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Abstract
Centrality measures based on network topology are valuable for decision-making in complex systems. These measures allow 
the identification of the most essential elements of the network, i.e. those that have the most significant impact on the overall 
operation of the system. In the case of electricity grids, centrality measurements can be used to identify the most crucial 
power plants, the most critical transmission lines, or the most vulnerable connection points. This information can be used to 
improve network planning and control to ensure a reliable and secure electricity supply. In this paper, centrality measures 
are used to identify those nodes in the Mexican electricity network that are topologically the most relevant. These are used 
to locate frequency meters that act as critical points for frequency control. Results are presented for an equivalent network 
of 190 busbars divided into geographical control regions. 
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1. Introduction 
The mathematical study of complex networks that real-world 
model problems has had significant advances: on the one 
hand, the spectral theory of graphs, which uncovers valuable 
information on the topological structure of networks encoded 
in the eigenvalues and eigenvectors of matrices associated with 
the networks, and on the other hand, the study of the temporal 
evolution of networks that motivated the introduction of the 
concept of scale-free networks, which have been identified as 
those that are formed in the interaction of human societies. 

This paper considers a reduced equivalent of the national 
electricity grid consisting of 190 busbars and 46 generating 
units. The graph theory and matrix analysis techniques allow 
us to define centrality measures that determine the vertices' 
relative importance from the graph topology. Such information 
is strategic in problem-solving. Our attention will concentrate 
on three centrality measures: closeness, PageRank, and spectral 
centrality. 
We also consider graphs representing the national power 
grid. Graph theory techniques allow us to define centrality 
measures that determine the relative importance of each vertex 
in the graph. Two centrality measures will focus our attention: 
closeness, which determines the rank of the proximity of a node 
to the others in the network; PageRank; and spectral, determined 
according to the coordinates of a positive eigenvector called 
Perron's, associated with the maximum value of the matrix 
considered (usually adjacency or weighted adjacency). 

The concept of centrality measures was first introduced by A. 
Bavelas in the 1950s in the context of the social sciences [1]. It 
has been one of the most studied terms in network analysis since 
the late 1970s. Some authors have used centrality measures 
concerning the flow of information in various networks, the flow 
of used goods, the movement of money, the spread of rumours, 
e-mails, attitudes, and infections, and the direction of packets. 

Although centrality measurements have been used for many 
years for applications in electrical networks, they usually have 
been used with aspects related to voltage problems. Here, we 
will do it instead for frequency problems, which are vital in the 
Mexican grid operation nowadays. 

Our network analyses point in one direction: to identify the 
power grid's main busbars from a topological point of view. 
With this, we consider installing measurements at such nodes 
vital, for example, for the study system's frequency. 

2. Graph Metrics 
This section shows the most commonly used metrics in graph 
analysis. These are of great help in understanding the behavior 
of the network. 

● Degree: The degree of a vertex in a graph G = (V, E), denoted 
Ku, where u is a vertex u ∈ V; it is the number of proper edges 
incident on the vertex, plus twice the number of loops existing at 
the same vertex. The degree can also be calculated by counting 
the number of neighboring vertices of the vertex under analysis. 
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The calculation of the average degree gives a clearer idea of the 
degree of the network as a whole. It can be easily calculated with 
the following equation: 

Another way to analyses a graph from the degree is to plot its 
degree distribution. This gives the probability that a selected 
vertex in the graph has a degree k. For a graph with n vertices, 
the degree distribution is given by the following equation, 

 
where nk is the number of vertices with k-degrees. 

