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Abstract
Rolling bearing is widely used in various mechanical equipment, which affects the performance and safety of the equipment. In 
order to ensure the normal operation of the equipment, a new method based on improved cepstrum for bearing fault diagnosis 
is proposed. In the cepstrum peaks, the largest four peaks are extracted, then the four peaks are improved to complete the 
feature extraction of bearing fault. Simulation experiment was carried out to verify the accuracy of the proposed method. The 
experimental results show that the accuracy is up to 92.44%, which has achieved high accuracy.
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Introduction
Rolling bearing is widely used in industrial rotating machinery. 
The normal operation of rolling bearing is related to the safety 
of the whole industrial system, so it is very important to extract 
the feature and diagnose the fault of rolling bearing. In the field 
of rolling bearing fault diagnosis, many fault diagnosis methods 
have been proposed and achieved good results. Karatoprak pro-
posed an improved Empirical Mode Decomposition (EMD) meth-
od named MEMD [1]. The results showed that MEMD method 
was better than EMD on bearing fault feature extraction. Zheng 
also proposed an improve method named mean-optimized mode 
decomposition (MOMD) method to realize the bearing fault diag-
nosis [2]. Experimental results showed that MOMD method has 
better effect than EMD. A novel method based on the combination 
of complete ensemble EMD with adaptive noise (CEEMDAN) is 
proposed by He [3]. The results showed that this method was ef-
fective and correct. Cai proposed a novel method by cooperating 
empirical mode decomposition (EMD) with genetic neural net-
work adaptive boosting (GNN-Ada Boost) [4]. Experimental re-
sults showed that GNN-AdaBoost was more effective than GNN. 
Wavelet packet is also used to help realize the bearing fault diag-
nosis. Wang proposed a supervised sparsity-based wavelet feature 
(SSWF) [5]. Wavelet packet transform (WPT) is combined with 
the sparse coding. An enhanced Frequency Band Entropy (EFBE) 
adopting WPT as the filter of FBE was proposed by Li [6]. The 
fault feature frequency is extracted by combining the filtered sig-
nal and the envelope power spectrum. Wan proposed a diagnosis 
method named FERgram, which is based on the fault energy ratio 

(FER) and the maximal overlap discrete wavelet packet transform 
(MODWPT) [7]. A novel method based on cooperation of Reso-
nance-based Sparse Signal Decomposition (RSSD) and Wavelet 
Transform (WT) was proposed by Chen [8]. The fault signal of is 
decomposed by RSSD. Huang proposed a novel method based on 
orthogonal wavelet packet decomposition and Gaussian Mixture 
Model-Hidden Markov Model (GMM-HMM). The results veri-
fied the accuracy of the GMM-HMM method [9]. Zhang proposed 
a novel method by using wavelet packet energy (WPE) and fast 
kurtogram (FK) [10]. Experimental results showed that the fault 
feature could be extracted more effectively than the traditional FK 
method. Wei used envelope entropy as objective function for the 
whale optimization algorithm (WOA) [11]. Experimental results 
showed that the method was more effective compared with wave-
let packet decomposition.

In this paper, a new method based on improved cepstrum for bear-
ing fault diagnosis is proposed. The second section presents the 
data sources. In the third section, the primitive cepstrum and the 
improved cepstrum are introduced. In the fourth section, a simula-
tion experiment is designed and carried out to verify the accuracy 
of the method. Finally, a conclusion is made in the fifth section.

Data Sources and Data Processing
Data Sources
In this paper, the bearing data of Western Reserve University in 
USA are selected. The experimental setup of Western Reserve 
University is shown in Figure 1.
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Figure 1: Bearing test bed of Western Reserve University

As shown in Figure 1, the test bed is made up of a motor, a torque 
sensor and a power tester. The test bed has a normal SKF6205 
bearing and a faulty SKF6205 bearing, And the sampling frequen-
cy is 12 KHz. In order to complete the collection of vibration sig-
nal data, acceleration sensors are placed above the driving end and 
the fan end to collect the vibration acceleration signal of bearings. 
The 16 channel data recorder is used to collect vibration signal, 
and the torque sensor / decoder is used to measure speed and pow-
er. The fault bearing is placed on the bearing test bench to obtain 
the vibration data.

Data Processing
The ball, outer ring and inner ring all have the damage of 
0.1778mm, 0.3556mm and 0.5334mm diameters. So the working 
conditions studied in this paper are as follows: normal state, ball 
fault 1, ball fault 2, ball fault 3, outer ring fault 1, outer ring fault 
2, out ring fault 3, inner ring fault 1, inner ring fault 2 and inner 
ring fault 3.

In order to preprocess the data, 10001 to 20000 points of data for 
each condition are selected. The 10000 points were divided into 
10 groups with 1000 points in each group. Each group's section s 
is in equation 1:

                                                                                                     (1)

where, s is the section of each group, n is the first point of each 
group. Then each group data is drawn cepstrum. The amplitudes of 
the four largest peaks of the cepstrum are preserved.

