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Abstract
Edge/Fog computing recently emerged as a novel distributed virtualized computing paradigm, where cloud services 
are extended to the edge of the network, thereby increasing network capacity and reducing latencies. In fog computing, 
applications are composed of microservices that are mapped to edge computing and communication devices (fog 
nodes). A crucial component in fog computing is placement algorithms that assign microservices to fog nodes since 
they determine the overall system performance in terms of energy consumption, communication costs, load balancing, 
and others. Placement strategies devised for cloud computing are generally centralized and, therefore, not well suited 
for decentralized fog systems. In this paper, we consider the joint optimization of two conflicting objectives, energy 
consumption at fog nodes and communication costs of applications, as a game between fog nodes and applications 
where each agent is modeled to control one objective. We follow a Markov approximation method for the design of 
a fully distributed autonomic service placement strategy without central coordination or global state information. 
Evaluation results show that the new approach provides a more optimal solution as compared to previous autonomic 
placement algorithms.
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1. Introduction
Fog computing, also known as edge computing is a distributed 
computing paradigm that acts as an intermediate layer in 
between cloud data centers and IoT devices/sensors. It offers to 
compute, networking, and storage facilities so that cloud-based 
services can be extended closer to the IoT devices/sensors. 
IoT applications are designed as a collection of microservices 
installed in application containers [1]. Fig. 1 depicts an IoT 
application that is composed of five microservices. Directed 
edges indicate the direction of communication, and edge 
weights show the amount of data flow between microservices, 
referred to as chaining degree. Fig. 2a shows a network of four 
fog nodes. Edges between fog nodes indicate communication 
links with edge weights, representing the distance between the 

nodes. These fog nodes are resourceconstrained and cooperate 
with forwarding data.

In this paper, we are concerned with the strategies for assigning 
microservices to fog nodes with the goal of balancing energy 
consumption at fog nodes and network traffic costs. Placement 
of microservices can be done in two ways, which presents a 
tradeoff between two placement objectives. The first strategy 
is placing maximal communicating microservices on each fog 
node, as illustrated in Fig. 2a. This keeps the communication 
costs between the microservices low, but at the same time, it 
leads to high utilization at some fog nodes. Also, this strategy 
may not be feasible due to limited resources at fog nodes. On the 
other hand, the second strategy is to distribute
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Fig. 1. Microservices of a fog application.

communicating microservices over a network of fog nodes,
as shown in Fig. 2b, which leads to data exchange between
the fog nodes (communication cost). This strategy results
in a load-balanced system, but at the same time, increases
communication costs.
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Fig. 2. Placement of IoT Application.

While service placement in terms of Virtual Machine
placement in cloud datacenters [2, 3] and Network Function
Virtualization (vNF) placement [4, 5] has been extensively
studied, the placement of microservices in fog computing has
received far less attention. Due to more stringent resource
constraints, a higher degree of heterogeneity, the geographical
distribution of fog nodes, and, above all, a decentralized
system architecture, placement strategies devised for cloud
platforms are not ideal for fog computing. This motivates the
search for distributed solutions that do not require any central
coordination or global information exchange.

In this paper, we present a distributed placement strategy
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While service placement in terms of Virtual Machine placement 
in cloud datacenters and Network Function Virtualization (vNF) 
placement has been extensively studied, the placement of 
microservices in fog computing has received far less attention 
[2-5]. Due to more stringent resource constraints, a higher 
degree of heterogeneity, the geographical distribution of fog 
nodes, and, above all, a decentralized system architecture, 
placement strategies devised for cloud platforms are not ideal 
for fog computing. This motivates the search for distributed 
solutions that do not require any central coordination or global 
information exchange.

In this paper, we present a distributed placement strategy that 
seeks to optimize energy consumption and communication 
costs. The joint optimization subject to resource constraints 
presents a combinatorial optimization problem with two 
conflicting objectives. We model the optimization problem as 
a game between two agents: fog nodes and applications, where 
each agent is modeled to control one objective. We make the 
problem tractable by applying a Markov approximation [6]. We 
exploit the iterative structure of a Markov approximation by 
letting individual fog nodes and applications make decisions 
on the next step of the iteration. Then, by limiting the state 
changes between iterations to moving or swapping a single 
microservice between fog nodes, we arrive at a fully distributed 
solution to the placement problem. Our main contribution is 
an autonomic placement method that does not require any 
centralized coordination or control and does not require any 
global information exchange. An evaluation of our algorithm 
shows the convergence properties and makes comparisons with 
our previous autonomic placement methods.

The remainder of the paper is organized as follows. In Sec. 
II, we discuss prior work on distributed service placement in 
cloud and fog computing. In Sec. III, we present our system 
model and formulate microservice placement as an optimization 

problem. In Sec.IV, we present the Markov approximation of 
the optimization problem. In Sec. V, we present our distributed 
service placement algorithm. We evaluate the algorithm in Sec. 
VI and we conclude in Sec. VII.

2. Related Work
A centralized approach to resource allocation in the fog can take 
advantage of a large set of methods that were developed for the 
cloud but does not exploit the opportunities for self-management 
of the distributed resources. Distributed solutions for fog 
networks have emerged only recently [2-5]. For an exhaustive 
literature survey, we refer the readers to [7,8].

In this paper, we work with the Markov approximation an 
iterative approximation method for combinatorial optimization 
problems, which lends itself to a distributed realization [6]. 
Markov approximations have been previously applied for both 
VM and vNF placements, however, without leveraging the 
potential of achieving a fully distributed solution and involving 
a central control [9,10]. In recent work  a decentralized 
placement algorithm is proposed for microservice-based IoT 
application placement in a fog environment in which every fog 
node contains the application placement logic and contributes 
in making placement decisions instead of having a centralized 
entity [11]. However, the algorithm only considers the resource 
requirements of microservices for making placement decisions 
without considering energy-efficient placement decisions 
and cost optimizations. In we propose a fully distributed 
service placement strategy that jointly optimizes the energy 
consumption at fog nodes and the communication cost of the 
applications without the requirement of any central controller or 
global information exchange [7]. The evaluation of the algorithm 
shows that the proposed algorithm is comparable to the existing 
heuristics. However, in spite of having a joint optimization 
objective, the algorithm only considers the fog nodes as the 
autonomous decision making entities that try to optimize both 
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energy consumption and communication cost. Moreover, in we 
found that a lower cost is achieved when both fog nodes and 
applications are considered as two agents and get involved in 
making placement decisions [8]. Thereupon, this work extends 
the proposed idea of designing a Markov approximation 
based autonomic placement method where both fog nodes and 
applications act as autonomous decision-making entities and get 
turns to perform the state transitions [12].

3. System Model and Problem Formulation
We consider a system of N fog nodes and M microservices 
from with FNn denoting the nth fog node and MSm is the mth 

microservice [7]. Let APr denote the rth application and Mr be the 
set of all microservices belonging to the application r. Lastly, K 
denotes an index set of resources. Matrix A = (Akn) consists of the 
resource availability at fog nodes and Matrix R = (Rkm) stores the 
resource requirements of microservices. Dependent on the type 
of resource, the Akn and Rkm are measured in million instructions 
per second (MIPS), bytes, or bits per second (bps). Let P denote 
the allocation matrix where each element Pmn is a binary variable 
with Pmn = 1 if MSm is placed on FNn and 0 otherwise. We use the 
column vector Pn = (P1n,...,P|M|n)

T to denote the assignment of 
microservices on FNn. Table I summarizes the notation.

that seeks to optimize energy consumption and communication
costs. The joint optimization subject to resource constraints
presents a combinatorial optimization problem with two con-
flicting objectives. We model the optimization problem as a
game between two agents: fog nodes and applications, where
each agent is modeled to control one objective. We make the
problem tractable by applying a Markov approximation [6].
We exploit the iterative structure of a Markov approxima-
tion by letting individual fog nodes and applications make
decisions on the next step of the iteration. Then, by limiting
the state changes between iterations to moving or swapping
a single microservice between fog nodes, we arrive at a
fully distributed solution to the placement problem. Our main
contribution is an autonomic placement method that does not
require any centralized coordination or control and does not
require any global information exchange. An evaluation of
our algorithm shows the convergence properties and makes
comparisons with our previous autonomic placement methods.
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Lastly, K denotes an index set of resources. Matrix A = (Akn)
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TABLE I
SUMMARY OF NOTATION.

