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Abstract
The Terasort benchmark and the YCSB benchmark are the two most used cloud computing benchmarks. Despite the fact 
that these benchmarks are quite helpful, data warehouse systems and associated OLAP technologies were not the focus 
of their creation. We initially introduce cloud computing and data warehouse systems in this essay. Then, we contend 
that the TPC-H benchmark, which is the most well- known benchmark for decision support systems, conflicts with the 
justifications for cloud computing (scalability, elasticity, pay-per-use, fault-tolerance characteristics), and customer 
relationship management (end- user satisfaction, Quality of Service features). Finally, we propose updated specifica-
tions for a benchmark for cloud data warehouse systems. The suggested specifications ought to make it possible to fairly 
compare the products offered by various cloud system providers.
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1. Introduction
By creating quantitative methods for a business to make optimal 
judgments and execute business knowledge discovery, business 
intelligence strives to enable better decision-making. Data from 
data warehouse systems is frequently used by business intelli-
gence to provide historical, real-time, and forecasted perspec-
tives of corporate activities. However, data warehousing is quite 
expensive because it calls for specialists, sophisticated gear, 
and cutting-edge software. Terabytes of data are being wasted 
by certain firms because they have insufficient human, software, 
and hardware resources for data analytics. With pay-as-you- go 
cloud computing now available, decision support systems have 
more potential than ever before.

Many research organizations, like Forrester and Gartner, predict 
a significant investment in cloud technology in the near future 
due to the rising cloud computing business. In fact, according 
to Forrester Research and Gartner Group, the global market for 
cloud computing is predicted to reach $241 billion in 2020 and 
$US150.1 billion in 2013, respectively [1,2]. Additionally, the 
market for business intelligence is still expanding, and infor-
mation analysts are prepared with OLAP principles and relat-
ed technology (Microsoft Analysis Services, Oracle Business 
Intelligence, Pentaho BI suite, SAP NetWeaver). Business in-
telligence platforms, analytical applications, and performance 
management software saw global revenue of US$12.2 billion 
in 2011, according to the most recent enterprise software report 
from Gartner.

In the broader global enterprise software industry, this is a 16.4% 

increase over 2010 revenue of US$10.5 billion, placing it as the 
year's second-fastest growing category. According to Gartner, 
the market for BI systems will continue to be one of the most 
rapidly expanding software sectors in most areas (refer to [3] 
for details). However, working with Big Data has its challenges. 
Ralph Kimball also described big data as a paradigm shift.
 
When considering data assets, we should consider where to get 
them, how to analyze them, and how to profit from the analysis's 
findings.

As a result, one of the main drivers of the growth of big data is 
financial, and decision support systems must address the four 
V-dimensions of big data: I volume, which is the challenge of 
managing large amounts of data; (ii) velocity, which is the chal-
lenge of how quickly data is analyzed; (iii) variety, which is the 
challenge of handling unstructured, semi-structured, and rela-
tional data; and (iv), veracity, which is the challenge of seman-
tics and and variability meaning in language.

Recently, cloud computing has become quite popular, and many 
businesses now provide a range of public cloud computing ser-
vices based on NoSQL, extended RDBMS, and standard rela-
tional DBMS technology. The cost to operate, maintain, and 
improve traditional software technologies can be fairly high. 
In order to handle large data analytics, two architectures—the 
extended RDBMS and the NoSQL technologies (Apache Ha-
doop/MapReduce framework)—have emerged. Columnar stor-
age systems and massively parallel processing (MPP) are archi-
tectural advancements for extended RDBMS. storage devices. 
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NoSQL has become a more significant component of Big Data 
trends, and a number of NoSQL solutions are surfacing with 
wildly varying feature sets. Customers find it difficult to select 
the right cloud provider for their applications since cloud pro-
viders differ in their service models and price structures. The 
expectations placed on cloud technologies by data warehouse 
systems are new and different, and vice versa. In this article, we 
suggest new standards for unbiased testing of cloud data ware-
housing systems.

The following is the paper's outline: In order to highlight our 
contribution, we first review related work in section II. Then, 
we give the preliminary results for the data warehouse and cloud 
computing systems. In Section III, we review the key aspects of 
cloud computing and the need for a benchmark for data ware-
house systems; in Section IV, we provide a brief overview of 
data warehouse systems and the TPC-H benchmark. The latter 
serves as the decision support system's primary benchmark.

We contend that the existing TPC-H specification is inconsistent 
with the cloud logic (scalability, elasticity, pay-per-use, fault-tol-
erance features) (end-user satisfaction, Quality of Service fea-
tures). In section V, we propose updated specifications for put-
ting into practice a benchmark for cloud-based data warehousing 
systems. With the help of the suggested benchmark, it should be 
possible to fairly compare various cloud systems, tune a cloud 
system for a certain Cloud Service Provider (CSP), and choose 
the optimum optimizations and cost-performance tradeoffs. Fi-
nally, we wrap up the essay and discuss upcoming projects.

2. Related Work
Published studies concentrated on a few unique characteristics 
of data warehouses. In fact, Forrester published a Cost Analysis 
Tool comparing internal file storage to the cloud. Nguyen et al. 
suggest cost models for Views Materialization in the cloud using 
the Excel Workbook as a tool for comparing storage on- premis-
es and in the cloud [4,5]. The proposed cost models are compat-
ible with cloud computing's pay-as- you-go methodology. Un-
der financial restrictions, these cost models assist in achieving a 
multi-criteria optimization of the view materialization vs. CPU 
power consumption problem.

