
 Volume 3 | Issue 1 | 1

Beyond Traditional Testing: VMs and Abstraction in Correlation-Based IDS
Research Article

Hung Anh Vu*

*Corresponding Author
Hung Anh Vu, Electrical and Computer Engineering, University of
Maryland, US

Submitted: 2023, Dec 04; Accepted: 2024, Jan 02; Published: 2024, Jan 31

J Electrical Electron Eng, 2024

Citation: Anh Vu, H. (2024). Beyond Traditional Testing: VMs and Abstraction in Correlation-Based IDS. J Electrical Electron
Eng, 3(1), 01-06.

Abstract
A key innovation, the C2 abstraction layer, was developed to facilitate a comprehensive testing environment that produces
a myriad of attack scenarios. Current methodologies employ comprehensive malware analysis using machine learning and
deep learning techniques [1,6]. However, this project aims to develop a comprehensive testing environment that allows for
the generation of diverse malware attacks. As of now, I have created an automated environment where simulated attacker
and victim machines interact in real time, serving as a realistic backdrop to assess the proposed IDS. Accompanying this is
meticulous documentation on malware operations and the abstraction layer’s code. The current implementation can be found
at https://github.com/HungAnhVu/C2abstraction.

Journal of Electrical Electronics Engineering
ISSN: 2834-4928

Electrical and Computer Engineering, University of
Maryland, US

Keywords: Cybersecurity

1. Introduction
With the current computing power, real-time file scanning
by endpoint security tools has become very advanced. This
capability mitigates the threat of attackers introducing malicious
malware through file dropping for code execution. Yet, a
significant vulnerability persists in the form of process injection
attacks. These attacks deploy malicious 1code into the memory
of trusted programs (such as Adobe), allowing the attacker to
blend in with benign activities. Such stealthy tactics often fly
under the radar of existing security mechanisms because they
exploit the trusted status of legitimate applications and produce
minimal events in the attack chain. This threat necessitated a
refined approach to detection and countermeasures that rely
on correlation-based analysis of each active processing thread
which will differentiate uncommon behaviors.

My project aims to rigorously test and enhance Intrusion
Detection Systems (IDS) through a systematic approach that
uses real-world malware frameworks to simulate genuine attack
scenarios. As each malware is executed, the objective is to
conceptualize a mechanism for its automated run in controlled
settings, such as virtual machines, tailored for IDS testing. By
abstracting the complexities of various Command and Control
(C2) handlers, I can present a unified interface for testing. This
is particularly beneficial when dealing with a diverse set of C2
systems. Instead of crafting unique tests or setups for each, I

have one interface that can handle multiple C2 environments.
Additionally, as new C2 handlers emerge or as existing ones
evolve, abstraction removes the need to redesign the testing
setup from the ground up. Other benefits of abstraction in
programming are discussed in [7].

The paper is organized as follows. The setup of my experiments
are in section 3, where I outline the setup and the core
functionalities of the C2Configuration class within the testing
environment. The new algorithm is in section 4, which details
the mathematical formalization and operational procedures of
the C2Client. Experimental results are in??, demonstrating the
effectiveness of the system in simulating attack scenarios and
the performance of the IDS. The conclusions follow in section
6, where we summarize the findings and implications of this
research.

2. Background
Command and Control (C2) systems are the cornerstone of
cyber operations, providing a structure for attackers to maintain
communication with compromised systems and coordinate their
actions. The effectiveness of these systems lies in their ability
to evade detection and provide persistent access to a target
network. I would also like to acknowledge the Electrical and
Computer Engineering department at UMD for providing me
with this opportunity.

 Volume 3 | Issue 1 | 2J Electrical Electron Eng, 2024

Framework 2.1 Metasploit Framework
1: Input: Target system information, vulnerability database
2: Output: Exploitation success probability, shell access
3: Initialization: Load MSF console, import target data
4: Exploit Selection: Match target system with potential exploits
5: Payload Crafting: Generate suitable payloads for the exploit
6: Execution: Deliver exploit and payload to the target
7: Post-Exploitation: Establish persistent access, extract data
8: Reporting: Log activities, generate reports

Framework 2.2 Covenant Framework
1: Input: Network access, post-exploitation objectives
2: Output: Command execution results, data exfiltration
3: Initialization: Deploy Covenant server, configure listeners
4: Grunt Deployment: Create and insert Grunt into the target
network
5: Communication: Secure channel establishment with the Grunt
6: Tasking: Send tasks to Grunt, execute commands
7: Data Handling: Receive, process, and store exfiltrated data
8: Cleanup: Remove traces, terminate Grunt

Metasploit is an open-source C2 framework widely used for
penetration testing and exploit development. Its modular
architecture allows for the seamless integration of custom or
pre-existing exploits and payloads [3]. Metasploit facilitates
the automation of the various stages of an attack, from
reconnaissance to the establishment of a C2 channel.

