma 4.3
There is an orientation-preserving diffeomorphism of X(M) 
sending (U4, τU (d∗, α∗)) to (δ4, τ+(d∗, α∗)).

Proof of Sublemma 4.3 For the regular maximal tree τ+ in the 
regular support disk δ2, find a 2-disk δ2

0 ⊂ Intδ such that τ′ = 
δ2

0 ∩ τ+ has cl(τ+ \ τ′) = (∂τ+)×[0,1] and construct a 4-ball δ4
0 ⊂ 

IntU4 with δ2
0 as a trivial proper disk. Then construct a proper 

3-ball δ3
0 ⊂ δ4

0 with δ2
0 as a proper disk. Note that there is an 

orientation-preserving diffeomorphism of S4 sending the triad 
(δ4

0, δ
3

0, δ
2

0) to the triad (δ4, δ3, δ2) and the regular maximal tree 
τ′(d∗, α∗) of (d∗, α∗) given by τ′ in δ3

0 to τ+(d∗, α∗) in δ3. Since 
cl(U4 \ δ4

0) is diffeomorphic to S3 × [0, 1] (see [9]), there is an 
orientation-preserving diffeomorphism

Then there is a triad (U4, U3, U2) with U3 a proper 3-ball in U4 
and U 2 a proper 2-disk in U3 such that there is an orientation-
preserving diffeomorphism of S4 sending the triad (U4, U3, U2) to 
the triad (δ4

0, δ
3

0, δ
2

0) and τU (d∗, α∗) in U3 to τ′(d∗,α∗) in δ3
0.  Thus, 

there is an orientation-preserving diffeomorphism of S4 sending 
the triad (U4, U3, U2) to the triad (δ4, δ3, δ2) and τU(d∗, α∗) in U3 to 
τ+(d∗, α∗) in δ3. This completes the proof of Sublemma 4.3. 

    By Sublemma 4.3, the ribbon 3-ball system V′R realizing τU(d∗, 
α∗) in U4 extends to a ribbon solid torus VR in S4. This means that 
the spun S2-link S(e∗) in X(M) bounds the disjoint 3-ball system 
cl(VR \ V ′

R ). This completes the proof of Sublemma 4.2. 

    By Lemma 2.5 and Sublemma 4.2, the proper arc system e∗ 
and hence k are in a 3-ball D3 which is a regular neighborhood 
of δ2 × [0, 1] in M (o). This completes the proof of Theorem 1.1. 

5. Conclusion
     A general problem arising from this paper is how any given 
ribbon solid torus bounded by the spun torus-knot T(k) of a knot 
k relates to a knot diagram D(k) of k. For example, the CP disk-
chord system (d∗, α∗) in Figure 3 (1) is seen to represent a ribbon 
solid torus bounded by the spun torus-knot T(k) of the trefoil knot 
k in Figure 3 (3). In fact, the ribbon torus-knot given by Figure 
3 (1) is equivalent to the ribbon torus-knot given by Figure 3 (2) 
by moves on chord diagrams and by Sublemma 4.2 the CP disk-
chord system of Figure 3 (2) is the CP disk-chord system of the 
spun ribbon solid torus of the trefoil knot diagram D(k) shown in 
Figure 3 (3) [18-21]. It would be interesting to point out that the 
CP disk-chord system (d∗, α∗) in Figure 3 (1) is not the CP disk-
chord system of the spun ribbon solid torus of any knot diagram 
D′(k) of the trfoil knot k. To see this, the cross-index is used [24]. 
If (d∗, α∗) is obtained from the spun ribbon solid torus of a trefoil 
knot diagram D′(k), then the complementary arc system e∗ of any 
regular maximal tree τ+(d∗, α∗) in (d∗, α∗) in a regular support disk 
δ2 must have the cross-index 0 in the annulus A given by any 
extended disk δ+ such that Intδ+ ⊃ δ2 and e* is an immersed arc 
system in the annulus A = cl(δ+ \ δ2). However, the coss-index 
of e∗ in an annulus A is 1 for the diagram given in Figure 3 (1). 
This means that the CP disk-chord system (d∗, α∗) in Figure 3 (1) 
is not the CP disk-chord system of the spun ribbon solid torus of 
any trefoil knot diagram D′(k).
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determined loop in T (k) up to isotopies of T (k), and the CP disk-chord system (d∗, α∗)
is assumed that k meets di with just one boundary arc and just one interior point
transversely for every i, as in Fig. 2 (1) (see also Fig. 3 (1), (2) for examples). Assume
that k is in IntM (o). The following lemma is obtained.

Sublemma 4.1. The disk system di (i = 1, 2, . . . , n) is deformed into IntM (o) by an
isotopy of X(M) keeping the knot k fixed.