Akn: Availability of resource type k at fog node FNn.
Rkm: Amount of resource type k required by microservice MSm.
Cij : Chaining cost between microservices MSi and MSj .
Dlk: Distance between any fog nodes FNl and FNk .
Pmn: Pmn = 1 if MSm is placed on FNn, Pmn = 0 otherwise.

An allocation matrix of a feasible placement satisfies
RP � A ,∑
n∈N

Pmn = 1 , ∀m ∈ M , (1)

where � indicates that the inequality holds componentwise.
The utilization of the kth resource at FNn, denoted by ρkn
is determined by the ratio of allocated to available resources,
given by

ρkn =
1

Akn
RkPn .

The utilization of the CPU at a fog node largely determines its
energy consumption and has been shown to be a useful linear
approximation of energy consumption across a wide range of
applications and platforms [13]. Assuming that c ∈ K is the
resource index for the CPU, the energy consumption for a
given placement matrix P at all fog nodes is given by

E(P ) =
∑
n∈N

ρcn . (2)

that seeks to optimize energy consumption and communication
costs. The joint optimization subject to resource constraints
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flicting objectives. We model the optimization problem as a
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fully distributed solution to the placement problem. Our main
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require any global information exchange. An evaluation of
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presents a combinatorial optimization problem with two con-
flicting objectives. We model the optimization problem as a
game between two agents: fog nodes and applications, where
each agent is modeled to control one objective. We make the
problem tractable by applying a Markov approximation [6].
We exploit the iterative structure of a Markov approxima-
tion by letting individual fog nodes and applications make
decisions on the next step of the iteration. Then, by limiting
the state changes between iterations to moving or swapping
a single microservice between fog nodes, we arrive at a
fully distributed solution to the placement problem. Our main
contribution is an autonomic placement method that does not
require any centralized coordination or control and does not
require any global information exchange. An evaluation of
our algorithm shows the convergence properties and makes
comparisons with our previous autonomic placement methods.

The remainder of the paper is organized as follows. In
Sec. II, we discuss prior work on distributed service placement
in cloud and fog computing. In Sec. III, we present our
system model and formulate microservice placement as an
optimization problem. In Sec.IV, we present the Markov
approximation of the optimization problem. In Sec. V, we
present our distributed service placement algorithm. We eval-
uate the algorithm in Sec. VI and we conclude in Sec. VII.

II. RELATED WORK

A centralized approach to resource allocation in the fog can
take advantage of a large set of methods that were developed
for the cloud [2, 3, 4, 5], but does not exploit the opportunities
for self-management of the distributed resources. Distributed
solutions for fog networks have emerged only recently. For an
exhaustive literature survey, we refer the readers to [7, 8].

In this paper, we work with the Markov approximation [6],
an iterative approximation method for combinatorial optimiza-
tion problems, which lends itself to a distributed realization.
Markov approximations have been previously applied for both
VM [9] and vNF [10] placements, however, without leveraging
the potential of achieving a fully distributed solution and
involving a central control. In recent work [11], a decentralized
placement algorithm is proposed for microservice-based IoT
application placement in a fog environment in which every fog
node contains the application placement logic and contributes
in making placement decisions instead of having a centralized
entity. However, the algorithm only considers the resource
requirements of microservices for making placement decisions
without considering energy-efficient placement decisions and
cost optimizations. In [7], we propose a fully distributed
service placement strategy that jointly optimizes the energy
consumption at fog nodes and the communication cost of the
applications without the requirement of any central controller
or global information exchange. The evaluation of the algo-
rithm shows that the proposed algorithm is comparable to
the existing heuristics. However, in spite of having a joint

optimization objective, the algorithm only considers the fog
nodes as the autonomous decision making entities that try to
optimize both energy consumption and communication cost.
Moreover, in [8], we found that a lower cost is achieved when
both fog nodes and applications are considered as two agents
and get involved in making placement decisions. Thereupon,
this work extends the proposed idea [12] of designing a
Markov approximation based autonomic placement method
where both fog nodes and applications act as autonomous
decision-making entities and get turns to perform the state
transitions.

III. SYSTEM MODEL AND PROBLEM FORMULATION

We consider a system of N fog nodes and M microservices
from [7], with FNn denoting the nth fog node and MSm is the
mth microservice. Let APr denote the rth application and Mr

be the set of all microservices belonging to the application r.
Lastly, K denotes an index set of resources. Matrix A = (Akn)
consists of the resource availability at fog nodes and Matrix
R = (Rkm) stores the resource requirements of microservices.
Dependent on the type of resource, the Akn and Rkm are
measured in million instructions per second (MIPS), bytes,
or bits per second (bps). Let P denote the allocation matrix
where each element Pmn is a binary variable with Pmn = 1 if
MSm is placed on FNn and 0 otherwise. We use the column
vector Pn = (P1n, . . . , P|M |n)

T to denote the assignment of
microservices on FNn. Table I summarizes the notation.

TABLE I
SUMMARY OF NOTATION.

Akn: Availability of resource type k at fog node FNn.
Rkm: Amount of resource type k required by microservice MSm.
Cij : Chaining cost between microservices MSi and MSj .
Dlk: Distance between any fog nodes FNl and FNk .
Pmn: Pmn = 1 if MSm is placed on FNn, Pmn = 0 otherwise.

An allocation matrix of a feasible placement satisfies
RP � A ,∑
n∈N

Pmn = 1 , ∀m ∈ M , (1)

where � indicates that the inequality holds componentwise.
The utilization of the kth resource at FNn, denoted by ρkn
is determined by the ratio of allocated to available resources,
given by

ρkn =
1

Akn
RkPn .

The utilization of the CPU at a fog node largely determines its
energy consumption and has been shown to be a useful linear
approximation of energy consumption across a wide range of
applications and platforms [13]. Assuming that c ∈ K is the
resource index for the CPU, the energy consumption for a
given placement matrix P at all fog nodes is given by

E(P ) =
∑
n∈N

ρcn . (2)
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distance between two fog nodes FNl and FNk is set to

The fog network is represented by an undirected graph. Let D
denote the symmetric matrix representing the distance between
each pair of fog nodes, where the cost Dlk accounts for the
distance and/or the available network capacity between FNl

and FNk. The distance between two fog nodes FNl and FNk

is set to

Dlk =
hop count between FNl and FNk

maxi,j{ hop count between FNi and FNj
} , (3)

so that the distance metric is proportional to the number of
traversed fog nodes on the routing path. The chaining degree
between the microservices are tabulated in matrix C, such
that Cij denotes the chaining degree from MSi to MSj .
The total communication cost between two microservices
MSi and MSj that are mapped to fog nodes FNk and FNl,
respectively, is DklCij , the product of the chaining cost of the
microservices and the distance between the fog nodes where
the microservices are located. Given a placement matrix P
expressing the mapping of microservices to fog nodes, the total
communication cost by all microservices, denoted by G(P ),
is given by

G(P ) =
∑

m1,m2∈M

Cm1m2

∑
n1,n2∈N

Pm1n1
Dn1n2

Pn2m2
. (4)

With the constraints of a feasible allocation in Eq. (1),
and expressions for energy consumption (Eq. (2)) and com-
munication cost (Eq. (4)), we can formulate a multi-objective
optimization problem, called Fog Service Placement (FSP), as

FSP : min
P

T (P ) = σE(P ) + (1− σ)G(P )

s.t. RP � A∑
n∈N

Pmn = 1 , ∀m ∈ M ,

Pmn ∈ {0, 1} , ∀m ∈ M , ∀n ∈ N .