Covenant is a .NET C2 framework designed for post-exploitation
scenarios [8]. It is a versatile toolkit for red teams that enables
complex attack chains through an intuitive web interface.
Covenant’s standout feature is its Grunt—a lightweight, multi-
platform implant that communicates with the Covenant server.

Both frameworks exemplify the dual-use nature of C2 systems:
they serve as invaluable tools for security professionals in testing
and strengthening cyber defenses, yet they also of fer attackers

a way to take advantage of vulnerabilities. By analyzing these
frameworks, researchers can uncover the tactics, techniques,
and procedures (TTPs) employed by adver saries, which in turn
informs the development of robust intrusion detection systems
(IDS).

Remark 2.1 (C2 Frameworks’ Commonalities and Differences).
Metasploit and Covenant, while serving similar purposes, differ
in implementation and usage. Metasploit’s extensive database
of exploits and its compatibility with various platforms make
it a universal tool for vulnerability testing. Covenant’s focus
on stealth and post-exploitation tactics provides red teams with
advanced capabilities in simulating sophisticated cyber threats.
Another major difference is that Metasploit’s is handled through
a terminal while Covenant requires a web GUI.

Meterpreter Covenant Merlin Cobalt Strike
- Ease of use
- Really focused
on Exploitation and not
just Post - Very stable
especially compared
to other frameworks -
Open-source
- Intuitive and
easy to use

- Extensible
features
- Web GUI
- Docker
- Open-source

- Implants have
good AV evasion -
Extensible features
- HTTP/2
support
- Open-source

- Collaborative
- Well Tested
- Highly
Capable - All-in-One
- Recon, Phishing, C2,
Post-Exploitation

- Limited GUI,
CLI driven
- Building new modules
can be
complex

- Building Tasks
can be time consuming
- Written
in C#, not the most
userfriendly language

- Can be buggy - Windows Only
- Closed source

Table 1: Advantages and disadvantages between some C2 Frameworks

 Volume 3 | Issue 1 | 3J Electrical Electron Eng, 2024

Other frameworks exist, and there are a lot of them. Below is a
table that illustrates the pros and cons of Meterpreter and Covenant
compared to two other popular frameworks. Understanding the
frameworks is essential for the development of effective IDS
that can recognize and mitigate the threats posed by C2 activity.
This research project aims to dissect these frameworks to inform
the design of a detection methodology that is sensitive to the
subtleties of process injection and memory-based execution

techniques commonly employed in advanced C2 operations.

3. Setup
The C2Configuration class centralizes command mappings
tailored to different malware types. This abstraction layer ensures
flexibility in dealing with various malware without altering the
core command execution logic.

language

Table 1: Advantages and disadvantages between some C2 Frameworks

Other frameworks exist, and there are a lot of them. Below is a table that illustrates the pros and cons of

Meterpreter and Covenant compared to two other popular frameworks. Understanding the frameworks is

essential for the development of effective IDS that can recognize and mitigate the threats posed by C2

activity. This research project aims to dissect these frameworks to inform the design of a detection

methodology that is sensitive to the subtleties of process injection and memory-based execution

techniques commonly employed in advanced C2 operations.

3. Setup

The C2Configuration class centralizes command mappings tailored to different malware types. This

abstraction layer ensures flexibility in dealing with various malware without altering the core command

execution logic.

Figure 1 shows a diagram that outlines the structured workflow of the C2 framework.

Covenant AttackScript

Metasploit

Merlin

Meterpreter

CovenantHandler

MerlinHandler

DataRetrieved

Figure 1: shows a diagram that outlines the structured workflow of the C2 framework.