● Density: The density indicates the proportion of edges that a 
graph possesses. If the density is high in the graph G, then the 
number of edges in the graph G is close to the maximum possible 
number of edges, i.e. the number of edges in a complete graph. 
In the opposite case, a low density in the network G indicates 
that the network has very few existing connections. For a graph 
with n vertices and m edges, the equation to calculate the density 
is the following, 

● Shortest Path: The Shortest Path Length of a graph refers to 
the shortest distance between a pair of vertices. If the network 
is weighted, the distance calculation is computed through the 
sum of the weights indicated by each edge selected as part of 
the shortest path. If the network is unweighted, the calculated 
distance is called the geodesic distance, where the weights of all 
edges are equal to one. The average shortest path distance 
 is the average of all distances duv in G, 

 

Dijkstra's algorithm is often used to obtain the shortest path 
between two vertices. Dijkstra's algorithm solves the problem of 
finding the shortest path between nodes in a weighted graph G = 
(V, E) in which all weights must be positive [2]. The algorithm 
starts from the selected node (source node) and performs a 
search in the network to achieve its goal: to find the shortest path 
between the selected node and the other nodes in the network. 
During its execution, it stores the shortest path found so far 
between each node and the source node; if it finds a shorter 
path, it updates it. When the algorithm finds the shortest path 
between the source node and another node, the node is marked 
as "visited" and added to the stored shortest path. This continues 
until all nodes in the network have been added to the path. This 
way, you have a path connecting the originating node to the 
other nodes via the shortest possible path. 

● Diameter: The diameter of a graph G is the maximum shortest 
path between two vertices. With this metric, we can observe the 
distance between the farthest vertices in the graph. 

		  D = {duv}		  (5) 

● Clustering Coefficient: The clustering coefficient measures 

how connected the neighbours of a vertex are. When its value 
is high, there is a strong connection between the neighbours of 
a vertex, and when its value is low, there is a low connection 
between neighbors. For a vertex u with degree ku, the clustering 
coefficient is defined as follows, 
 

Where Eu is the number of edges in the subgraph created by the 
set of neighbours of vertex u. 

The above equation shows the local clustering coefficient, 
i.e., each vertex's clustering coefficient; however, obtaining 
its global value is more interesting, which helps to understand 
the behaviour of the network. This can be easily calculated by 
obtaining the average through the local clustering coefficient of 
the network, 

An incidence matrix is a binary matrix (i.e. its elements can 
only be ones or zeros) used to represent binary relationships. 
In particular, it represents graphs and mathematical structures 
that model relationships between objects. An incidence matrix 
of a graph has as many rows as there are vertices and as many 
columns as there are edges in the graph. The matrix element in 
row i and column j is one if vertex i is incident to edge j and zero 
otherwise. 

Complex networks In the open research, the terms network 
and graph are used interchangeably. As mentioned above, a 
complex network is commonly a graph representing a system 
with abundant complex entities and interactions. The study of 
complex networks helps to understand various real systems. For 
example, we can understand the behavior of neurons connected 
by synapses or even the Internet, which comprises routers, 
cables and optical fibers. These systems are called complex 
systems since predicting their collective behavior through their 
components is impossible. However, by analyzing the properties 
of the network, it is possible to predict and even control them 
[3]. Complex networks are the graphs that represent these 
complex systems. A complex network is a graph with abundant 
nodes with specific properties and behavior. Thus, in this work, 
the applications are in the context of electricity grids, which can 
be considered complex grids. 

3. Used Centrality Measures 
A centrality function (fG) assigns a positive real value to each 
node of a network G such that if g: G → G' is an isomorphism, 
then fG(x) = fG'(g(x)) for all x nodes of G. Thus, the centrality 
function is a structural attribute of the nodes in a network; in 
other words, it is a value assigned to the node due to its structural 
position in the network. 

In this paper, the following centrality measures are utilized. 
These were chosen because they are widely used and well 
established. 

● Weighted Degree: This is the first and most straightforward 
definition of centrality. It is defined as the number of (weighted) 
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links a node has with other nodes. It is usually represented as k. 
The degree is often interpreted as the number of connections a 
network element has.
 

where the line-node (m lines, n nodes) incidence matrix A, with 
size m × n, is used to calculate the Laplacian matrix L of the 
network, with size n × n, as L = ATA. 

• PageRank: The function of this algorithm is to measure the 
importance and quality of a web page in a range from 0 to 10; it 
follows a series of measurable criteria.  

Google's PageRank is inspired by the Science Citation Index 
(SCI), the world's best-known citation index. The SCI measures 
the importance of different scientific publications, determining 
their relevance and influence based on the references they have 
received from other publications. 