There aren't many articles discussing how to handle and evaluate 
OLAP workloads on cloud platforms using performance mea-
surement. We then review a range of research initiatives pertain-
ing to cloud experimentation, To educate cloud users about the 
high cost of utilizing freeware software in the cloud, Floratou 
et al. undertook a series of experiments comparing the cost of 
deployment in the cloud of various DBMSs [6]. For instance, 
they ran Wisconsin Benchmark Question 21 and compared the 
open-source MySQL database to the for-profit MS SQL Server 
database's response time. The user must pay a licensing price on 
an hourly basis for the SQL Server-based service, but not for the 
use of MySQL. While MySQL executes Q21 in 621 seconds, 
MS SQL server does it in 185 seconds. Obviously, this 3.3X 
performance disparity will have an impact on the end-user cost.

Pavlo et al. tested the performance of Apache Hadoop/Hive to 

MS SQL Server database system using TPC-H benchmark in 
order to compare SQL technologies to NoSQL technologies. We 
suggested OLAP cloud situations in [7,8]. The suggested scenar-
ios seek to balance space, bandwidth, and computing overheads 
while allowing for best performance. The TPC-H benchmark is 
used to evaluate Apache Hadoop/Pig Latin across a range of data 
volumes, workloads, and cluster sizes.

There are several cloud computing benchmarks, however they 
don't have the same goals as data warehouse systems. The Tera-
Sort benchmark, for instance, calculates how long it takes to sort 
1 TB (10 billion 100B records) of randomly generated data [9]. 
It is used to evaluate the performance of NoSQL storage systems 
like Hadoop and MapReduce. The Yahoo Cloud Serving Bench-
mark (YCSB) evaluates the speed and scalability of cloud stor-
age solutions, including HBase, the column-oriented database of 
the Hadoop project [10].

The CloudStone Benchmark evaluates social computing apps 
running on a cloud and is made to support Web 2.0 style ap-
plications. MalStone is a performance evaluation tool for cloud 
computing middleware for data analytics that supports the kind 
of data-intensive computation that is typical when developing 
data mining models [11,12].

Binnig et al. outline the preliminary requirements for a web-
store benchmark (i.e., OLTP workload) in [13]. They propose 
new measures for examining the cost, fault tolerance, and scal-
ability of cloud services. Later, in, they provide a list of possible 
architectures to implement cloud computing for web-store data-
base applications and present the findings of a thorough assess-
ment of available commercial cloud services [14]. They evaluat-
ed the products from Amazon, Google, and Microsoft using the 
TPC-W benchmark's database and workload.

The goal of the CloudCMP project is to contrast the costs and 
performance of various cloud service providers [15]. Four com-
mon services are combined to represent a cloud in its model, 
including Two services are available: (1) Elastic Computer Clus-
ter Service, which uses an elastic number of virtual instances 
to handle workloads, and (2) Persistent Storage Service, which 
houses application data. Table (SQL and NoSQL storage are tak-
en into account), blob (binary files), and queue messages (as for 
Windows Azur) are some examples of different types of storage 
services; (3) Intra-cloud Network Service: the internal cloud net-
work that links application virtual instances (4) WAN Service: 
A cloud's wide-area delivery network transfers data from several 
geographically dispersed data centers to the end hosts where an 
application is running. The project's scope is broad; benchmark-
ing data warehouses in the cloud specifically is not included.

The majority of published research concentrated on benchmark-
ing through analysis of cost models for specific cloud topics or 
evaluation of high-level language and platform performance 
measurements. We demonstrate in this work that the popular 
benchmark for decision support systems, TPC-H, mismatches 
both I the cloud reasoning (scalability, elasticity, pay-per-use, 
fault-tolerance characteristics) and (ii) the customer relationship 
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management rationale (end-user satisfaction, Quality of Service 
features). The novel cloud services cannot be evaluated using its 
measures, in fact. In addition, we provide additional measures 
that are appropriate for OLAP workloads and cloud computing 
features. Making the capabilities and services of CSPs' offers 
comparable is the main difficulty of the proposed standards and 
measurements.

3. Cloud Computing
Cloud computing, according to the National Institute of Stan-
dards and Technology (NIST), is a pay-per-use model that en-
ables easy, on-demand network access to a pool of configurable 
computing resources (such as networks, servers, storage, appli-
cations, and services) that can be quickly provisioned and re-
leased with little management work or service provider involve-
ment [21]. We will now review the three cloud service models, 
the five cloud characteristics, and the pricing strategies of cloud 
service providers (CSPs).

A) Cloud Characteristics
The cloud model is made up of three virtualized system charac-
teristics: (1) broad network access – cloud computing is network 
based, and accessible from anywhere and from any standard-
ized platform (i.e. desktop computers, mobile devices,...); (2) 
resource pooling – the multi-tenancy aspect of clouds requires 
that multiple customers with disparate requirements be served 
by a single hardware infrastructure, and therefore, virtualized 
resources (CPUs, memory,... in particular When an application's 
load increases (scales up), it is anticipated that the additional re-
sources can be (a) provisioned, possibly automatically in a matter 
of minutes, and (b) released when load decreases (scale- down). 
The cloud model is made up of two characteristics of on-demand 
computing services in addition to the aforementioned ones: Cus-
tomers of cloud computing services anticipate on-demand, prac-
tically immediate access to resources; (4) on-demand self- help; 
(5) measurable service (a.k.a. pay as you go) -Cloud services 
must be priced on a short-term basis (for example, by the hour), 
allowing customers to release resources as soon as they are no 
longer required. Different types of service should be metered in 
accordance with this (e.g., storage, processing, and bandwidth).