Once I finish writing an attack script (such as Figure 2), I can run
the program which will translate the attack script to the desired
C2 handler. The next crucial step involves initializing both the
configuration settings and the client for the C2 operation. This
initialization could encompass a range of parameters from target
IP addresses and authentication details to protocols and ports.
However, with SSH, I was able to automate this process. It
must be noted that the initialization requires the IP addresses
of the virtual machines. To fix this problem, I have created a set
address for the victim and attacker machines.

Once the foundational setup is ready, the framework progresses
to establish a secure connection with the intended target through
Connect via SSH. SSH, or Secure Shell, facilitates secure
remote logins and other encrypted network operations over

potentially insecure networks. If the connection is successful,
the system might deploy a specialized payload (Malware) if the
situation warrants it. This payload, renowned in cybersecurity
and penetration testing circles, provides the operator with a
heightened degree of control over the target, leading to potential
further exploitations.

After the necessary configurations, the C2 framework is primed
to Execute Com-mands on the target system. These commands
could range from data extraction to further exploitation,
depending on the specific capabilities of the framework.
However, after the designated operations are complete, it’s
of importance to terminate the connection securely. Thus,
the framework advances to the Disconnect from SSH phase,
ensuring a traceless and clean disengagement from the target.

 Volume 3 | Issue 1 | 4J Electrical Electron Eng, 2024

Once I finish writing an attack script (such as Figure 2), I can run the program which will translate the

attack script to the desired C2 handler. The next crucial step involves initializing both the configuration

settings and the client for the C2 operation. This initialization could encompass a range of parameters

from target IP addresses and authentication details to protocols and ports. However, with SSH, I was

able to automate this process. It must be noted that the initialization requires the IP addresses of the

virtual machines. To fix this problem, I have created a set address for the victim and attacker machines.

Once the foundational setup is ready, the framework progresses to establish a secure connection with the

intended target through Connect via SSH. SSH, or Secure Shell, facilitates secure remote logins and other

encrypted network operations over potentially insecure networks. If the connection is successful, the

system might deploy a specialized payload (Malware) if the situation warrants it. This payload, renowned

in cybersecurity and penetration testing circles, provides the operator with a heightened degree of control

over the target, leading to potential further exploitations.

After the necessary configurations, the C2 framework is primed to Execute Com-

Figure 2: C2Abstraction functionality Framework

Start

InitializeC2Configuration&C2Client

ConnectviaSSH

DeployMalware

ExecuteCommands

DisconnectfromSSH

End

Figure 2: C2Abstraction functionality Framework

The steps colored in blue are the parts that are fully automated
through Python. However, there are still aspects of deploying the
attack that require manual input. My current progress is focusing
on finding a solution to make the testing environment fully

autonomous. I am currently researching aspects of IT automation
to see if I can apply a similar methodology in the progression of
the abstraction layer. If no probable solution exists, then I will
resort to using SCP for automatic file execution.

mands on the target system. These commands could range from data extraction to further exploitation,

depending on the specific capabilities of the framework. However, after the designated operations are

complete, it’s of importance to terminate the connection securely. Thus, the framework advances to the

Disconnect from SSH phase, ensuring a traceless and clean disengagement from the target.

The steps colored in blue are the parts that are fully automated through Python. However, there are still

aspects of deploying the attack that require manual input. My current progress is focusing on finding a

solution to make the testing environment fully autonomous. I am currently researching aspects of IT

automation to see if I can apply a similar methodology in the progression of the abstraction layer. If no

probable solution exists, then I will resort to using SCP for automatic file execution.

The virtual machine that I am using is Kali Linux. Previous work has used it for WiFi penetration testing

and web application security analysis [2,4]. Preliminary testing has shown that IT automation may work

with Kali Linux but further testing is required.

4. Algorithm

The C2Client setup and execution process is primarily influenced by the network operations (SSH

connections, payload deployment) and the number of configurations and commands. The time

complexity can vary significantly with network-related operations, while the space complexity is largely

dependent on the size of command mappings and the number of commands executed. The most time-

consuming operation is likely to be the payload deployment due to network latency and the size of the

Start InitializeC2 pwd() ls() cd(’Downloads’) End

 Figure 3:SampleBasicTerminalAttackScript Figure 3: SampleBasicTerminalAttackScript

The virtual machine that I am using is Kali Linux. Previous work
has used it for WiFi penetration testing and web application
security analysis [2,4]. Preliminary testing has shown that IT
automation may work with Kali Linux but further testing is
required.