Primitive Cepstrum and Improved Cepstrum
Signal Feature in Frequency Domain
According to practical engineering experience, the rotating fre-
quency of bearing inner ring F_{i} and the comparative rotating 
frequency of bearing outer ring and inner ring F_{io} are shown in 
equation 2 to equation 3:

                                                                                                      (2)

                                                                                                     (3)

where, l is the speed of bearing inner ring. The comparative rotat-

ing frequency of the rolling element and the inner ring F_{Bi}, the 
comparative rotating frequency of the rolling element and the in-
ner ring F_{Bo}, the rotation frequency of rolling element relative 
to bearing center F_{BB} are shown in equation. 4 to equation. 6:

where, Q is the number of rolling elements, R_{d} is the diam of 
rolling element, D_{d} is the pitch diam of rolling elements race-
way, and β is the contact angle of bearings. But it is impossible 
to realize fault identification only from frequency domain, more 
accurate methods need to be proposed.

Primitive Cepstrum
The definition of cepstrum is shown in equation. 7:

                                                                                                 (7)

where, x(n) is the discrete signal sequence, fft is fast Fourier trans-
form, ifft is inverse Fourier transform, and C is cepstrum. The 
primitive cepstrum is shown in Figure 2.

Figure 2: The primitive cepstrum

As shown in Figure 2, the primitive cepstrum has four maximal 
peak value. The top left peaks, the top right peaks, the bottom left 
peaks and the bottom right peaks are in turn called PE1, PE2, PE3 
and PE4. But all working conditions can't be distinguished only 
by using the four peaks of cepstrum. Such as ball fault 1 and outer 
fault 1, inner fault 1 and inner fault 3, which have the same fea-
ture so that fault cannot be distinguished. So improved cepstrum 
is proposed.

Improved Cepstrum
The accuracy of original cepstrum for fault diagnosis is not high, 
so improved cepstrum is proposed to increase diagnosis accuracy. 
The improved cepstrum means to find corresponding thresholds 
to reset the size of four maximal peaks. The flow chart of the im-
proved cepstrum is shown in Figure 3. If the peak is greater than 
the absolute of corresponding threshold, the peak will be set to 1; 
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if the peak is less than the absolute of corresponding threshold, the 
peak will be set to 0. For the interval with serious cross, the blind 
area is set to ignore cross issues.

In order to find the threshold of the top left peaks, the top left peaks 
are shown in Figure 4.

Figure 3: The flow chart of the improved cepstrum

Figure 4: The top left peaks

As shown in Figure 4, the NoS represents the normal state, the BaF 
represents the ball fault, the OuF represents the outer ring fault and 
the InF represents the inner ring fault. The blue dots represent the 
peaks of the cepstrum, and the red dots represent the average of 

the cepstrum peaks. According to the distribution of the top left 
peaks, the corresponding threshold range can be found easily. The 
threshold of top left peaks is in the section [0.57,0.82], so the point 
0.7 is selected for the threshold of top left peaks. The threshold of 
the top left peaks is found. In order to find the threshold of the top 
right peaks, the top right peaks are shown in Figure 5.

Figure 5: The top right peaks

As shown in Figure 5, the NoS represents the normal state, the BaF 
represents the ball fault, the OuF represents the outer ring fault and 
the InF represents the inner ring fault. The blue dots represent the 
peaks of the cepstrum, and the red dots represent the average of 
the cepstrum peaks. According to the distribution of the top right 
peaks, the corresponding threshold range can be found easily. The 
threshold of top right peaks is in the section [0.33,0.38], so the 
point 0.332 and 0.378 are selected for the threshold of top right 
peaks, and the section [0.332, 0.378] is blind area, not judged. The 
threshold of the top right peaks is found. In order to find the thresh-
old of the bottom left peaks, the bottom left peaks are shown in 
Figure 6.

Figure 6: The bottom left peaks

As shown in Figure. 6, the NoS represents the normal state, the 
BaF represents the ball fault, the OuF represents the outer ring 
fault and the InF represents the inner ring fault. The blue dots rep-
resent the peaks of the cepstrum, and the red dots represent the 
average of the cepstrum peaks. According to the distribution of the 
bottom left peaks, the corresponding threshold range can be found 
easily. The threshold of bottom left peaks is in the section [-0.61,-
0.49], so the point -0.6 and -0.52 are selected for the threshold of 
bottom left peaks, and the section [-0.6, -0.52] is blind area, not 
judged. The threshold of the bottom left peaks is found. In order to 
find the threshold of the bottom right peaks, the bottom right peaks 
are shown in Figure 7.
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Figure 7: The bottom right peaks

As shown in Figure 7, the NoS represents the normal state, the BaF 
represents the ball fault, the OuF represents the outer ring fault and 
the InF represents the inner ring fault. The blue dots represent the 
peaks of the cepstrum, and the red dots represent the average of the 
cepstrum peaks. According to the distribution of the bottom right 
peaks, the corresponding threshold range can be found easily. The 
threshold of bottom right peaks is in the section [-0.5, -0.37], so 
the point -0.447 is selected for the threshold of bottom right peaks. 
The threshold of the bottom right peaks is found. 