The PageRank value of a web page is determined by the links 
from other pages and their quality. That is the quality of the 
pointing domain, its age, and the importance given to each 
connection. This does not mean that a page with many links has 
a PageRank of 10 since it will receive a low score if the links 
are of low quality. In practice, it means that a web page that 
receives links from pages with a good PageRank - those pages 
that Google considers high quality and authoritative - will have 
a high PageRank. Still, if the majority are low-quality links, it 
will have a low PageRank. 
(i) Eigenvector centrality: If A is a symmetric matrix, i.e., aij = 
aji, for all entries 1 ≤ i, j ≤ n, then there are n real solutions of 
its characteristic equation det (λI - A) = 0. In case the matrix 
A is non-negative, i.e., aij ≥ 0 for all entries i, j, then there are 
eigenvalues λ ≥ 0: 

         λ(A) = max {λ : 0 ≤ λ eigenvalue of A}	 (9) 

is called the spectral radius of A. 

In 1907, the German mathematician Oskar Perron proved the 
following theorem: Let A = (aij) be a nonnegative matrix and let 
r be its spectral radius, then: 

• λ is an eigenvalue of A; 
• there exists an eigenvector u of A such that Au = λu and all 
entries of u are non-negative; 
• if A is the adjacency matrix of a connected graph, then they 
hold: 
(a) λ is a simple root of the characteristic polynomial of A and 
(b) the vector u has all its entries greater than zero. 
If G is a connected graph and A is its adjacency matrix, the values 
u(x) for x node of G determine the spectral centrality function. 
Therefore, we interpret u(x) as a measure of the complexity of 
the network G at node x. 

4.Case Study 
In this section, we assume linearised models for representing 
the dynamics of the Mexican Interconnected System (MIS), 
whose primary purpose is to quantify the frequency deviations 
in the different regions that comprise the system. Furthermore, 
through centrality measurements, it is desired to identify the 
central nodes of the network from a topological point of view to 
recommend the measure of such nodes as critical for frequency 
control. 

In the present analysis, studies are carried out on the MIS dynamic 
model, which represents the transmission voltage levels, Fig. 1. 
A typical operating point for the system is used. One hundred 
fifty-eight generators and 2022 high-voltage nodes comprise 
the network and are spread over the MIS's seven regions. The 
working condition hinges on the 2018 base case [4]. Due to a 
lack of technical information, some plants were not considered 
in the study because they are privately owned. 

 

Complex networks In the open research, the terms network and graph are used interchangeably. As mentioned 

above, a complex network is commonly a graph representing a system with abundant complex entities and 

interactions. The study of complex networks helps to understand various real systems. For example, we can 

understand the behaviour of neurons connected by synapses or even the Internet, which comprises routers, 

cables and optical fibres. These systems are called complex systems since predicting their collective behaviour 

through their components is impossible. However, by analysing the properties of the network, it is possible to 

predict and even control them [3]. Complex networks are the graphs that represent these complex systems. A 

complex network is a graph with abundant nodes with specific properties and behaviour. Thus, in this work, 

the applications are in the context of electricity grids, which can be considered complex grids. 

3. Used centrality measures 

A centrality function (fG) assigns a positive real value to each node of a network G such that if g: G → G' is 

an isomorphism, then fG(x) = fG'(g(x)) for all x nodes of G. Thus, the centrality function is a structural attribute 

of the nodes in a network; in other words, it is a value assigned to the node due to its structural position in the 

network. 

In this paper, the following centrality measures are utilised. These were chosen because they are widely used 

and well-established. 

(i) Weighted degree. This is the first and most straightforward definition of centrality. It is defined as the 

number of (weighted) links a node has with other nodes. It is usually represented as k. The degree is often 

interpreted as the number of connections a network element has. 
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2022 high-voltage nodes comprise the network and are spread over the MIS's seven regions. The working 
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Fig. 1 Geographical divisions for the control of the Mexican electricity grid. 