B) Cloud Service Models
Internet-based software, infrastructure, and storage, either as 
individual parts or as a whole platform. There are three main 
types of cloud service models. The first is Infrastructure as a 
Service (IaaS), which refers to the delivery of computer hard-
ware (servers, networks, and storage) as a service by an IaaS 
provider. Providing operating systems and virtualization tech-
nology to manage the resources may also be part of it. IaaS CSPs 
include GoGRID and Amazon Elastic Computing Cloud (EC2). 
The second is Platform as a Service (PaaS), which gives infra-
structure and a comprehensive collection of software, giving 
developers everything they need to create applications. Micro-
soft Azure Platform and Google AppEngine are two examples of 
PaaS CSPs. . The third is software as a service (SaaS), in which 
a cloud service provider (CSP) offers commercial applications 
as a service. Google BigQuery and Amazon Relational Database 
Service are two examples of SaaS providers for data analytics 

and databases, respectively.

C) CSP Pricing Models
Despite the fact that many services appear to be similar on the 
surface, they differ in terms of system topologies, performance, 
scalability, and cost. Additionally, CSPs have various pricing 
tiers for software, bandwidth, CPU, and storage.

1) Compute Cost: There are two ways that consumers can be 
charged for CPU costs. Instance-based billing involves charging 
customers according to the number of instances allotted and the 
length of time that each instance is used. This is true whether or 
not the examples are fully or inadequately utilized. Examples of 
CSPs that use this CPU pricing model are Windows Azure and 
Amazon AWS.

CPU cycle-based: The CSP bills the client according to how 
many CPU cycles the client's application uses. CloudSites and 
Google AppEngine are two CSPs that use this CPU pricing ap-
proach.

2) The cost of storage: Every storage transaction requires CPU 
cycles. There are two different ways that consumers are charged 
for storage costs. CPU cycles-based billing involves charging a 
client according to the number of CPU cycles needed to com-
plete each storage activity. As a result, a complex operation may 
cost more than a simple one. Examples of CSPs that use this 
CPU pricing model are Google AppEngine, Amazon Simple 
DB, and CloudSites.
Number of operations: Regardless of how complex each opera-
tion is, the CSP bases its charges on the total number of opera-
tions for a customer. CSPs that fit within this CPU price model 
include, for example: Microsoft Azure Table .
3) Costs of Software Licenses: The CSP might offer some soft-
ware for free. Observe that while specific software, like database 
management systems or MapReduce implementations, is billed 
on an hourly basis, the majority of operating systems are priced 
per instance and charged to customers.
4) Intra-network costs: The majority of providers offer unlim-
ited intra-cloud network bandwidth usage. In essence, there is 
no information available on node interconnectivity within a data 
center. Be aware that intra- network bandwidth, for both SQL 
and NoSQL solutions, is crucial for the distributed processing of 
OLAP workloads.
5) WAN cost: Fees for accessing the wide-area delivery network 
are determined by how much data is sent to end users through 
the cloud's borders. Currently, the majority of providers charge 
about the same amounts for this service, with data upload being 
free and data download being paid.
6) SaaS Services: SaaS analytics offers differ from IaaS and 
PaaS analytics offers. In fact, the price model takes the cost of 
the service into account. For example, BigQuery [17] bases the 
cost of storage resources on data volume, and the cost of work-
load processing on the quantity of bytes returned for each busi-
ness question.

4. Data Warehouse Systems
Through the development of quantitative processes that enable a 
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firm to make the best decisions possible and to perform business 
knowledge discovery, business intelligence strives to promote 
better decision-making. Data warehouse systems frequently 
leverage data that is provided by business intelligence. The idea 
of a data warehouse first surfaced in publications written by Bill 
Inmon in the late 1980s. To support management's choices, a 
data warehouse is referred to as a collection of subject-oriented, 
integrated, non-volatile, and time-variant data. The process of 
gathering, purifying, and integrating data from a range of oper-

ational systems and making the resulting information accessible 
for the underpinnings of decision support and data analysis has 
come to be known as data warehousing.

A) Typical DWS Architecture
Fig. 1 illustrates a typical architecture of a data warehouse sys-
tem. The latter is composed of three components: (1) Source 
integration system, (2) Data warehouse storage system and (3) 
Data analysis system.

Fig. 1 illustrates a typical architecture of a data warehouse system. The latter is composed of three 
components: (1) Source integration system, (2) Data warehouse storage system and (3) Data analysis 
system. 
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stores the data warehouse using a traditional relational database management system and defines the cubes 
logically. There are also hybrid OLAP solutions (HOLAP), which enable multidimensional processing with 
direct access to relational data as well as aggregates and pre-calculated results stored on their own 
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1) Source Integration System: The source integration process 
begins with gathering data from a variety of pertinent data sourc-
es (such as legacy systems, relational databases, spreadsheets, 
etc.), after which the source schemas are integrated to create a 
single global schema. It provides the specification of how to load 
and refresh data in accordance with the global schema and spec-
ifies the mapping between the global schema and the sources for 
this purpose. In order to resolve nomenclature, structural, and 
data conflicts, integration must address the issue of cleansing 
and reconciling data from sources.

2) Data Warehouse Storage System: Two basic methods for stor-
ing data in a data warehouse may be distinguished, including I 
MOLAP, in which data is immediately saved into multidimen-
sional data cubes. Data cubes are created and stored using a 
multidimensional storage engine, while (ii) ROLAP physically 
stores the data warehouse using a traditional relational database 
management system and defines the cubes logically. There are 
also hybrid OLAP solutions (HOLAP), which enable multidi-
mensional processing with direct access to relational data as 
well as aggregates and pre-calculated results stored on their own 
multidimensional disk.