(5)

The parameter σ with 0 ≤ σ ≤ 1 calibrates the weights
of energy consumption and communication cost in the op-
timization. A larger value of σ prioritizes energy consumption
over the communication cost, while a smaller σ stresses the
importance of low communication costs. Due to the integral
constraints, the FSP problem is NP hard. We will therefore
resort to approximation methods.

IV. MARKOV APPROXIMATION OF FSP

In this section, we present approximation algorithm for
FSP given in Eq. (5). Our point of departure is the Markov
approximation method [6] for iteratively solving combinatorial
problems. The method constructs a Markov chain such that
the steady-state of the Markov chain provides an approximate
solution to the optimization problem. Let P denote the set of
all placement matrices defined as

P =
{
P ∈ {0, 1}|M |×|N | |

∑
n∈N

Pmn = 1, ∀m ∈ M
}
.

To estimate the cardinality of P , consider the worst case where
all fog nodes have sufficient capacity to accommodate all

microservices. Then, the number of all possible placements
is given by |N ||M |. With [6, Theorem 1] we can give an
approximate formulation of FSP by

min
P1∈P

∑
P1∈P

(
pP1E(P1) +

1

β
pP1

log pP1

)

+ min
P2∈P

∑
P2∈P

(
pP2

G(P2) +
1

β
pP2

log pP2

)

s.t.
∑
P1∈P

pP1
= 1 ,

∑
P2∈P

pP2
= 1 ,

0 ≤ pP1
≤ 1 , 0 ≤ pP2

≤ 1, ∀P1, P2 ∈ P ,

all constraints from Eq. (5) ,

(6)

where β is a positive constant, pP1
& pP2

can be interpreted
as the probability of choosing the allocation matrix P1 &
P2 respectively, and 1

β pP1
log pP1

& 1
β pP2

log pP2
are the

entropy terms. The optimality gap of the approximation is
bounded by 1

β log |P|, which gives us an upper bound of
1
β |M | log |N | [6]. The approximation becomes exact for
β → ∞; however, there are problem-specific constraints
on setting β arbitrarily large. We consider fog nodes and
applications as autonomous decision-making entities where
each entity is modeled to control one objective. Fog nodes
try to decrease the energy consumption E(P ) and applica-
tions minimize the communication cost G(P ). Fog nodes
and applications construct independent Markov chains and
perform microservice exchange to explore different states of
the Markov chains, such that each new placement lies in P .
The steady-states of the two Markov chains are given by

p∗P1
=

e−βE(P1)∑
Q∈P e−βE(Q)

, ∀P1 ∈ P ,

p∗P2
=

e−βG(P2)∑
Q∈P e−βG(Q)

, ∀P2 ∈ P .

(7)

Let P ∗
1 and P ∗

2 denote the placements obtained at the
steady-state of the two Markov chains. Then optimal place-
ment for the FSP problem, denoted by P ∗, is

P ∗ = argmin
P∗

1 ,P∗
2

(T (P ∗
1 ), T (P

∗
2 ) ) . (8)

The next step is the design of the time-reversible ergodic
Markov chains, where each state corresponds to a placement
P ∈ P with stationary distributions as given in Eq. (7).

V. AUTONOMIC PLACEMENT ALGORITHM

In this section, we present the distributed algorithm that
approximates the FSP problem. Each fog node FNn maintains
a local energy cost, and each application APr keeps a local
communication cost due to the communication between its mi-
croservices under placement P , which are denoted by En(P )
and Gr(P ), respectively. The local values are determined as

En(P ) = ρcn , (9)

The fog network is represented by an undirected graph. Let D
denote the symmetric matrix representing the distance between
each pair of fog nodes, where the cost Dlk accounts for the
distance and/or the available network capacity between FNl

and FNk. The distance between two fog nodes FNl and FNk

is set to
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of energy consumption and communication cost in the op-
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.
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can be interpreted
as the probability of choosing the allocation matrix P1 &
P2 respectively, and 1
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log pP2
are the

entropy terms. The optimality gap of the approximation is
bounded by 1

β log |P|, which gives us an upper bound of
1
β |M | log |N | [6]. The approximation becomes exact for
β → ∞; however, there are problem-specific constraints
on setting β arbitrarily large. We consider fog nodes and
applications as autonomous decision-making entities where
each entity is modeled to control one objective. Fog nodes
try to decrease the energy consumption E(P ) and applica-
tions minimize the communication cost G(P ). Fog nodes
and applications construct independent Markov chains and
perform microservice exchange to explore different states of
the Markov chains, such that each new placement lies in P .
The steady-states of the two Markov chains are given by
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Let P ∗
1 and P ∗

2 denote the placements obtained at the
steady-state of the two Markov chains. Then optimal place-
ment for the FSP problem, denoted by P ∗, is

P ∗ = argmin
P∗
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(T (P ∗
1 ), T (P

∗
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The next step is the design of the time-reversible ergodic
Markov chains, where each state corresponds to a placement
P ∈ P with stationary distributions as given in Eq. (7).

V. AUTONOMIC PLACEMENT ALGORITHM

In this section, we present the distributed algorithm that
approximates the FSP problem. Each fog node FNn maintains
a local energy cost, and each application APr keeps a local
communication cost due to the communication between its mi-
croservices under placement P , which are denoted by En(P )
and Gr(P ), respectively. The local values are determined as

En(P ) = ρcn , (9)

so that the distance metric is proportional to the number of traversed fog nodes on the routing path. The chaining degree between 
the microservices are tabulated in matrix C, such that Cij denotes the chaining degree from MSi to MSj. The total communication 
cost between two microservices MSi and MSj that are mapped to fog nodes FNk and FNl, respectively, is DklCij, the product of the 
chaining cost of the microservices and the distance between the fog nodes where the microservices are located. Given a placement 
matrix P expressing the mapping of microservices to fog nodes, the total communication cost by all microservices, denoted by G(P), 
is given by

With the constraints of a feasible allocation in Eq. (1), and expressions for energy consumption (Eq. (2)) and communication cost 
(Eq. (4)), we can formulate a multi-objective optimization problem, called Fog Service Placement (FSP), as 
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denote the symmetric matrix representing the distance between
each pair of fog nodes, where the cost Dlk accounts for the
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is set to
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so that the distance metric is proportional to the number of
traversed fog nodes on the routing path. The chaining degree
between the microservices are tabulated in matrix C, such
that Cij denotes the chaining degree from MSi to MSj .
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microservices and the distance between the fog nodes where
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With the constraints of a feasible allocation in Eq. (1),
and expressions for energy consumption (Eq. (2)) and com-
munication cost (Eq. (4)), we can formulate a multi-objective
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T (P ) = σE(P ) + (1− σ)G(P )

s.t. RP � A∑
n∈N
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The parameter σ with 0 ≤ σ ≤ 1 calibrates the weights
of energy consumption and communication cost in the op-
timization. A larger value of σ prioritizes energy consumption
over the communication cost, while a smaller σ stresses the
importance of low communication costs. Due to the integral
constraints, the FSP problem is NP hard. We will therefore
resort to approximation methods.
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In this section, we present approximation algorithm for
FSP given in Eq. (5). Our point of departure is the Markov
approximation method [6] for iteratively solving combinatorial
problems. The method constructs a Markov chain such that
the steady-state of the Markov chain provides an approximate
solution to the optimization problem. Let P denote the set of
all placement matrices defined as

P =
{
P ∈ {0, 1}|M |×|N | |

∑
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.