4. Algorithm
The C2Client setup and execution process is primarily
influenced by the network operations (SSH connections, payload
deployment) and the number of configurations and commands.

The time complexity can vary significantly with network-related
operations, while the space complexity is largely dependent on
the size of command mappings and the number of commands
executed. The most time-consuming operation is likely to be the
payload deployment due to network latency and the size of the
payload. Meanwhile, the space complexity is modest and mainly
dependent on the data structures used to store the commands and
their mappings.

The analysis leads to the algorithm in Algorithm 4.1.

 Volume 3 | Issue 1 | 5J Electrical Electron Eng, 2024

Algorithm 4.1 Formalized C2Client Command Execution Process
Require: M = {m1,m2,...,mn}, a non-empty set of malware configurations.
Ensure: Sequential execution trace of C2 operations. for all m ∈M do
Define C(m) as the C2 configuration for malware m.
Let C be a new C2Client instance with configuration C(m).
Define Sattacker and Svictim as SSH sessions for attacker and victim.
Establish Sattacker and Svictim. if m is ”Meterpreter” then
P ← DeployPayload(); Set up Metasploit with P.
else if m is ”Covenant” then
InteractWithUI(); Automate Covenant setup via PyAutoGUI.
end if
Execute Γ = {γpwd,γls,γcd,γps} over Sattacker.
Terminate Sattacker and Svictim. end for

5. Experimental Results
In the pursuit of creating a comprehensive testing environment
for Intrusion Detection Systems (IDS), various methodologies
were employed to simulate attack scenarios. The primary focus
was on the automation of malware deployment and execution
within this environment. Initial experiments were conducted to
automate these processes using IT automation tools. However,
these attempts did not yield the desired level of reliability and
control required for precise IDS evaluations. Thus, the decision
was made to utilize Secure Copy Protocol (SCP) for the
deployment of attack scripts and malware payloads.
Subsequent experiments involved the use of SCP to transfer
malicious files to the target virtual machines. This method proved
to be both robust and reliable, ensuring that the exact contents of
the payload were delivered without modification, a critical factor
in the success of the simulated attacks. Moreover, SCP allowed
for the preservation of file permissions and attributes, which is
crucial for the execution of certain types of malware.

To evaluate the effectiveness of the IDS in detecting and
responding to various C2 activities, a complete correlated
analysis IDS system is being developed to be tested. There are
telemetry collections that must be implemented before the full
testing scheme can be run.

6. Conclusions
The research presented in this paper has contributed a
significant step forward in the development of robust Intrusion
Detection Systems (IDS) by providing a comprehensive testing
environment capable of simulating a wide range of malware
attacks. The establishment of a C2 abstraction layer has proven
to be a pivotal innovation, enabling the execution of diverse
attack scenarios against which the effectiveness of IDS can be
measured and enhanced.

Despite initial attempts to implement IT automation tools for
malware deployment, the findings underscored the necessity of
using Secure Copy Protocol (SCP) to ensure precise and reliable
setup for IDS evaluation. The transition to SCP not only bolstered
the reliability of the testing environment but also preserved the
integrity of the attack simulations, a critical 158 aspect for the
accurate assessment of IDS capabilities.

The experiments conducted have laid the groundwork for
a complete correlated analysis IDS system, with telemetry

collections in place for future testing schemes. The research
has illuminated the strengths and weaknesses of current IDS
technology, specifically highlighting the challenges in detecting
in-memory execution and advanced persistent threats that
leverage process injection.

As I move forward, it is clear that continuous enhancements in
IDS technology are required to address the evolving landscape
of cyber threats. The research outcomes also suggest that a more
autonomous testing environment could further streamline the
evaluation process, potentially through the application of more
sophisticated IT automation techniques or the 168 development
of new tools.

In conclusion, this research has not only advanced the
understanding of how various C2 frameworks can be leveraged
to improve IDS but also provided a solid foundation for future
work in the field of cybersecurity. The ongoing development of
the C2 abstraction layer and the testing environment promises to
yield further insights into effective strategies for detecting and
countering cyber threats and defeating rule-based IDS and their
shortcomings [5].