3) Data Analysis System: An OLAP server is integrated into 
the data analysis system. The latter is a multi- user, high-ca-
pacity data manipulation engine created primarily to work with 
multi-dimensional data structures (or databases). The explorato-
ry nature of multidimensional querying used by OLAP clients 
enables I increase/decrease the level of detail (respectively drill-
down and roll-up OLAP operations), (ii) concentrate on partic-
ular cube subparts for on-screen viewing (slice and dice OLAP 
operations), and (iii) rotate dimensions to new on-screen view-
ing (rotate OLAP operation).

B) Common Optimization Strategies
With the following technologies, data warehouse solutions and 
appliances function better:

1) Hardware Technologies: Some data warehouse applications 
offer specialized hardware items as on-site storage options. To 
process big data and parallel disk I/O, use in-memory databases 
(DRAM) or solid-state drives (SSDs). The latter enable parallel 
query execution across dozens or hundreds of disk devices. Be 
aware that these hardware-based solutions becoming more and 
more expensive and out of date.
2) Columnar Storage Technology: In a column-oriented storage 
system, various storage volumes or data blocks are used to store 
the column value (or family of columns) of each record. Com-
pared to standard row- based storage systems, this technology 
enables greater compression ratios and scan throughputs.
3) Data warehouses use derived data such as OLAP indixes (such 
as bitmap, n-tree,...), derived attributes, and aggregate tables in 
order to receive a quick response (a.k.a. materialized views).

C) TPC-H Benchmark
The many benchmarks released by the Transaction Processing 
Council are the most well-known standards for assessing deci-
sion support systems (TPC). We then introduce TPC- H, the most 
used benchmark in the research community. Utilizing the tradi-
tional product-order-supplier model is the TPC-H benchmark. 
It comprises of a number of concurrent data updates and busi-
ness-oriented adhoc queries. Twenty-two highly sophisticated 
parameterized decision-support SQL queries make up the work-
load, together with two refresh functions called RF-1 new sales 
(new inserts) and RF-2 old sales (deletes). The set of fixed scale 
factors with the following definitions must be used to select the 
scale factors for the test database: 1, 10,... 100,000; the resulting 
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raw data volumes are 1GB, 10GB,... 100TB, respectively.

1) TPC-H Metrics: The TPC-H benchmark provides two key 
metrics: (see details in Appendix A)

Query-per-Hour Performance Metric for TPC-H (QphH@Size): 
The QphH@Size statistic captures many facets of the query pro-
cessing ability of the system under examination. These factors 
include I the chosen database size against which the queries are 
executed (also known as the scale factor), (ii) the power test, 
which measures the processing power of the queries when they 
are submitted by a single stream, and (iii) the throughput test, 
which measures the query throughput when it is submitted by 
multiple concurrent users.

Price-performance metric for TPC-H ($/QphH): The cost-to-per-
formance ratio is represented by the $/QphH measure. The price 
of the priced system is determined by taking into account I the 
cost of the hardware and software present in the system being 
tested, (ii) the cost of the communication interface supporting 
the necessary number of user interface devices, (iii) the cost of 
online storage for the database and storage for all software, (iv) 
the cost of additional products (either software or hardware) 
needed for routine operation, administration, and maintenance 
for a period of three years, and (v) the final cost.

2) TPC-H mismatch for cloud-based DWS evaluation: Using 
TPC-H to assess cloud-based data warehouse systems highlights 
the following issues:

First, the TPC-H benchmark is not appropriate for evaluating 
commercial business intelligence suites, such as integration 
services (ETL performances), OLAP engines (building OLAP 
hypercubes), mining structures (building data mining models), 
and reporting tools, given the technical evolution of OLAP tech-
nologies in recent years.

Second, the number of queries processed per hour that the sys-
tem under test can manage for a fixed load is the main statistic 
employed by TPC-H -QphH@Size. The system under test is 
then regarded as static, and this metric does not demonstrate the 
system's ability to scale, that is, how well the system performs 
under varying loads and cluster sizes.

Third, the ratio of costs to performance, or the second TPC-H 
metric, $/QphH, determines pricing based on the total cost of 
ownership of the system that is being tested on-site. The owner-
ship cost includes the cost of the hardware, the cost of the soft-
ware license, as well as the costs of administration and main-
tenance over a three-year period. The pay-as-you-go model of 
cloud computing is incompatible with this since cloud users are 
not directly responsible for the costs of administration, mainte-
nance, and administration of their deployment of hardware and 
software. The cost-performance ratio for the cloud depends on 
the data volume, workload, services, chosen hardware, and the 
CSP pricing plan. There are various price plans for the cloud.

Additionally, the dynamic lot-size model provides a more accu-

rate representation of how the demand for necessary hardware 
and software resources will change over time.

Fourth, no TPC-benchmark presently gives a cost-effectiveness 
ratio statistic. The company should be able to select the ideal 
hardware configuration for maintaining its data and handling its 
workload efficiently with the aid of the cloud migration. When 
an Amazon EC2 Large Instance (7.5GB of memory and 4 EC2 
compute units for $0.240 per Hour) meets the workload require-
ments, it is inconvenient to pay for an Amazon EC2 Extra Large 
Instance (15GB of memory and 8 EC2 compute units for $0.480 
per Hour) ) [61].