To estimate the cardinality of P , consider the worst case where
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microservices. Then, the number of all possible placements
is given by |N ||M |. With [6, Theorem 1] we can give an
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as the probability of choosing the allocation matrix P1 &
P2 respectively, and 1
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entropy terms. The optimality gap of the approximation is
bounded by 1

β log |P|, which gives us an upper bound of
1
β |M | log |N | [6]. The approximation becomes exact for
β → ∞; however, there are problem-specific constraints
on setting β arbitrarily large. We consider fog nodes and
applications as autonomous decision-making entities where
each entity is modeled to control one objective. Fog nodes
try to decrease the energy consumption E(P ) and applica-
tions minimize the communication cost G(P ). Fog nodes
and applications construct independent Markov chains and
perform microservice exchange to explore different states of
the Markov chains, such that each new placement lies in P .
The steady-states of the two Markov chains are given by
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Let P ∗
1 and P ∗

2 denote the placements obtained at the
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ment for the FSP problem, denoted by P ∗, is
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The next step is the design of the time-reversible ergodic
Markov chains, where each state corresponds to a placement
P ∈ P with stationary distributions as given in Eq. (7).

V. AUTONOMIC PLACEMENT ALGORITHM

In this section, we present the distributed algorithm that
approximates the FSP problem. Each fog node FNn maintains
a local energy cost, and each application APr keeps a local
communication cost due to the communication between its mi-
croservices under placement P , which are denoted by En(P )
and Gr(P ), respectively. The local values are determined as

En(P ) = ρcn , (9)

The fog network is represented by an undirected graph. Let D
denote the symmetric matrix representing the distance between
each pair of fog nodes, where the cost Dlk accounts for the
distance and/or the available network capacity between FNl

and FNk. The distance between two fog nodes FNl and FNk

is set to

Dlk =
hop count between FNl and FNk

maxi,j{ hop count between FNi and FNj
} , (3)

so that the distance metric is proportional to the number of
traversed fog nodes on the routing path. The chaining degree
between the microservices are tabulated in matrix C, such
that Cij denotes the chaining degree from MSi to MSj .
The total communication cost between two microservices
MSi and MSj that are mapped to fog nodes FNk and FNl,
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expressing the mapping of microservices to fog nodes, the total
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is given by
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and expressions for energy consumption (Eq. (2)) and com-
munication cost (Eq. (4)), we can formulate a multi-objective
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The parameter σ with 0 ≤ σ ≤ 1 calibrates the weights
of energy consumption and communication cost in the op-
timization. A larger value of σ prioritizes energy consumption
over the communication cost, while a smaller σ stresses the
importance of low communication costs. Due to the integral
constraints, the FSP problem is NP hard. We will therefore
resort to approximation methods.

IV. MARKOV APPROXIMATION OF FSP

In this section, we present approximation algorithm for
FSP given in Eq. (5). Our point of departure is the Markov
approximation method [6] for iteratively solving combinatorial
problems. The method constructs a Markov chain such that
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To estimate the cardinality of P , consider the worst case where
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between the microservices are tabulated in matrix C, such
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of energy consumption and communication cost in the op-
timization. A larger value of σ prioritizes energy consumption
over the communication cost, while a smaller σ stresses the
importance of low communication costs. Due to the integral
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P ∈ P with stationary distributions as given in Eq. (7).
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of energy consumption and communication cost in the op-
timization. A larger value of σ prioritizes energy consumption
over the communication cost, while a smaller σ stresses the
importance of low communication costs. Due to the integral
constraints, the FSP problem is NP hard. We will therefore
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is given by

G(P ) =
∑

m1,m2∈M

Cm1m2

∑
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Pm1n1
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With the constraints of a feasible allocation in Eq. (1),
and expressions for energy consumption (Eq. (2)) and com-
munication cost (Eq. (4)), we can formulate a multi-objective
optimization problem, called Fog Service Placement (FSP), as

FSP : min
P

T (P ) = σE(P ) + (1− σ)G(P )
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Pmn = 1 , ∀m ∈ M ,
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The parameter σ with 0 ≤ σ ≤ 1 calibrates the weights
of energy consumption and communication cost in the op-
timization. A larger value of σ prioritizes energy consumption
over the communication cost, while a smaller σ stresses the
importance of low communication costs. Due to the integral
constraints, the FSP problem is NP hard. We will therefore
resort to approximation methods.

IV. MARKOV APPROXIMATION OF FSP

In this section, we present approximation algorithm for
FSP given in Eq. (5). Our point of departure is the Markov
approximation method [6] for iteratively solving combinatorial
problems. The method constructs a Markov chain such that
the steady-state of the Markov chain provides an approximate
solution to the optimization problem. Let P denote the set of
all placement matrices defined as

P =
{
P ∈ {0, 1}|M |×|N | |

∑
n∈N

Pmn = 1, ∀m ∈ M
}
.

To estimate the cardinality of P , consider the worst case where
all fog nodes have sufficient capacity to accommodate all

microservices. Then, the number of all possible placements
is given by |N ||M |. With [6, Theorem 1] we can give an
approximate formulation of FSP by
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where β is a positive constant, pP1
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bounded by 1
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on setting β arbitrarily large. We consider fog nodes and
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and applications construct independent Markov chains and
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the Markov chains, such that each new placement lies in P .
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The next step is the design of the time-reversible ergodic
Markov chains, where each state corresponds to a placement
P ∈ P with stationary distributions as given in Eq. (7).
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In this section, we present the distributed algorithm that
approximates the FSP problem. Each fog node FNn maintains
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communication cost due to the communication between its mi-
croservices under placement P , which are denoted by En(P )
and Gr(P ), respectively. The local values are determined as

En(P ) = ρcn , (9)
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denote the symmetric matrix representing the distance between
each pair of fog nodes, where the cost Dlk accounts for the
distance and/or the available network capacity between FNl

and FNk. The distance between two fog nodes FNl and FNk

is set to
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The parameter σ with 0 ≤ σ ≤ 1 calibrates the weights
of energy consumption and communication cost in the op-
timization. A larger value of σ prioritizes energy consumption
over the communication cost, while a smaller σ stresses the
importance of low communication costs. Due to the integral
constraints, the FSP problem is NP hard. We will therefore
resort to approximation methods.
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In this section, we present approximation algorithm for
FSP given in Eq. (5). Our point of departure is the Markov
approximation method [6] for iteratively solving combinatorial
problems. The method constructs a Markov chain such that
the steady-state of the Markov chain provides an approximate
solution to the optimization problem. Let P denote the set of
all placement matrices defined as

P =
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entropy terms. The optimality gap of the approximation is
bounded by 1

β log |P|, which gives us an upper bound of
1
β |M | log |N | [6]. The approximation becomes exact for
β → ∞; however, there are problem-specific constraints
on setting β arbitrarily large. We consider fog nodes and
applications as autonomous decision-making entities where
each entity is modeled to control one objective. Fog nodes
try to decrease the energy consumption E(P ) and applica-
tions minimize the communication cost G(P ). Fog nodes
and applications construct independent Markov chains and
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The next step is the design of the time-reversible ergodic
Markov chains, where each state corresponds to a placement
P ∈ P with stationary distributions as given in Eq. (7).
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In this section, we present the distributed algorithm that
approximates the FSP problem. Each fog node FNn maintains
a local energy cost, and each application APr keeps a local
communication cost due to the communication between its mi-
croservices under placement P , which are denoted by En(P )
and Gr(P ), respectively. The local values are determined as

En(P ) = ρcn , (9)

The fog network is represented by an undirected graph. Let D
denote the symmetric matrix representing the distance between
each pair of fog nodes, where the cost Dlk accounts for the
distance and/or the available network capacity between FNl

and FNk. The distance between two fog nodes FNl and FNk

is set to

Dlk =
hop count between FNl and FNk

maxi,j{ hop count between FNi and FNj
} , (3)

so that the distance metric is proportional to the number of
traversed fog nodes on the routing path. The chaining degree
between the microservices are tabulated in matrix C, such
that Cij denotes the chaining degree from MSi to MSj .
The total communication cost between two microservices
MSi and MSj that are mapped to fog nodes FNk and FNl,
respectively, is DklCij , the product of the chaining cost of the
microservices and the distance between the fog nodes where
the microservices are located. Given a placement matrix P
expressing the mapping of microservices to fog nodes, the total
communication cost by all microservices, denoted by G(P ),
is given by

G(P ) =
∑
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With the constraints of a feasible allocation in Eq. (1),
and expressions for energy consumption (Eq. (2)) and com-
munication cost (Eq. (4)), we can formulate a multi-objective
optimization problem, called Fog Service Placement (FSP), as
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The parameter σ with 0 ≤ σ ≤ 1 calibrates the weights
of energy consumption and communication cost in the op-
timization. A larger value of σ prioritizes energy consumption
over the communication cost, while a smaller σ stresses the
importance of low communication costs. Due to the integral
constraints, the FSP problem is NP hard. We will therefore
resort to approximation methods.