Spreading from Central America to the United States border, the MIS encompasses seven control areas 

working synchronously. These are here identified as Northwest (NW), North (N), and Northeast (NE). The 

systems selected were West (W), Central (C), Southeast (SE), and Peninsular (P). The system is of the 

longitudinal type, with the operational implications that this implies. Consequently, dynamic safety is usually 

an issue [5]. 

Figure 1: Geographical divisions for the control of the Mexican electricity grid. 
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Spreading from Central America to the United States border, the MIS encompasses seven control areas working synchronously. 
These are here identified as Northwest (NW), North (N), and Northeast (NE). The systems selected were West (W), Central (C), 
Southeast (SE), and Peninsular (P). The system is of the longitudinal type, with the operational implications that this implies. 
Consequently, dynamic safety is usually an issue [5]. 

The center of inertia is an essential point in studying the mechanics of solids. It is defined as the point at which the mass of a body is 
considered to be concentrated. This is of utmost importance in studying the dynamics of solids since it is the point around which all 
motions occur. The centre of inertia is also used to calculate the body's moment of inertia, which measures its resistance to change its 
angular velocity. This is important for the design of machinery, where manufacturers must take the moment of inertia into account to 
ensure that the machine is strong enough to resist the force of the movements. In our application, by analogy with the concept of the 
centre of inertia of a solid body, the electrical system's centre of inertia (COI) is considered here to represent a binding site through 
which the frequency variation travels. 

4.1 Followed Procedure and Results 
The first step in calculating the different centrality measures is to create a graph for the network topology under study. A graph 
is an abstract data structure that uses nodes to represent objects and lines to describe connections between them. Graphs are also 
networks, as the nodes are connected to form a network of information. Networks are useful for modelling relationships between 
objects and analysing network-related problems. 

In this case, the network has 190 busbars and 264 transmission lines, representing an equivalent of Mexico's high-voltage network. A 
weight is associated with each transmission line. Two different weights were chosen: (i) the absolute value of the series impedance of 
the line and (ii) the absolute value of the flow through it. With this information, the undirected weighted graph, G, is constructed for 
the network under study. In an undirected graph, an edge has no direction associated with it. Thus, if there is a link between vertices 
A and B, there is also a connection between vertices B and A. 

Once the corresponding network is available, the centrality measures described in section 2 are calculated. Table 1 shows the ranking 
of the selected nodes for each measurement. Notably, the results coincide for the impedance-weighted and flow-weighted networks 
for the first eight nodes of the ranking. 

degree PageRank eigenvector 
96 96 96 
78 53 68 
64 143 131 
53 64 88 
89 78 89 
185 158 78 
158 128 100 
143 110 90 

Table 1. The first eight nodes ranked by the centrality measures used 

Table 1 shows a set of matching nodes for the different centrality 
measures (53, 78, 96, 143). Node 96, the first-ranked node in all 
three cases, is particularly noteworthy. This node corresponds to 
the central control area, close to the metropolitan area of Mexico 
City. 

Demand increase simulations are carried out at some nodes of 
the different control areas to verify the reliability of the nodes 
selected by the centrality measures. In this case, there is a 
particular interest in observing frequency at other nodes of such 
area, at the COI, and node 96 selected first, according to Table 1. 

The simulations were carried out with fourth-order models for 
the synchronous machines, each equipped with a simple exciter 
and speed governor (eight state variables for each generator). 
First, the frequency at the load buses is estimated with a Phase-
Lock-Loop (PLL) model, representing two state variables each. 
The event that gives rise to the frequency modification is the 

increase in demand at load nodes, and the frequency signal is 
observed at different nodes of the network, including the COI, 
calculated according to the following expression, 

where G stands for the set of synchronous generators, fi is the 
frequency associated with each element of G, and  Hi represents 
the corresponding inertia; HT is the total inertia. 