Acknowledgments
I would like to thank you Dr. Rajeev Barua for his unwavering
support. He is a great mentor who introduced many great
opportunities to me. I was able to learn about what it means to
be a graduate student by participating in weekly group meetings
and sharing my research.

References
1. M. S. Akhtar and T. Feng. (2022). Malware analysis and

detection using machine learning algorithms. Symme180
try, 14.

2. Babincev, I. M., & Vuletić, D. V. (2016). Web application
security analysis using the Kali Linux operating system.
Vojnotehnički glasnik, 64(2), 513-531.

3. Kennedy, D., O'gorman, J., Kearns, D., & Aharoni, M.
(2011). Metasploit: the penetration tester's guide. No Starch
Press.

4. Lu, H. J., & Yu, Y. (2021). Research on WiFi penetration
testing with Kali Linux. Complexity, 2021, 1-8.

5. Macedo, E. J. S. (2022). Signature-Based IDS for Encrypted
C2 Traffic Detection.

6. Maniriho, P., Mahmood, A. N., & Chowdhury, M. J. M.

https://www.mdpi.com/2073-8994/14/11/2304
https://www.mdpi.com/2073-8994/14/11/2304
https://www.mdpi.com/2073-8994/14/11/2304
https://scindeks-clanci.ceon.rs/data/pdf/0042-8469/2016/0042-84691602513B.pdf
https://scindeks-clanci.ceon.rs/data/pdf/0042-8469/2016/0042-84691602513B.pdf
https://scindeks-clanci.ceon.rs/data/pdf/0042-8469/2016/0042-84691602513B.pdf
https://www.opastpublishers.com/journal/journal-of-electrical-electronics-engineering/current-issue
https://www.opastpublishers.com/journal/journal-of-electrical-electronics-engineering/current-issue
https://www.opastpublishers.com/journal/journal-of-electrical-electronics-engineering/current-issue
https://www.hindawi.com/journals/complexity/2021/5570001/
https://www.hindawi.com/journals/complexity/2021/5570001/
https://repositorio-aberto.up.pt/bitstream/10216/142718/2/572020.pdf
https://repositorio-aberto.up.pt/bitstream/10216/142718/2/572020.pdf
https://repositorio-aberto.up.pt/bitstream/10216/142718/2/572020.pdf

 Volume 3 | Issue 1 | 6J Electrical Electron Eng, 2024

(2022). A study on malicious software behaviour analysis
and detection techniques: Taxonomy, current trends and
challenges. Future Generation Computer Systems, 130,
1-18.

7. Mirolo, C., Izu, C., Lonati, V., & Scapin, E. (2021).

Abstraction in Computer Science Education: An Overview.
Informatics in Education, 20(4), 615-639.

8. Sen, U., & Sinturk, G. (2018). Normalizing Empire’s Traffic
to Evade Anomaly-based IDS.

Copyright: ©2024 Hung Anh Vu. This is an open-access article distributed
under the terms of the Creative Commons Attribution License, which
permits unrestricted use, distribution, and reproduction in any medium,
provided the original author and source are credited.

https://opastpublishers.com

https://repositorio-aberto.up.pt/bitstream/10216/142718/2/572020.pdf
https://repositorio-aberto.up.pt/bitstream/10216/142718/2/572020.pdf
https://repositorio-aberto.up.pt/bitstream/10216/142718/2/572020.pdf
https://repositorio-aberto.up.pt/bitstream/10216/142718/2/572020.pdf
C:\Users\admin\Downloads\infedu-20-4-infedu2021_4_27.pdf
C:\Users\admin\Downloads\infedu-20-4-infedu2021_4_27.pdf
C:\Users\admin\Downloads\infedu-20-4-infedu2021_4_27.pdf
https://www.researchgate.net/profile/Utku-Sen/publication/326986521_Normalizing_Empire's_Traffic_to_Evade_Anomaly-based_IDS/links/5b70c63692851ca65056d7cc/Normalizing-Empires-Traffic-to-Evade-Anomaly-based-IDS.pdf
https://www.researchgate.net/profile/Utku-Sen/publication/326986521_Normalizing_Empire's_Traffic_to_Evade_Anomaly-based_IDS/links/5b70c63692851ca65056d7cc/Normalizing-Empires-Traffic-to-Evade-Anomaly-based-IDS.pdf