Fifth, the current TPC-H implementation assumes that both 
workload streams for queries and refresh functions are conduct-
ed simultaneously. Old data requires the processing of deletes, 
and most NoSQL systems (such as Apache Hadoop) employ the 
write-once technique and are not built to handle deletes. There 
are two sorts of refresh functions: new data and old data. As a 
result, deletes, for Apache Hadoop, for example, entail exceed-
ingly expensive join procedures and the loading of fresh data 
files into the system.

Sixth, according to the CAP theorem, also referred to as Brew-
er's theorem, a distributed computer system cannot simultane-
ously provide all three of the following guarantees: I Consisten-
cy, which ensures that all nodes see the same data at the same 
time; (ii) Availability, which ensures that every request receives 
a response indicating whether it was successful or unsuccessful; 
and (iii) Partition tolerance, which ensures that the system con-
tinues to function. Additionally, Brewer demonstrated that in a 
distributed system, only two of the three promises are met. The 
existing TPC-H specification (and the same goes for TPC-DS) 
presupposes parallel machine deployment of TPC-H rather than 
shared-nothing architecture. When considering refresh functions 
and high-availability, benchmarking data warehousing systems 
in the cloud on a shared-nothing architecture should implement 
all possible combinations of guarantees, namely CA, CP, and 
AP.

Last but not least, the TPC-H benchmark does not include suf-
ficient measures for evaluating cloud system characteristics 
including scalability, pay-per-use, fault tolerance, and service 
level agreements. The requirements and fresh metrics for evalu-
ating data warehousing systems in the cloud are presented in the 
next section.

Benchmarking Data Warehouse Systems in The Cloud
Due to the process' intrinsic complexity, data warehousing is both 
expensive and time-consuming. A data warehousing system's 
cloud deployment is considerably different from its on-premises 
deployment. In actuality, there are differences between a com-
pany's BI department and its clients and the CSP's connection 
with them. The move to the cloud should increase corporate pro-
ductivity and increase end-user happiness. Therefore, end-user 
satisfaction, Quality of Service (QoS), as well as the inherent 
properties of cloud systems, such as scalability, pay-per-use, and 
fault-tolerance, should be reflected in benchmarks established 
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for evaluating data warehousing systems in the cloud.

Then, we propose new standards and new measures that seek to 
create a fair comparison between various cloud systems provid-
ers of data warehouse systems. First, we present use cases for 
benchmarking data warehouse systems in the cloud.

A) Use Cases
There are two key use cases for comparing cloud-based data 
warehousing systems. The first step is a comparison of several 
cloud systems with the goal of choosing the best CSP for the 
data warehousing  system's eventual deployment. The second 
step in system tuning is to choose the appropriate optimizations, 
cost-performance tradeoffs, and cost-efficiency tradeoffs for a 
given CSP's capacity planning (operating system, number of in-
stances, instance hardware configuration, etc.).

B) New Requirements and Metrics
We next go over updated specifications and metrics for compar-
ing cloud-based data warehouse systems.

1) High Performance: Data warehousing is used to assist with 
decision-making. In order to increase corporate productivity, the 
latter demands good performance. High performance is impact-
ed by two key aspects of cloud data storage: I data transport to/
from the CSP, and (ii) workload processing.

First, the source integration system and data analysis system 
deal with such large data sets, transferring significant data loads 
to remote servers typically uses a lot of bandwidth and is more 
efficient when done locally. Therefore, cloud computing is diffi-
cult due to slow connections and network congestion unless an 
expensive private link is established between the provider and 
the company. Companies will encounter network-bound apps 
in the cloud as opposed to I/O- and CPU-bound applications 
on-premises. The network bandwidth that is available to han-
dle large data transfers to and from the CSP will, in fact, be the 
bottleneck.

The majority of CSPs offer free data transport to their data cen-
ters (Data Transfer IN To Amazon EC2 From The Internet Costs 
$0.00 Per GB, for example). The cost of downloading data varies 
depending on the volume (e.g., Data Transfer OUT To Amazon 
EC2 From Internet $0.12 per GB per month for data quantities 
consisted of between 1GB and 10TB, while it is free for lesser 
data volumes) [61].

Second, to improve performance, the majority of OLAP engines 
use intra-query parallelism. A complex single question is divided 
up into smaller requests, the burden is distributed among several 
processors, and finally post-processing is done in order to pres-
ent the final query response. Subject to intra-query parallelism, 
three variables have an impact on the query's final response time. 
First, startup costs, which are incurred when several processes 
are launched in order to handle multiple sub-queries simultane-
ously.

If there is a high level of parallelism, the setup time for these 
processes may take up the majority of the calculation time. Sec-
ond, Skew costs demonstrate that in a distributed system, the 
slowest performing activities that are running in parallel decide 
the overall execution time. Third, interference costs, which are 
related to the amount of time that processes are not being used. 
In fact, processes that use shared resources (such as the system 
bus, disks, or locks) face competition from one another and must 
wait for other processes to complete their tasks.

Pig script reaction times were measured in trials (details in Ap-
pendix B), and the results show a concave curve (Fig. 2), with 
an optimal response time for each cluster size and performance 
degrading after this point. The performance increase slope (from 
N to N') for cloud computing should also be stated in a dol-
lar amount ($). In fact, the system scales out horizontally and 
more instances are provisioned to achieve this improvement in 
response time.
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2) Scalability: Scalability is a system's capacity to enhance throughput overall when faced with a heavier 
load and more hardware resources. Cloud services should ideally have a set cost per processed business 
question and linear scaling. The current TPC-H implementation gauges a system's ability to handle a 
static workload. We suggest that the benchmark for data warehousing evaluate the system being tested 
under a constant load and calculate the throughput as a result. We can change the workload on a time 
scale, say every hour, and count the number of business inquiries answered throughout that time period to 
quantify this requirement. 