Proof of Sublemma 4.1. For every i, let ci be a simple arc in di connecting the point
k∩ Int(di) to a point in the arc k∩∂di. The arc system ci (i = 1, 2, . . . , n) is deformed
into a bi-collar neighborhood M (o) × [−1, 1] of M (o) with M (o) × 0 = M (o) in X(M)
by an isotopy keeping M (o) fixed. Then the arc system ci (i = 1, 2, . . . , n) is projected
into M (o) by a general position argument. A deformed disk system di (i = 1, 2, . . . , n)
in M (o) is obtained from the arc system ci (i = 1, 2, . . . , n) in M (o) by widening them
as a small disk system, completing the proof of Sublemma 4.1. □

By Sublemma 4.1, consider that the CP disk-chord system (d∗, α∗) of VR is in
M (o). The spine Γ of (d∗, α∗) is a degree 4 graph in M (o). For every regular maximal
tree τ+ of Γ, there is a disk δ2 in M (o) with τ̇+ = τ+∩∂δ2 such that a neighborhood of
every degree 4 vertex of τ+ in δ2 gives Fig. 2 (1) in τ+(d∗, α∗). The disk δ2 is called a
regular support disk for τ+(d∗, α∗). This disk δ2 is moved into the 2-sphere S = ∂M (o).
Let δ3 = δ2× [0, 1] be a collar of δ2 in M (o) which is a 3-ball with δ3∩S = δ2×0 = δ2.
Let e∗ be the complementary arc system of τ+(d∗, α∗) in (d∗, α∗) consisting of arcs
ei (i = 1, 2, . . . , n+1), where n is the chord index of the CP disk-chord system (d∗, α∗)
which is determined by the Euler characteristics χ(Γ) = −n. The knot k in M (o) is
deformed in M (o) so that the intersection t = k∩ δ3 is a tangle in δ3 whose projection
image under the canonical projection

δ3 = δ2 × [0, 1] → δ2

is the regular maximal tree τ+ in the regular support disk δ2 by pushing τ+(d∗, α∗) \
τ̇+(d∗, α∗) into δ2 × (0, 1) and then by creating a crossing point by the move from
(1) to (3) in Fig. 2. Then the regular maximal tree τ+ in δ2 can be regarded as a
tangle diagram of t in δ2. Let [t, τ+] be the disk union between the tangle t and
the graph τ+ in the preimage of τ+ under the canonical projection δ3 → δ2. The
following sublemma is essentially observed in [11, Theorem 2.3 (3)] for an inbound
arc diagram.

Sublemma 4.2. The spun S2-link T (t) of a tangle t in δ3 in the 4-disk

U4 = δ3 × [0, 1]× S1 ∪ δ2 ×D2 ⊂ M (o) × S1 ∪ S ×D2 = X(M)
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bounds a ribbon 3-ball system

V ′
R = [t, τ+]× S1 ∪ τ+ ×D2

which extends to a ribbon solid torus VR of the spun torus-knot T (k) such that the
compact complement cl(VR \ V ′

R) is a disjoint 3-ball system bounded by the spun
S2-link S(e∗) in X(M).

Proof of Sublemma 4.2. If t is a 1-string tangle with τ+ a simple arc, then
V ′
R = [t, τ+] × S1 ∪ τ+ × D2 is a 1-handle thickening t, that is a ribbon 3-ball with

ribbon index 0. If t is a 2-string tangle with τ+ just one degree 4 vertex graph, then
t is the 2-tangle in Fig. 2 (3) and V ′

R is a ribbon 3-ball system with ribbon index
1 giving the disk chord system of Fig. 2 (1). In the general case of t and τ+, as a
combination result of these two observations, V ′

R is a ribbon 3-ball system giving a
disk-chord system τU(d∗, α∗) in the 4-disk U4 such that τU(d∗, α∗)) is diffeomorphic
to the regular maximal tree τ+(d∗, α∗) of (d∗, α∗) in δ3. Let δ4 be a 4-ball in U with
δ3 as a proper 3-ball. The following sublemma is needed.

Sublemma 4.3. There is an orientation-preserving diffeomorphism of X(M) sending
(U4, τU(d∗, α∗)) to (δ4, τ+(d∗, α∗)).

Proof of Sublemma 4.3. For the regular maximal tree τ+ in the regular support
disk δ, find a 2-disk δ20 ⊂ Intδ such that τ ′ = δ20 ∩ τ+ has cl(τ+ \ τ ′) ∼= τ̇+ × [0, 1] and
construct a 4-ball δ40 ⊂ IntU with δ20 as a trivial proper disk. Then construct a proper
3-ball δ30 ⊂ δ40 with δ20 as a proper disk. Note that there is an orientation-preserving
diffeomorphism of S4 sending the triad (δ40, δ

3
0, δ

2
0) to the triad (δ4, δ3, δ2) and the

regular maximal tree τ ′(d∗, α∗) of (d∗, α∗) given by τ ′ in δ30 to τ+(d∗, α∗) in δ3. Since
cl(U4 \ δ40) is diffeomorphic to S3 × [0, 1] (see [15]), there is an orientation-preserving
diffeomorphism

(cl(U4 \ δ40), cl(U4 \ δ40) ∩ τ+) → (S3, τ̇+)× [0, 1].

Then there is a triad (U4, U3, U2) with U3 a proper 3-ball in U4 and U2 a proper 2-
disk in U3 such that there is an orientation-preserving diffeomorphism of S4 sending
the triad (U4, U3, U2) to the triad (δ40, δ

3
0, δ

2
0) and τU(d∗, α∗) in U3 to τ ′(d∗, α∗) in

δ30 . Thus, there is an orientation-preserving diffeomorphism of S4 sending the triad
(U4, U3, U2) to the triad (δ4, δ3, δ2) and τU(d∗, α∗) in U3 to τ+(d∗, α∗) in δ3. This
completes the proof of Sublemma 4.3. □

By Sublemma 4.3, the ribbon 3-ball system V ′
R realizing τU(d∗, α∗) in U4 extends to

a ribbon solid torus VR in S4. This means that the spun S2-link S(e∗) inX(M) bounds
the disjoint 3-ball system cl(VR \ V ′

R). This completes the proof of Sublemma 4.2. □
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