IV. MARKOV APPROXIMATION OF FSP

In this section, we present approximation algorithm for
FSP given in Eq. (5). Our point of departure is the Markov
approximation method [6] for iteratively solving combinatorial
problems. The method constructs a Markov chain such that
the steady-state of the Markov chain provides an approximate
solution to the optimization problem. Let P denote the set of
all placement matrices defined as

P =
{
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Pmn = 1, ∀m ∈ M
}
.

To estimate the cardinality of P , consider the worst case where
all fog nodes have sufficient capacity to accommodate all
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β pP1
log pP1

& 1
β pP2

log pP2
are the

entropy terms. The optimality gap of the approximation is
bounded by 1

β log |P|, which gives us an upper bound of
1
β |M | log |N | [6]. The approximation becomes exact for
β → ∞; however, there are problem-specific constraints
on setting β arbitrarily large. We consider fog nodes and
applications as autonomous decision-making entities where
each entity is modeled to control one objective. Fog nodes
try to decrease the energy consumption E(P ) and applica-
tions minimize the communication cost G(P ). Fog nodes
and applications construct independent Markov chains and
perform microservice exchange to explore different states of
the Markov chains, such that each new placement lies in P .
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The next step is the design of the time-reversible ergodic
Markov chains, where each state corresponds to a placement
P ∈ P with stationary distributions as given in Eq. (7).
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In this section, we present the distributed algorithm that
approximates the FSP problem. Each fog node FNn maintains
a local energy cost, and each application APr keeps a local
communication cost due to the communication between its mi-
croservices under placement P , which are denoted by En(P )
and Gr(P ), respectively. The local values are determined as

En(P ) = ρcn , (9)

The fog network is represented by an undirected graph. Let D
denote the symmetric matrix representing the distance between
each pair of fog nodes, where the cost Dlk accounts for the
distance and/or the available network capacity between FNl

and FNk. The distance between two fog nodes FNl and FNk

is set to

Dlk =
hop count between FNl and FNk
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so that the distance metric is proportional to the number of
traversed fog nodes on the routing path. The chaining degree
between the microservices are tabulated in matrix C, such
that Cij denotes the chaining degree from MSi to MSj .
The total communication cost between two microservices
MSi and MSj that are mapped to fog nodes FNk and FNl,
respectively, is DklCij , the product of the chaining cost of the
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is given by
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and expressions for energy consumption (Eq. (2)) and com-
munication cost (Eq. (4)), we can formulate a multi-objective
optimization problem, called Fog Service Placement (FSP), as
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The parameter σ with 0 ≤ σ ≤ 1 calibrates the weights
of energy consumption and communication cost in the op-
timization. A larger value of σ prioritizes energy consumption
over the communication cost, while a smaller σ stresses the
importance of low communication costs. Due to the integral
constraints, the FSP problem is NP hard. We will therefore
resort to approximation methods.

IV. MARKOV APPROXIMATION OF FSP

In this section, we present approximation algorithm for
FSP given in Eq. (5). Our point of departure is the Markov
approximation method [6] for iteratively solving combinatorial
problems. The method constructs a Markov chain such that
the steady-state of the Markov chain provides an approximate
solution to the optimization problem. Let P denote the set of
all placement matrices defined as

P =
{
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∑
n∈N

Pmn = 1, ∀m ∈ M
}
.

To estimate the cardinality of P , consider the worst case where
all fog nodes have sufficient capacity to accommodate all

microservices. Then, the number of all possible placements
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approximate formulation of FSP by

min
P1∈P

∑
P1∈P

(
pP1E(P1) +

1

β
pP1

log pP1

)

+ min
P2∈P

∑
P2∈P

(
pP2

G(P2) +
1

β
pP2

log pP2

)

s.t.
∑
P1∈P

pP1
= 1 ,

∑
P2∈P

pP2
= 1 ,

0 ≤ pP1
≤ 1 , 0 ≤ pP2

≤ 1, ∀P1, P2 ∈ P ,

all constraints from Eq. (5) ,

(6)

where β is a positive constant, pP1
& pP2

can be interpreted
as the probability of choosing the allocation matrix P1 &
P2 respectively, and 1
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bounded by 1

β log |P|, which gives us an upper bound of
1
β |M | log |N | [6]. The approximation becomes exact for
β → ∞; however, there are problem-specific constraints
on setting β arbitrarily large. We consider fog nodes and
applications as autonomous decision-making entities where
each entity is modeled to control one objective. Fog nodes
try to decrease the energy consumption E(P ) and applica-
tions minimize the communication cost G(P ). Fog nodes
and applications construct independent Markov chains and
perform microservice exchange to explore different states of
the Markov chains, such that each new placement lies in P .
The steady-states of the two Markov chains are given by

p∗P1
=

e−βE(P1)∑
Q∈P e−βE(Q)

, ∀P1 ∈ P ,

p∗P2
=

e−βG(P2)∑
Q∈P e−βG(Q)

, ∀P2 ∈ P .

(7)

Let P ∗
1 and P ∗

2 denote the placements obtained at the
steady-state of the two Markov chains. Then optimal place-
ment for the FSP problem, denoted by P ∗, is

P ∗ = argmin
P∗

1 ,P∗
2

(T (P ∗
1 ), T (P

∗
2 ) ) . (8)

The next step is the design of the time-reversible ergodic
Markov chains, where each state corresponds to a placement
P ∈ P with stationary distributions as given in Eq. (7).
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In this section, we present the distributed algorithm that
approximates the FSP problem. Each fog node FNn maintains
a local energy cost, and each application APr keeps a local
communication cost due to the communication between its mi-
croservices under placement P , which are denoted by En(P )
and Gr(P ), respectively. The local values are determined as

En(P ) = ρcn , (9)

The fog network is represented by an undirected graph. Let D
denote the symmetric matrix representing the distance between
each pair of fog nodes, where the cost Dlk accounts for the
distance and/or the available network capacity between FNl

and FNk. The distance between two fog nodes FNl and FNk

is set to

Dlk =
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so that the distance metric is proportional to the number of
traversed fog nodes on the routing path. The chaining degree
between the microservices are tabulated in matrix C, such
that Cij denotes the chaining degree from MSi to MSj .
The total communication cost between two microservices
MSi and MSj that are mapped to fog nodes FNk and FNl,
respectively, is DklCij , the product of the chaining cost of the
microservices and the distance between the fog nodes where
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expressing the mapping of microservices to fog nodes, the total
communication cost by all microservices, denoted by G(P ),
is given by

G(P ) =
∑

m1,m2∈M

Cm1m2

∑
n1,n2∈N

Pm1n1
Dn1n2

Pn2m2
. (4)
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munication cost (Eq. (4)), we can formulate a multi-objective
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The parameter σ with 0 ≤ σ ≤ 1 calibrates the weights
of energy consumption and communication cost in the op-
timization. A larger value of σ prioritizes energy consumption
over the communication cost, while a smaller σ stresses the
importance of low communication costs. Due to the integral
constraints, the FSP problem is NP hard. We will therefore
resort to approximation methods.
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In this section, we present approximation algorithm for
FSP given in Eq. (5). Our point of departure is the Markov
approximation method [6] for iteratively solving combinatorial
problems. The method constructs a Markov chain such that
the steady-state of the Markov chain provides an approximate
solution to the optimization problem. Let P denote the set of
all placement matrices defined as

P =
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.