While a non-scalable system records fewer business questions answered under a larger load, a scalable 
system should keep the same number of business questions handled within a time period. 

3) Elasticity: To adapt the system capacity at runtime to the changing workload, elasticity adds and 
removes resources without affecting service. First, the metric should evaluate the system's ability to add 
or remove resources without affecting service, and if it does, it should report both the scaling latency (the 
time it takes for a system to scale up or down horizontally) and the scale-up cost (the price of newly 
acquired resources, in dollars) or the scale-down gain (the price of newly released resources, in dollars), 
as appropriate. 

4) High Availability: The likelihood of a distributed storage system failing is increased when data is 
scattered over several drives. There are many methods that can be used to construct highly available 
distributed data storage systems. They typically employ parity calculus or replication. The latter method 
makes use of systematic erasure-codes, such as Tornado, Low-Density Parity-Check, and Reed Solomon 
(RS) codes. Data management is simple with replication. However, replication always has a higher 
storage expense than systematic erasure codes. 

Erasure codes can offer services with less storage overhead than replication methods when a specific 
level of availability is targeted. High availability with erasure codes reduces storage costs for data 
warehousing, especially for massive data of the write-once kind (i.e., not subject to delete refreshes). Data 
recovery, however, is trickier than replication. Erasure codes have been examined and shown to be 
effective for grid systems and highly available distributed storage systems, respectively [18, 19]. The 
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2) Scalability: Scalability is a system's capacity to enhance 
throughput overall when faced with a heavier load and more 
hardware resources. Cloud services should ideally have a set 
cost per processed business question and linear scaling. The cur-
rent TPC-H implementation gauges a system's ability to han-
dle a static workload. We suggest that the benchmark for data 
warehousing evaluate the system being tested under a constant 
load and calculate the throughput as a result. We can change the 
workload on a time scale, say every hour, and count the number 
of business inquiries answered throughout that time period to 
quantify this requirement.

While a non-scalable system records fewer business questions 
answered under a larger load, a scalable system should keep the 
same number of business questions handled within a time peri-
od.

3) Elasticity: To adapt the system capacity at runtime to the 
changing workload, elasticity adds and removes resources with-
out affecting service. First, the metric should evaluate the sys-
tem's ability to add or remove resources without affecting ser-
vice, and if it does, it should report both the scaling latency (the 
time it takes for a system to scale up or down horizontally) and 
the scale-up cost (the price of newly acquired resources, in dol-
lars) or the scale-down gain (the price of newly released resourc-
es, in dollars), as appropriate.

4) High Availability: The likelihood of a distributed storage 

system failing is increased when data is scattered over several 
drives. There are many methods that can be used to construct 
highly available distributed data storage systems. They typically 
employ parity calculus or replication. The latter method makes 
use of systematic erasure-codes, such as Tornado, Low-Density 
Parity-Check, and Reed Solomon (RS) codes. Data management 
is simple with replication. However, replication always has a 
higher storage expense than systematic erasure codes.

Erasure codes can offer services with less storage overhead than 
replication methods when a specific level of availability is tar-
geted. High availability with erasure codes reduces storage costs 
for data warehousing, especially for massive data of the write-
once kind (i.e., not subject to delete refreshes). Data recovery, 
however, is trickier than replication. Erasure codes have been 
examined and shown to be effective for grid systems and high-
ly available distributed storage systems, respectively [18, 19]. 
The storage space requirements for several file high-availabili-
ty strategies are shown in Fig.3. namely replication and erasure 
codes. In our example, we show 4 blocks of a data file (m = 4) 
stored in such a way that any (n m) = 2 missing blocks can be 
tolerated; values n = 6 and m = 4 are used as an example. With 
replication, k copies of the entire file are stored into separate 
places. The group of data blocks is 2- available through repli-
cation with a redundancy overhead of 200% versus the same 
group of data blocks 2-available through erasure-codes with a 
redundancy overhead of 50%.

storage space requirements for several file high-availability strategies are shown in Fig.3. namely 
replication and erasure codes. In our example, we show 4 blocks of a data file (m = 4) stored in such a 
way that any (n m) = 2 missing blocks can be tolerated; values n = 6 and m = 4 are used as an example. 
With replication, k copies of the entire file are stored into separate places. The group of data blocks is 2- 
available through replication with a redundancy overhead of 200% versus the same group of data blocks 
2-available through erasure-codes with a redundancy overhead of 50%. 

 
 

 

Fig. 3. Replication vs. Erasure Codes for a group of 4 data blocks. 
 

Replication is used by CSPs to improve the availability of stored data and avoid service interruption. 
Additionally, they provide replica management in many geographically dispersed data centers. This makes it 
possible to recover from a data center disaster in its entirety. However, the majority of CSPs do not cater 
high availability services to their clients. 

The end-user should be informed of the cost of making their data highly-available through various high 
availability strategies (i.e., for both synchronous and asynchronous refreshes) when using cloud data 
warehousing, and various levels of availability should be provided to allow for customization of the recovery 
capacity after disasters. 

As a result, in addition to assessing the recovery cost, the benchmark should also include metrics reflecting 
the cost of various intended levels of availabilities (1-available,..., k-available, or the number of failures the 
system can accept). We suggest two measures that represent the cost of maintaining a k-available system 
($@k), where k is the desired level of availability, and a metric that represents the customer-perceived cost 
of recovery represented in time and lost system productivity due to hardware breakdown ($). The CSP 
should be billed for the latter. 

