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Abstract
Herein, peroxidase-like nitrogen-doped carbon dots were synthesized via a simple hydrothermal method and then characterized 
for their FL properties and enzyme-like activity. Thereafter, the effect of captopril molecules on their nanozymatic activity was 
evaluated by calculating their nanozymatic activity in the presence and absence of captopril, revealing a strong inhibitory effect of 
captopril on the nanozymatic behavior of peroxidase-like nitrogen-doped carbon dots. The effect of pH on the inhibitory effect of 
captopril (2 mg L-1) was evaluated over pH=2.0-6.0, revealing maximal and minimal inhibitory effect at pH=3.5 and pH=6.0, in 
order. The temperature-dependent inhibitory experiments exhibited a maximal inhibition percentage over 35-40 ℃ and a minimum 
inhibition percentage at 25 ℃. Finally, the concentration-dependent inhibition was also checked in the presence of 0.0-8.0 mg L-1 
of captopril, the results reveal that the relative activity of nanozymes was inhibited by increasing the inhibitor concentration and 
finally reached about 23% of its initial activity (i.e., 77% inhibition, inhibitor conc. of 8.0 mg L-1).
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1. Introduction
Nanozymes are a huge group of nanomaterials such as carbon 
nanomaterials, metal-based nanoparticles, metal oxides, metal-
organic frameworks, and nanoclusters that exhibit intrinsic 
enzyme-like activity [1-12]. Among different nanozymes, most of 
them reveal significant peroxidase-like activity and cleavage of the 
peroxide bonds to produce active oxygen species such as hydroxyl 
radicals [13-18]. The produced radicals can then react with 
chromogenic substrates and oxidize them to their corresponding 
colored products. The spectrophotometric assay and recording 
of the absorbance of these products can be used as an index for 
calculating the nanozymatic activity of the nanoscale peroxidase-
like materials [19-25]. Moreover, it is proved by several researches 
that the enzyme-like activity of the nanozymes can be inhibited 
by some inhibitors as same as the native enzymes. It is inhibitory 
effect can be used for several aims especially for sensing and 
detection toward developing both clinical and analytical protocols 

[26-30]. It is well known that among different identified enzymes, 
peroxidase enzymes, especially horseradish peroxidase (HRP), are 
attractive enzymes from both industrial and clinical points of view 
[28]. Regarding the peroxidase enzymes, hydrogen peroxide is the 
initiator of the peroxidase-mediated reactions and the oxidation of 
a wide range of organic compounds (substrates) including aromatic 
amines, phenols, and their mixtures can be initiated in the presence 
of hydrogen peroxide and peroxidase enzyme [28]. 

However, the peroxidase as same as other natural enzymes shows 
some of the following serious disadvantages such as pH and 
temperature instability, difficult recovery protocol, short storage 
time, no reusability, and highly expensive production methods. 
Hence, to fix these drawbacks, the immobilization of enzymes 
was proposed [31-33]. However, during most immobilization 
protocols, the enzyme's initial activity is reduced and some 
of them are expensive. Hence, a better solution is needed to 
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overcome these difficulties, the new field of nanozymes is the 
right solution [28]. In fact, the fast development of nanoscience 
and material chemistry has -increased interest in researching new 
and innovative synthesis methods to produce new nanomaterials 
with unique catalytic activity unique optical properties high active 
area antibacterial properties and high biocompatibility [34-41]. 
Among different nanomaterials, nanozymes as nanomaterials 
with high enzyme-like activity can be used to simulate enzymatic 
reactions in harsh environmental conditions (for example, higher 
temperature or wider pH range) [1-28]. Hence, due to their high 
stability and intrinsic enzyme-like properties, the nanozymes 
were used for different applications, especially for constructing 
sensing assays for a wide variety of analytes, e.g., amino acids, 
glutathione (GSH), tetracycline, metal cations, glucose, H2O2, 
explosives, malathion and new SARS-CoV-2 as after the first 
report of COVID-19 [42-54]. However, the researches focusing on 
the inhibitory effect of inhibitors on nanozymes activity are limited 
to a few reports. Hence, in this continuation, the inhibitory effect 
of captopril molecules on the nanozymatic activity of peroxidase-
like nitrogen-doped carbon dots were studied. In this regard, the 
carbon dots were synthesized via a simple solvent-free method and 
then characterized for their FL properties and enzyme-like activity. 
Thereafter, the effect of captopril molecules on their nanozymatic 
activity was evaluated by calculating their nanozymatic activity in 
the presence and absence of captopril. To explore more precise on 
the inhibitory effect of captopril, the effect of pH and temperature 

was also evaluated. Finally, the concentration-dependent inhibition 
was also checked to estimate the maximum inhibition percentage 
of nanozymes by introducing captopril into the reaction solution. 

2. Experimental
2.1 Synthesis of Nanozymes
The peroxidase-like nitrogen-doped carbon dots were synthesized 
using ethylenediaminetetraacetic acid as both carbon and nitrogen 
sources. In a typical experiment, 300 mg ethylenediaminetetraacetic 
acid was directly heated at 400 ℃ for about 2 hours. Afterward, 
the CDs were dissolved in acetone and centrifuged to remove the 
residual solid particles. The solvent was then evaporated and the 
results CDs were collected and dissolved in water for next use. 