To estimate the cardinality of P , consider the worst case where
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entropy terms. The optimality gap of the approximation is
bounded by 1

β log |P|, which gives us an upper bound of
1
β |M | log |N | [6]. The approximation becomes exact for
β → ∞; however, there are problem-specific constraints
on setting β arbitrarily large. We consider fog nodes and
applications as autonomous decision-making entities where
each entity is modeled to control one objective. Fog nodes
try to decrease the energy consumption E(P ) and applica-
tions minimize the communication cost G(P ). Fog nodes
and applications construct independent Markov chains and
perform microservice exchange to explore different states of
the Markov chains, such that each new placement lies in P .
The steady-states of the two Markov chains are given by
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P ∗ = argmin
P∗

1 ,P∗
2

(T (P ∗
1 ), T (P

∗
2 ) ) . (8)

The next step is the design of the time-reversible ergodic
Markov chains, where each state corresponds to a placement
P ∈ P with stationary distributions as given in Eq. (7).

V. AUTONOMIC PLACEMENT ALGORITHM

In this section, we present the distributed algorithm that
approximates the FSP problem. Each fog node FNn maintains
a local energy cost, and each application APr keeps a local
communication cost due to the communication between its mi-
croservices under placement P , which are denoted by En(P )
and Gr(P ), respectively. The local values are determined as

En(P ) = ρcn , (9)

The parameter σ with 0 ≤ σ ≤ 1 calibrates the weights of energy 
consumption and communication cost in the optimization. 
A larger value of σ prioritizes energy consumption over the 
communication cost, while a smaller σ stresses the importance 
of low communication costs. Due to the integral constraints, 
the FSP problem is NP hard. We will therefore resort to 
approximation methods.
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To estimate the cardinality of P, consider the worst case where all fog nodes have sufficient capacity to accommodate all 
microservices. Then, the number of all possible placements is given by |N||M|. With [6, Theorem 1] we can give an approximate 
formulation of FSP by
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chains, where each state corresponds to a placement P ∈ P with 
stationary distributions as given in Eq. (7).

5. Autonomic Placement Algorithm
In this section, we present the distributed algorithm that 

approximates the FSP problem. Each fog node FNn maintains 
a local energy cost, and each application APr keeps a local 
communication cost due to the communication between its 
microservices under placement P, which are denoted by En(P) 
and Gr(P), respectively. The local values are determined as
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The fog network is represented by an undirected graph. Let D
denote the symmetric matrix representing the distance between
each pair of fog nodes, where the cost Dlk accounts for the
distance and/or the available network capacity between FNl

and FNk. The distance between two fog nodes FNl and FNk

is set to

Dlk =
hop count between FNl and FNk

maxi,j{ hop count between FNi and FNj
} , (3)

so that the distance metric is proportional to the number of
traversed fog nodes on the routing path. The chaining degree
between the microservices are tabulated in matrix C, such
that Cij denotes the chaining degree from MSi to MSj .
The total communication cost between two microservices
MSi and MSj that are mapped to fog nodes FNk and FNl,
respectively, is DklCij , the product of the chaining cost of the
microservices and the distance between the fog nodes where
the microservices are located. Given a placement matrix P
expressing the mapping of microservices to fog nodes, the total
communication cost by all microservices, denoted by G(P ),
is given by

G(P ) =
∑

m1,m2∈M

Cm1m2

∑
n1,n2∈N

Pm1n1
Dn1n2

Pn2m2
. (4)

With the constraints of a feasible allocation in Eq. (1),
and expressions for energy consumption (Eq. (2)) and com-
munication cost (Eq. (4)), we can formulate a multi-objective
optimization problem, called Fog Service Placement (FSP), as

FSP : min
P

T (P ) = σE(P ) + (1− σ)G(P )

s.t. RP � A∑
n∈N

Pmn = 1 , ∀m ∈ M ,

Pmn ∈ {0, 1} , ∀m ∈ M , ∀n ∈ N .

(5)

The parameter σ with 0 ≤ σ ≤ 1 calibrates the weights
of energy consumption and communication cost in the op-
timization. A larger value of σ prioritizes energy consumption
over the communication cost, while a smaller σ stresses the
importance of low communication costs. Due to the integral
constraints, the FSP problem is NP hard. We will therefore
resort to approximation methods.

IV. MARKOV APPROXIMATION OF FSP

In this section, we present approximation algorithm for
FSP given in Eq. (5). Our point of departure is the Markov
approximation method [6] for iteratively solving combinatorial
problems. The method constructs a Markov chain such that
the steady-state of the Markov chain provides an approximate
solution to the optimization problem. Let P denote the set of
all placement matrices defined as

P =
{
P ∈ {0, 1}|M |×|N | |

∑
n∈N

Pmn = 1, ∀m ∈ M
}
.

To estimate the cardinality of P , consider the worst case where
all fog nodes have sufficient capacity to accommodate all

microservices. Then, the number of all possible placements
is given by |N ||M |. With [6, Theorem 1] we can give an
approximate formulation of FSP by

min
P1∈P

∑
P1∈P

(
pP1E(P1) +

1

β
pP1

log pP1

)

+ min
P2∈P

∑
P2∈P

(
pP2

G(P2) +
1

β
pP2

log pP2

)

s.t.
∑
P1∈P

pP1
= 1 ,

∑
P2∈P

pP2
= 1 ,

0 ≤ pP1
≤ 1 , 0 ≤ pP2

≤ 1, ∀P1, P2 ∈ P ,

all constraints from Eq. (5) ,

(6)

where β is a positive constant, pP1
& pP2

can be interpreted
as the probability of choosing the allocation matrix P1 &
P2 respectively, and 1

β pP1
log pP1

& 1
β pP2

log pP2
are the

entropy terms. The optimality gap of the approximation is
bounded by 1

β log |P|, which gives us an upper bound of
1
β |M | log |N | [6]. The approximation becomes exact for
β → ∞; however, there are problem-specific constraints
on setting β arbitrarily large. We consider fog nodes and
applications as autonomous decision-making entities where
each entity is modeled to control one objective. Fog nodes
try to decrease the energy consumption E(P ) and applica-
tions minimize the communication cost G(P ). Fog nodes
and applications construct independent Markov chains and
perform microservice exchange to explore different states of
the Markov chains, such that each new placement lies in P .
The steady-states of the two Markov chains are given by

p∗P1
=

e−βE(P1)∑
Q∈P e−βE(Q)

, ∀P1 ∈ P ,

p∗P2
=

e−βG(P2)∑
Q∈P e−βG(Q)

, ∀P2 ∈ P .

(7)

Let P ∗
1 and P ∗

2 denote the placements obtained at the
steady-state of the two Markov chains. Then optimal place-
ment for the FSP problem, denoted by P ∗, is

P ∗ = argmin
P∗

1 ,P∗
2

(T (P ∗
1 ), T (P

∗
2 ) ) . (8)

The next step is the design of the time-reversible ergodic
Markov chains, where each state corresponds to a placement
P ∈ P with stationary distributions as given in Eq. (7).

V. AUTONOMIC PLACEMENT ALGORITHM

In this section, we present the distributed algorithm that
approximates the FSP problem. Each fog node FNn maintains
a local energy cost, and each application APr keeps a local
communication cost due to the communication between its mi-
croservices under placement P , which are denoted by En(P )
and Gr(P ), respectively. The local values are determined as

En(P ) = ρcn , (9)

Gr(P ) =
∑

m1,m2∈Mr

Cm1m2

∑
n1,n2∈N

Pm1n1
Dn1n2

Pn2m2
.