5) Cost-Effectiveness and Cost-Performance: Cloud-based solutions should assist businesses looking to 
reduce expenses without sacrificing productivity and service quality. As a result, it is becoming increasingly 
important to comprehend, monitor, and proactively control expenses throughout the cloud from the 
viewpoints of performance and effectiveness. In fact, the user may prefer to operate his application more 
efficiently, which ensures a maximal computation at lowest expenses, rather than focusing on the shortest 
possible execution time. The best hardware configuration should be determined based on performance and 
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Replication is used by CSPs to improve the availability of stored 
data and avoid service interruption. Additionally, they provide 
replica management in many geographically dispersed data cen-
ters. This makes it possible to recover from a data center disaster 
in its entirety. However, the majority of CSPs do not cater high 
availability services to their clients.

The end-user should be informed of the cost of making their 
data highly-available through various high availability strategies 
(i.e., for both synchronous and asynchronous refreshes) when 

using cloud data warehousing, and various levels of availability 
should be provided to allow for customization of the recovery 
capacity after disasters.

As a result, in addition to assessing the recovery cost, the bench-
mark should also include metrics reflecting the cost of various 
intended levels of availabilities (1-available,..., k-available, or 
the number of failures the system can accept). We suggest two 
measures that represent the cost of maintaining a k-available 
system ($@k), where k is the desired level of availability, and 
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a metric that represents the customer-perceived cost of recovery 
represented in time and lost system productivity due to hardware 
breakdown ($). The CSP should be billed for the latter.

5) Cost-Effectiveness and Cost-Performance: Cloud-based 
solutions should assist businesses looking to reduce expenses 
without sacrificing productivity and service quality. As a result, 
it is becoming increasingly important to comprehend, monitor, 
and proactively control expenses throughout the cloud from the 
viewpoints of performance and effectiveness. In fact, the user 
may prefer to operate his application more efficiently, which 
ensures a maximal computation at lowest expenses, rather than 
focusing on the shortest possible execution time. The best hard-
ware configuration should be determined based on performance 
and effectiveness, and included in the cost management plan; 
This presupposes systematic resource usage monitoring. We 
suggest calculating the configuration cost ($) to performance and 
resource utilization ratio for these objectives. The ratio of used 
to allocated resources is known as resource utilization. Take note 
of how usage and allocated resources change over time.

6) Service Level Agreements: An SLA is a contract that a service 
provider and its customers enter into. SLAs record the promis-
es that have been agreed upon between a service provider and 
its client. They specify the characteristics of the offered service, 
such as the maximum response times, minimum throughput 
rates, and data consistency, and they specify consequences if the 
service provider does not meet these goals. Scalability, elasticity, 
performance (throughput and reaction time are also taken into 
account), high- availability, and CSP independence are the SLA 
categories for data warehousing in the cloud.

In the latter case, the business should have no trouble switching 
to a different Cloud Service Provider (CSP) and receiving its 
data back in a common format. This will reduce losses in the 
event that the CSP levies exorbitant fees, demands the purchase 
of new software, or declares bankruptcy.

c) OLAP vs. OLTP Benchmarking in the Cloud
We are greatly influenced by the work in [13][14]. The latter 
looked into cloud-based OLTP benchmarking. We offer a thor-
ough comparison of OLAP and OLTP benchmarking in the 
cloud in Table I.

5. Conclusion
The three main reasons for moving data warehouse systems to 
the cloud are: I lower capital costs through measured services, 
where infrastructure, platforms, and services are offered on a 
pay-per-use basis;
(ii) faster elasticity; and (iii) quicker provisioning for a better 
cost-performance trade-off. In this study, we contend that the 
most well-known OLAP benchmark, TPC-H, does not accurate-
ly reflect cloud properties. We also provide new benchmarking 
criteria and indicators, including high performance, high avail-
ability, cost effectiveness, cost performance, scalability, elastic-
ity, and service level agreements (SLAs), for data warehouse 
deployment in the cloud. In upcoming work, we will evaluate 
the most well-known CSPs that Google, Amazon, and Micro-
soft provide for data warehousing using a cloud-based TPC-H 
benchmark.
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how usage and allocated resources change over time. 

6) Service Level Agreements: An SLA is a contract that a service provider and its customers enter into. SLAs 
record the promises that have been agreed upon between a service provider and its client. They specify the 
characteristics of the offered service, such as the maximum response times, minimum throughput rates, and 
data consistency, and they specify consequences if the service provider does not meet these goals. 
Scalability, elasticity, performance (throughput and reaction time are also taken into account), high- 
availability, and CSP independence are the SLA categories for data warehousing in the cloud. 

In the latter case, the business should have no trouble switching to a different Cloud Service Provider (CSP) 
and receiving its data back in a common format. This will reduce losses in the event that the CSP levies 
exorbitant fees, demands the purchase of new software, or declares bankruptcy. 

c) OLAP vs. OLTP Benchmarking in the Cloud 
 

We are greatly influenced by the work in [13][14]. The latter looked into cloud-based OLTP benchmarking. 
We offer a thorough comparison of OLAP and OLTP benchmarking in the cloud in Table I. 

 
 

Conclusion 
 

The three main reasons for moving data warehouse systems to the cloud are: I lower capital costs 
through measured services, where infrastructure, platforms, and services are offered on a pay-per-use basis; 
(ii) faster elasticity; and (iii) quicker provisioning for a better cost-performance trade-off. In this study, we 
contend that the most well-known OLAP benchmark, TPC-H, does not accurately reflect cloud properties. 
We also provide new benchmarking criteria and indicators, including high performance, high availability, 
cost effectiveness, cost performance, scalability, elasticity, and service level agreements (SLAs), for data 
warehouse deployment in the cloud. In upcoming work, we will evaluate the most well-known CSPs that 
Google, Amazon, and Microsoft provide for data warehousing using a cloud-based TPC-H benchmark. 