So far, all four peaks have been found. The detailed use criteria of 
threshold are as follows:
For the top left peak: if the absolute of average peak is greater than 
0.7, the peak will be set to 1; if the absolute of average peak is 
less than 0.7, the peak value will be set to 0. Do not include page 
numbers in the text.

For the top right peak: if the absolute of average peak is greater 
than 0.378, the peak will be set to 1; if the absolute of average peak 
is less than 0.332, the peak will be set to 0; [0.332, 0.378] is dark 
area, if the absolute of average peak is in this section, the peaks 
will be not judged.

For the bottom left peak: if the absolute of average peak is greater 
than 0.6, the peak will be set to 1; if the absolute of average peak 
is less than 0.52, the peak will be set to 0; [0.52, 0.6] is dark area, 
if the absolute of average peak is in this section, the peaks will be 
not judged.

For the bottom right peak: if the absolute of average peak is greater 
than 0.447, the peak will be set to 1; if the absolute of average peak 
is less than 0.447, the peak will be set to 0.

The theoretical feature extraction graph can be inferred by us-
ing the four thresholds. Then the theoretical feature extraction is 
shown in Figure 8.

Figure 8: Feature extraction based on improved cepstrum

The features of each working condition are extracted in Figure. 
8, each peak has only 2 values: 1 or 0. And each condition has a 
specific feature, but the same feature between different working 
conditions are still existing, such as BaF1 and OuF1. So a supple-
mentary criterion is proposed to solve the problem of same feature. 
The top left peak PE1 is used to further distinguish the same fea-
tures. The supplemental principles are as follows:

For the outer ring fault 1 and the ball fault 1: if PE1 is greater than 
0.48, the fault will be outer ring fault 1; if PE1 is less than 0.48, the 
fault will be ball fault 1.

For the outer ring fault 3 and the inner ring fault 1: if PE1 is greater 
than 1, the fault will be outer ring fault 3; if PE1 is less than 1, the 
fault will be inner ring fault 1.

After the provisions of supplementary criterion, 10 kinds of con-
ditions are distinguished totally. Each working condition has its 
own feature. Simulation experiment is designed and carried out in 
following section.

Simulation Experiment
In order to verify the effectiveness of the improved cepstrum 
method, more data that cut from point 60001 of each state to point 
120000 are selected. The data of each condition has 60000 points, 
which form a column. And 10 kinds of conditions data form a ma-
trix G. The matrix T has 60000 lines, 10 columns, and the arrange-
ment of 10 kinds of conditions is the same as Fig. 4. The matrix G 
is shown in equation. 8:
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                                                                                                    (8)

where, k=60000, m=10. Select 10 groups of continuous 1000 dis-
crete points of any column from the matrix G, then 10 groups of 
data were drawn cepstrum and take the largest four peaks. Ten 
peaks at the same location are averaged, then the average is com-
pared with the threshold value, so that the average peaks are set to 
1 or 0. Therefore, actual features are obtained. If actual features 
are the same as theoretical features in section 3.2 and meet the 
condition of the top left peak PE1, correct times will plus one. The 
same process was repeated 500 times. The accuracy is shown in 
equation 9:

                                                                                                   (9)

where, A_{cc} is accuracy, P is correct times and T is The number 
of experiments. Recording the running time at the same time. In 
this way, the accuracy and running time is shown in Tables 1.

Table 1: Accuracy and Running time

Group Accuracy Running time/s
Group1 92.80% 0.8627
Group2 93.20% 0.7805
Group3 92.60% 0.7697
Group4 92.40% 0.8797
Group5 93.60% 0.8283
Group6 91.60% 0.8954
Group7 92.80% 0.8416
Group8 91.40% 0.8641
Group9 90.40% 0.7465
Group10 93.60% 0.8630
Average 92.44% 0.8332

As shown in Tables 1, the accuracy of the proposed method has 
been up to 92.44% and proved the effectiveness. Therefore, the 
new method proposed in this paper is feasible. It is reasonable to 
believe that this method will be applied in the future.

Conclusion
In this paper, a new method based on improved cepstrum for bear-

ing fault diagnosis is proposed. The four largest peaks of the cep-
strum are extracted and improved by using corresponding thresh-
old. The search of threshold is completed by studying the peak 
graph. The result shows the accuracy of the proposed method is 
up to 92.44%, which has proven the feasibility of the method. In 
the follow study, to get higher accuracy and smaller blind area, 
furthermore research should be carried out. It is believed that the 
research will have a good application prospect.
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