(10)

Fog nodes compete with each other to decrease their energy
consumption En(P ), and applications compete to minimize
their communication costs Gr(P ). Consider two placements
P1, P2 ∈ P be the states of the Markov chains constructed
by the fog node FNn and the application APr, respectively.
Let P ′

n ⊂ P be the set of all possible placements that fog
node FNn can achieve by performing a state transition from
placement P1 and P ′

r ⊂ P represents the set of all possible
placements that application APr can obtain after performing
a transition from state P2. Let P ′

1 ∈ P ′
n and P ′

2 ∈ P ′
r be

the configurations obtained by FNn and APr respectively,
as a result of state transitions in their respective Markov
chains. We have En(P1) and En(P

′
1) (respectively, Gr(P2)

and Gr(P
′
2)) denoting the energy consumption (respectively,

communication costs) of these placements. Letting pn,P1P ′
1

and pr,P2P ′
2

denote the transition probabilities from placement
P1 to P ′

1 at node FNn and from P2 to P ′
2 by application APr,

respectively, and by using [6, OPT 4], we have

pn,P1P ′
1
=

e−β(En(P
′
1)−En(P1))∑

Q′∈P′
n
e−β(En(Q′)−En(P1))

, (11)

pr,P2P ′
2
=

e−β(Gr(P
′
2)−Gr(P2))∑

Q′∈P′
r
e−β(Gr(Q′)−Gr(P2))

. (12)

The transition rate between the two states is proportional
to the difference between the objective function in these states.
Hence, the system is more likely to switch to a placement with
better performance. Starting with an arbitrary initial place-
ment, denoted by Pinit, and changing placements according to
the above transition probabilities, the Markov approximation
iteratively approaches the steady-state of the Markov chain.

The time of a state transition is governed by a timer that is
run at each fog node FNn and by each application APr. With
placement P1, a fog node FNn remains in its current state
for an exponentially distributed random time proportional to
e−βEn(P1) with En(P1) from Eq. (9). This is motivated by the
fact that the time spent in a state of the created Markov chain
is proportional to the steady-state probability of that state. A
higher utilization on the fog node leads to a shorter time out
value; thus, fog nodes with higher utilization get timeouts more
often. Hence the fog nodes compete with each other to reduce
their energy consumption resulting in a load balanced system.
Similarly, for an application APr under placement P2, the
timer value is proportional to e−βGr(P2) with Gr(P2) from
Eq. (10). In order to perform a joint optimization for the
FSP problem in Eq. (5), we set the value of timers for fog
nodes and applications, inversely proportional to the weights
given to the energy consumption and the communication cost
respectively. Thus, a larger value of σ lowers the time out
values at fog nodes and increases the sojourn time in a state
for each application. As a result, fog nodes observe more
frequent timer expiration, and at every time out, a fog node

tries to decrease its energy consumption, thereby prioritizing
optimization of energy consumption over communication cost.
The timer values at fog node FNn with placement P1 and
application APr with placement P2, denoted by Ntin(P1) and
Atir(P2), respectively are set to

Ntin(P1) =
e−βEn(P1)

σ
, (13)

Atir(P2) =
e−βGr(P2)

1− σ
. (14)

Since the sojourn time in a state is proportional to its steady-
state probability, and since the probabilities in Eq. (7) favor
states that minimize the objective function, the Markov ap-
proximation realizes a result that is or is close to the solution
of Eq. (6).

We define a state transition as the movement of a single
microservice from one node to another or swapping a pair of
microservice between two fog nodes such that the resultant
state is a feasible placement. However, an iterative placement
strategy that constructs the Markov chain by considering all
transitions between any pair of feasible placements in each
step of the iteration may result in an unreasonable large mi-
gration of microservices. We, therefore, truncate the transitions
performed by each fog node and application by considering
transitions only to a relevant set of nodes. As long as all
states remain reachable, the steady-state of the Markov chain
is unaffected by the truncation. We refer this algorithm to as
Relevant Set Exchange, abbreviated as RSE. Moreover, after
performing a state transition, our RSE algorithm considers
communication of the state transition only with the relevant
agents, i.e., the fog nodes and applications that are affected by
the migration of the microservices involved in the transition.
Thus the RSE algorithm keeps the information about state
changes private to the agents and does not require any global
information exchange.

Next, we define the relevant set for each fog node FNn,
each microservice MSm and each application APr, labelled as
Rn,Rmn(P ) and Rr(P ) respectively. For a fog node FNn,
the relevant set consists of only its neighbors, i.e., all the fog
nodes in the network that are one hop away, given by

Rn =
{
n′ ∈ N | hop count between FNn and FNn′ = 1

}
.

If MSm is assigned to FNn in placement P , that is, Pmn =
1, we define the relevant set of MSm at fog node FNn in
placement P , denoted by Rmn(P ), as

Rmn(P ) =
{
n′ ∈ N | ∃n′ ∈ N,m′ ∈ M :

Pmn = 1 ∧ Pm′n′ = 1 ∧ Cmm′ > 0
}
.

In other words, FNn′ ∈ Rmn(P ), if FNn′ holds a microservice
MSm′ that has a positive chaining degree with a microservice
MSm at fog node FNn. The relevant sets are readily available
in practice since a microservice must know the addresses of
the fog nodes where the next microservices in the chain are
located. Hence, when a microservice is migrated, it carries
with it information on the relevant set. The relevant set of

Gr(P ) =
∑
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Cm1m2

∑
n1,n2∈N

Pm1n1
Dn1n2

Pn2m2
.
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Fog nodes compete with each other to decrease their energy
consumption En(P ), and applications compete to minimize
their communication costs Gr(P ). Consider two placements
P1, P2 ∈ P be the states of the Markov chains constructed
by the fog node FNn and the application APr, respectively.
Let P ′

n ⊂ P be the set of all possible placements that fog
node FNn can achieve by performing a state transition from
placement P1 and P ′

r ⊂ P represents the set of all possible
placements that application APr can obtain after performing
a transition from state P2. Let P ′

1 ∈ P ′
n and P ′

2 ∈ P ′
r be

the configurations obtained by FNn and APr respectively,
as a result of state transitions in their respective Markov
chains. We have En(P1) and En(P

′
1) (respectively, Gr(P2)

and Gr(P
′
2)) denoting the energy consumption (respectively,

communication costs) of these placements. Letting pn,P1P ′
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and pr,P2P ′
2

denote the transition probabilities from placement
P1 to P ′

1 at node FNn and from P2 to P ′
2 by application APr,

respectively, and by using [6, OPT 4], we have
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=
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=
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e−β(Gr(Q′)−Gr(P2))
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The transition rate between the two states is proportional
to the difference between the objective function in these states.
Hence, the system is more likely to switch to a placement with
better performance. Starting with an arbitrary initial place-
ment, denoted by Pinit, and changing placements according to
the above transition probabilities, the Markov approximation
iteratively approaches the steady-state of the Markov chain.

The time of a state transition is governed by a timer that is
run at each fog node FNn and by each application APr. With
placement P1, a fog node FNn remains in its current state
for an exponentially distributed random time proportional to
e−βEn(P1) with En(P1) from Eq. (9). This is motivated by the
fact that the time spent in a state of the created Markov chain
is proportional to the steady-state probability of that state. A
higher utilization on the fog node leads to a shorter time out
value; thus, fog nodes with higher utilization get timeouts more
often. Hence the fog nodes compete with each other to reduce
their energy consumption resulting in a load balanced system.
Similarly, for an application APr under placement P2, the
timer value is proportional to e−βGr(P2) with Gr(P2) from
Eq. (10). In order to perform a joint optimization for the
FSP problem in Eq. (5), we set the value of timers for fog
nodes and applications, inversely proportional to the weights
given to the energy consumption and the communication cost
respectively. Thus, a larger value of σ lowers the time out
values at fog nodes and increases the sojourn time in a state
for each application. As a result, fog nodes observe more
frequent timer expiration, and at every time out, a fog node

tries to decrease its energy consumption, thereby prioritizing
optimization of energy consumption over communication cost.
The timer values at fog node FNn with placement P1 and
application APr with placement P2, denoted by Ntin(P1) and
Atir(P2), respectively are set to

Ntin(P1) =
e−βEn(P1)

σ
, (13)

Atir(P2) =
e−βGr(P2)

1− σ
. (14)

Since the sojourn time in a state is proportional to its steady-
state probability, and since the probabilities in Eq. (7) favor
states that minimize the objective function, the Markov ap-
proximation realizes a result that is or is close to the solution
of Eq. (6).