TABLE I .OLAP VERSUS OLTP IN THE CLOUD. 
 
 

 Data Warehouse System Deployement in the 
Cloud and OLAP Workload Run 

Operational System Deployement in the cloud 
and Web-shop/OLTP alike Workload Run 

 
Goals from Customer Perpective 

• Fast upload and download of huge data sets, 
• Browse a multidimensional view of data 

in mere seconds 

Good Responsivity to the user’s interactions 
(Transaction branches) and validation of the 

inter- action (transaction) 
 

Horizontal scale-up Added Value 
 

More Bytes processed per hour (+BpH) 
More 
Web 

(+wips) 

interacti 
ons 

process 
ed 

pe 
r 

 
second 

 
Cost 

• High storage cost for Data Warehouse System 
• Complex and costly workload (CPU, 

I/O, Network-bound applications) 

• Storage Cost required by the Operational 
System 

• Simple workload 

Metric of Interest $/BpH (cost of Bytes processed by hour) $/wips (cost of web interactions processed per 
second) 

Recommended High-Availability 
Schema Systematic Erasure Codes & Replication Replication 

Distributed Processing Features Intra-parallelism within a business question Inter-parallelism among interactions 

Risks under Peak Loads The compagny may do not take decisions in- 
time ($) 

Unexpected performance problems and loss of 
re- sponsivity to end-users. ($) 

TABLE I: OLAP VERSUS OLTP IN THE CLOUD.
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The experiments that were done to compare Apache Hadoop/Pig Latin to the TPC-H benchmark are 
described here. [20] describes the conversion of the TPC-H workload from SQL to Pig Latin as well as an 
analysis of the tasks written in Pig Latin for the TPC-H workload. Borderline nodes of the GRID5000 
platform are placed at the Bordeaux facility and make up the hardware system configuration for performance 
evaluations. Each Borderline node has 32 GB of memory and four Intel Xeon CPUs running at 2.6 GHz with 
two cores each. Lenny Debian Operating System is used by all nodes. 
We test Pig's performance with a range of cluster sizes and data volumes. The performance results for Pig 
for N=3, 5, 8 nodes (corresponding to 2, 4, and 7 Hadoop Task Trackers/data nodes or workers and one 
Hadoop master) are shown in the following figures. We produced TPC-H data files with SF=1, 10, and 1.1 
and 11 GB, respectively. TPC-H workload response times for 1.1GB of data are shown in Fig. 4. It is 
important to note that doubling the size of the Hadoop cluster has no impact on how quickly pig scripts 
execute. Business questions that do not require join operations, such as Q1 and Q6, have faster execution 
times as cluster size grows. TPC-H workload response times for 11GB of data are shown in Fig. 5. Contrary 
to results corresponding to a volume of 1GB, reaction times are generally improved with increasing cluster 
size. Business-related complex questions like Q2, Q11, Q13, and so forth are unaffected by cluster size. Pig 
performs admirably when compared to results for 1.1GB of data shown in Figure 4 when the data amount is 
multiplied by 10. In fact, the average response time for a 1.1GB warehouse is two times slower than the 
average response time for an 11GB TPCH warehouse, regardless of the cluster size (N=3, 5, or 8). We come 
to the conclusion that while cluster size is significant, workload perormances are not always improved by it. 

The experiments that were done to compare Apache Hadoop/
Pig Latin to the TPC-H benchmark are described here. [20] de-
scribes the conversion of the TPC-H workload from SQL to Pig 
Latin as well as an analysis of the tasks written in Pig Latin 
for the TPC-H workload. Borderline nodes of the GRID5000 
platform are placed at the Bordeaux facility and make up the 
hardware system configuration for performance evaluations. 
Each Borderline node has 32 GB of memory and four Intel Xeon 
CPUs running at 2.6 GHz with two cores each. Lenny Debian 
Operating System is used by all nodes.

We test Pig's performance with a range of cluster sizes and data 
volumes. The performance results for Pig for N=3, 5, 8 nodes 
(corresponding to 2, 4, and 7 Hadoop Task Trackers/data nodes 
or workers and one Hadoop master) are shown in the following 
figures. We produced TPC-H data files with SF=1, 10, and 1.1 
and 11 GB, respectively. TPC-H workload response times for 

1.1GB of data are shown in Fig. 4. It is important to note that 
doubling the size of the Hadoop cluster has no impact on how 
quickly pig scripts execute. Business questions that do not re-
quire join operations, such as Q1 and Q6, have faster execution 
times as cluster size grows. TPC-H workload response times for 
11GB of data are shown in Fig. 5. Contrary to results correspond-
ing to a volume of 1GB, reaction times are generally improved 
with increasing cluster size. Business-related complex questions 
like Q2, Q11, Q13, and so forth are unaffected by cluster size. 
Pig performs admirably when compared to results for 1.1GB of 
data shown in Figure 4 when the data amount is multiplied by 
10. In fact, the average response time for a 1.1GB warehouse is 
two times slower than the average response time for an 11GB 
TPCH warehouse, regardless of the cluster size (N=3, 5, or 8). 
We come to the conclusion that while cluster size is significant, 
workload perormances are not always improved by it.
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Fig. 4. Pig performances (sec) for 1.1GB of TPC-H data (SF=1). 
 

Fig. 5. Pig performances (sec) for 11GB of TPC-H data (SF=10). 
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