Figure 2 illustrates the frequency behaviour, measured from 
different buses, after an increase in demand (i) in the eastern 
control area (5% increase on buses 83 and 84) and (ii) in the 
central control area (5% increase on buses 109 and 110). Initially, 
the system is in a steady state. Then, three frequency curves are 
presented: (a) the arithmetic average of the frequencies measured 
at all area's load buses; (b) the COI; (c) the measurement at bus 
96. 
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in the eastern control area (5% increase on buses 83 and 84) and (ii) in the central control area (5% increase on 

buses 109 and 110). Initially, the system is in a steady state. Then, three frequency curves are presented: (a) the 

arithmetic average of the frequencies measured at all area's load buses; (b) the COI; (c) the measurement at bus 
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Fig. 2 Frequency deviation behaviour after an increase in demand in (a) eastern area, (b) central area, (c) western 

area. 

Figure 2: Frequency deviation behaviour after an increase in demand in (a) eastern area, (b) central area, (c) western area. 
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 In this case, the root means squared error RMSE is used to compare pairs of curves. If they were identical, the RMSE would be 
zero. The higher the RMSE value, the more differences between the compared curves within the observation interval. The definition 
of the RMSE indicates that, 

where Oi are the observations, Si predicted values of a variable, and n is the number of observations available for analysis. 

 In this application, since the values of the frequency deviations are minimal (in Hz), Fig. 2, it was considered relevant to express the 
RMSE values of Table 2 in pu, where 1 means the smallest RMSE value within the analysed case, concerning the COI. 
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where Oi are the observations, Si predicted values of a variable, and n is the number of observations available 

for analysis. 

 In this application, since the values of the frequency deviations are minimal (in Hz), Fig. 2, it was 

considered relevant to express the RMSE values of Table 2 in pu, where 1 means the smallest RMSE value 

within the analysed case, concerning the COI. 

Table 2. RMSE values referenced to the COI 

 case 1 (fig 2a) case 2 (fig 2b) case 3 (fig 2c) 

average-COI 1 1 4.39 

bus 96-COI 2.60 1.01 1 

 Simulations were carried out for the other control areas; they are not presented for brevity. As can be seen 

from the frequency behaviour, the COI curve is smooth (no oscillations), which is not strictly valid for an 

existing system. The curve corresponding to bus 96 resembles the COI curve, indicating that this node is 

physically very close to the COI. It cannot be precisely the COI because it is very likely that more nodes would 

have to be included in the network to get closer to the actual centre. Nevertheless, it is considered that the results 

found with the centrality measures used provide an excellent location of the valid COI. 

5. Conclusions 

Measurements are an essential tool for network diagnostics and monitoring. They help verify the operating 

quality, detect problems, identify trends, and predict results. Frequency measurements are crucial because they 

help provide valuable information on their behaviour. This information is used to make control decisions, 

improve operations, provide quality service to users, and optimise efficiency. 

Taking measurements in the right place is essential to obtain accurate results. This involves placing 
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 case 1 (fig 2a) case 2 (fig 2b) case 3 (fig 2c) 
average-COI 1 1 4.39 
bus 96-COI 2.60 1.01 1 

Table 2. RMSE values referenced to the COI

Simulations were carried out for the other control areas; they 
are not presented for brevity. As can be seen from the frequency 
behaviour, the COI curve is smooth (no oscillations), which is 
not strictly valid for an existing system. The curve corresponding 
to bus 96 resembles the COI curve, indicating that this node 
is physically very close to the COI. It cannot be precisely the 
COI because it is very likely that more nodes would have to 
be included in the network to get closer to the actual centre. 
Nevertheless, it is considered that the results found with the 
centrality measures used provide an excellent location of the 
valid COI. 

5. Conclusions 
Measurements are an essential tool for network diagnostics 
and monitoring. They help verify the operating quality, detect 
problems, identify trends, and predict results. Frequency 
measurements are crucial because they help provide valuable 
information on their behavior. This information is used to make 
control decisions, improve operations, provide quality service to 
users, and optimize efficiency. 

Taking measurements in the right place is essential to obtain 
accurate results. This involves placing measurement equipment 
in the right place at the right time to collect accurate information. 
This has been the object of this paper: to identify, through 

centrality measures, those topologically appropriate busbars 
to locate frequency measurements to reduce the installation of 
PMUs without losing valuable information. 

For the case of the Mexican network, the results are considered 
valid in identifying the location of the COI. 
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