2.2 Inhibitory Experiments 
In a typical test, different concentrations of inhibitor were 
introduced into acetate buffer (pH, 4.0; 0.1 M) containing 60 µL 
nanozymes, 0.4 mM TMB, and 0.02 M hydrogen peroxide. The 
mixture was incubated for about 12 min to complete the oxidation 
process. Afterward, the absorbance of the oxidation product was 
calculated at 662 nm. Considering the ɛ (TMB-ox) = 39000 cm-1 
M-1, the reaction rate of the nanozymatic process was estimated. 
Besides, the residual activity of the nanozymes in the presence and 
the absence of the inhibitor molecules was calculated by dividing 
the activity of the nanozyme by the activity of control (i.e., activity 
in the absence of inhibitor) (Eq. 1).
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Figure 1. FL spectrum of as-prepared nitrogen-doped carbon dots. 
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Figure 1: FL Spectrum of as-Prepared Nitrogen-Doped Carbon Dots.
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3.2 Effect of pH on the Inhibitory Effect of Captopril on the 
Activity of CDs
The pH of the solution is one of the most important factors 
affecting the enzyme/nanozymes activity. Hence, the effect of the 
pH on the inhibitory effect of captopril on the nanozymatic activity 

of peroxidase-like nitrogen-doped carbon dots was investigated by 
probing their activity in the presence of a constant concentration 
of captopril (2 mg L-1) as an inhibitor in a pH range over 2-6. 
Thereafter, the inhibitory effect of the inhibitor was calculated 
using the following formula;
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Where A0 and A are represented by the absorbance at 652 nm in 
the absence and the presence of inhibitor, respectively. The plot 
of inhibition percentage as a function of pH is shown in Figure 
2. The results of this figure revealed a pH-dependent inhibition 
of the enzyme-like activity of CDs by introducing captopril into 
the nanozymes solution. Considering Figure 2, the inhibitory 

effect of captopril was increased by increasing pH and reached its 
maximal value (about 20%, captopril (2 mg L-1)) at pH=3.5 and 
then decreased by increasing the pH of reaction media. It should 
be mentioned that the minimum inhibitory effect of captopril was 
observed at pH= 6.0 (only 3%).
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Figure 2: The Effect of pH on the Inhibitory Effect of Captopril on the Nanozymatic Activity of Peroxidase-Like Nitrogen-Doped 
Carbon Dots.

3.3 Effect of Temperature on the Inhibitory Effect of Captopril 
on the Activity of Cds
One of the most important factors affecting the enzyme/
nanozymes activity is the reaction temperature. Hence, the effect 
of the temperature on the inhibitory effect of captopril on the 
nanozymatic activity of peroxidase-like nitrogen-doped carbon 
dots was evaluated via probing their activity in the presence of 
a constant concentration of captopril (2 mg L-1) in a temperature 

range of 25-45℃. The plot of inhibition percentage as a function 
of reaction temperature is shown in Figure 3. The results of this 
figure exhibited a temperature-dependent inhibition of the enzyme-
like activity of CDs by introducing captopril into the solution. 
The inhibitory effect of captopril was increased by increasing 
temperature and reached its maximal value over 35-40 ℃ and 
then slightly decreased. Notably, the minimum inhibitory effect of 
captopril was observed at t= 25 ℃ (about 7%). 

Inhibition of activity  
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Figure 3: The effect of pH on the Inhibitory Effect of Captopril on the Nanozymatic Activity of Peroxidase-Like Nitrogen-Doped 
Carbon Dots.

3.4 Concentration-Dependent Inhibition 
The concentration-dependent inhibition of the nanozymatic 
activity of peroxidase-like nitrogen-doped carbon dots was 
evaluated by calculating their nanozymatic activity in the presence 
and absence of different concentrations of captopril. The UV-
visible spectra of the oxidation product of TMB in the presence 
and the absence of different concentrations of captopril as an 
inhibitor are shown in Figure 4A, revealing that the absorbance 
at 662 nm was significantly reduced by increasing the inhibitor 
concentration, showing the concentration-dependent inhibitory 

effect of captopril molecules on the CDs-mediated oxidation of 
TMB. However, to provide a better view of the inhibitory effect 
of captopril on the nanozymes activity, the residual activity of 
nanozymes was calculated as a reliable index (Figure 4B). The 
results reveal that the relative activity of nanozymes was inhibited 
by increasing the inhibitor concentration and finally reached 23% 
of its initial activity (i.e., inhibition percentage of 77%), revealing 
a strong inhibitory effect of captopril on the nanozymatic behavior 
of peroxidase-like nitrogen-doped carbon dots.
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Figure 4: (A) UV-Visible Spectra of the Oxidation Product of TMB in the Presence and the Absence of Different Concentrations of 
Captopril as an Inhibitor, (B) Residual Activity of as-prepared Nanozymes as a function of Inhibitor Concentration.

4. Conclusions
Herein, peroxidase-like nitrogen-doped carbon dots were 
synthesized via a simple hydrothermal method and then 
characterized for their FL properties and enzyme-like activity. 
Thereafter, the effect of captopril molecules on their nanozymatic 
activity was evaluated by calculating their nanozymatic activity 
in the presence and absence of captopril, revealing a strong 
inhibitory effect of captopril on the nanozymatic behavior of 
peroxidase-like nitrogen-doped carbon dots. The effect of pH on 
the inhibitory effect of captopril (2 mg L-1) was evaluated over 
pH=2.0-6.0, revealing maximal and minimal inhibitory effect 
at pH=3.5 and pH=6.0, in order. The temperature-dependent 
inhibitory experiments exhibited a maximal inhibition percentage 
over 35-40 ℃ and a minimum inhibition percentage at 25 ℃. 
Finally, the concentration-dependent inhibition was also checked 
in the presence of 0.0-8.0 mg L-1 of captopril, the results reveal that 
the relative activity of nanozymes was inhibited by increasing the 
inhibitor concentration and finally reached about 23% of its initial 
activity (i.e., 77% inhibition, inhibitor conc. of 8.0 mg L-1). 
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