We define a state transition as the movement of a single
microservice from one node to another or swapping a pair of
microservice between two fog nodes such that the resultant
state is a feasible placement. However, an iterative placement
strategy that constructs the Markov chain by considering all
transitions between any pair of feasible placements in each
step of the iteration may result in an unreasonable large mi-
gration of microservices. We, therefore, truncate the transitions
performed by each fog node and application by considering
transitions only to a relevant set of nodes. As long as all
states remain reachable, the steady-state of the Markov chain
is unaffected by the truncation. We refer this algorithm to as
Relevant Set Exchange, abbreviated as RSE. Moreover, after
performing a state transition, our RSE algorithm considers
communication of the state transition only with the relevant
agents, i.e., the fog nodes and applications that are affected by
the migration of the microservices involved in the transition.
Thus the RSE algorithm keeps the information about state
changes private to the agents and does not require any global
information exchange.

Next, we define the relevant set for each fog node FNn,
each microservice MSm and each application APr, labelled as
Rn,Rmn(P ) and Rr(P ) respectively. For a fog node FNn,
the relevant set consists of only its neighbors, i.e., all the fog
nodes in the network that are one hop away, given by

Rn =
{
n′ ∈ N | hop count between FNn and FNn′ = 1

}
.

If MSm is assigned to FNn in placement P , that is, Pmn =
1, we define the relevant set of MSm at fog node FNn in
placement P , denoted by Rmn(P ), as

Rmn(P ) =
{
n′ ∈ N | ∃n′ ∈ N,m′ ∈ M :

Pmn = 1 ∧ Pm′n′ = 1 ∧ Cmm′ > 0
}
.

In other words, FNn′ ∈ Rmn(P ), if FNn′ holds a microservice
MSm′ that has a positive chaining degree with a microservice
MSm at fog node FNn. The relevant sets are readily available
in practice since a microservice must know the addresses of
the fog nodes where the next microservices in the chain are
located. Hence, when a microservice is migrated, it carries
with it information on the relevant set. The relevant set of
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Fog nodes compete with each other to decrease their energy
consumption En(P ), and applications compete to minimize
their communication costs Gr(P ). Consider two placements
P1, P2 ∈ P be the states of the Markov chains constructed
by the fog node FNn and the application APr, respectively.
Let P ′

n ⊂ P be the set of all possible placements that fog
node FNn can achieve by performing a state transition from
placement P1 and P ′

r ⊂ P represents the set of all possible
placements that application APr can obtain after performing
a transition from state P2. Let P ′

1 ∈ P ′
n and P ′

2 ∈ P ′
r be

the configurations obtained by FNn and APr respectively,
as a result of state transitions in their respective Markov
chains. We have En(P1) and En(P

′
1) (respectively, Gr(P2)

and Gr(P
′
2)) denoting the energy consumption (respectively,

communication costs) of these placements. Letting pn,P1P ′
1

and pr,P2P ′
2

denote the transition probabilities from placement
P1 to P ′

1 at node FNn and from P2 to P ′
2 by application APr,

respectively, and by using [6, OPT 4], we have
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=

e−β(En(P
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Q′∈P′
n
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=

e−β(Gr(P
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2)−Gr(P2))∑
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e−β(Gr(Q′)−Gr(P2))
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The transition rate between the two states is proportional
to the difference between the objective function in these states.
Hence, the system is more likely to switch to a placement with
better performance. Starting with an arbitrary initial place-
ment, denoted by Pinit, and changing placements according to
the above transition probabilities, the Markov approximation
iteratively approaches the steady-state of the Markov chain.

The time of a state transition is governed by a timer that is
run at each fog node FNn and by each application APr. With
placement P1, a fog node FNn remains in its current state
for an exponentially distributed random time proportional to
e−βEn(P1) with En(P1) from Eq. (9). This is motivated by the
fact that the time spent in a state of the created Markov chain
is proportional to the steady-state probability of that state. A
higher utilization on the fog node leads to a shorter time out
value; thus, fog nodes with higher utilization get timeouts more
often. Hence the fog nodes compete with each other to reduce
their energy consumption resulting in a load balanced system.
Similarly, for an application APr under placement P2, the
timer value is proportional to e−βGr(P2) with Gr(P2) from
Eq. (10). In order to perform a joint optimization for the
FSP problem in Eq. (5), we set the value of timers for fog
nodes and applications, inversely proportional to the weights
given to the energy consumption and the communication cost
respectively. Thus, a larger value of σ lowers the time out
values at fog nodes and increases the sojourn time in a state
for each application. As a result, fog nodes observe more
frequent timer expiration, and at every time out, a fog node

tries to decrease its energy consumption, thereby prioritizing
optimization of energy consumption over communication cost.
The timer values at fog node FNn with placement P1 and
application APr with placement P2, denoted by Ntin(P1) and
Atir(P2), respectively are set to

Ntin(P1) =
e−βEn(P1)

σ
, (13)

Atir(P2) =
e−βGr(P2)

1− σ
. (14)

Since the sojourn time in a state is proportional to its steady-
state probability, and since the probabilities in Eq. (7) favor
states that minimize the objective function, the Markov ap-
proximation realizes a result that is or is close to the solution
of Eq. (6).

We define a state transition as the movement of a single
microservice from one node to another or swapping a pair of
microservice between two fog nodes such that the resultant
state is a feasible placement. However, an iterative placement
strategy that constructs the Markov chain by considering all
transitions between any pair of feasible placements in each
step of the iteration may result in an unreasonable large mi-
gration of microservices. We, therefore, truncate the transitions
performed by each fog node and application by considering
transitions only to a relevant set of nodes. As long as all
states remain reachable, the steady-state of the Markov chain
is unaffected by the truncation. We refer this algorithm to as
Relevant Set Exchange, abbreviated as RSE. Moreover, after
performing a state transition, our RSE algorithm considers
communication of the state transition only with the relevant
agents, i.e., the fog nodes and applications that are affected by
the migration of the microservices involved in the transition.
Thus the RSE algorithm keeps the information about state
changes private to the agents and does not require any global
information exchange.

Next, we define the relevant set for each fog node FNn,
each microservice MSm and each application APr, labelled as
Rn,Rmn(P ) and Rr(P ) respectively. For a fog node FNn,
the relevant set consists of only its neighbors, i.e., all the fog
nodes in the network that are one hop away, given by

Rn =
{
n′ ∈ N | hop count between FNn and FNn′ = 1

}
.

If MSm is assigned to FNn in placement P , that is, Pmn =
1, we define the relevant set of MSm at fog node FNn in
placement P , denoted by Rmn(P ), as

Rmn(P ) =
{
n′ ∈ N | ∃n′ ∈ N,m′ ∈ M :

Pmn = 1 ∧ Pm′n′ = 1 ∧ Cmm′ > 0
}
.

In other words, FNn′ ∈ Rmn(P ), if FNn′ holds a microservice
MSm′ that has a positive chaining degree with a microservice
MSm at fog node FNn. The relevant sets are readily available
in practice since a microservice must know the addresses of
the fog nodes where the next microservices in the chain are
located. Hence, when a microservice is migrated, it carries
with it information on the relevant set. The relevant set of
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The transition rate between the two states is proportional
to the difference between the objective function in these states.
Hence, the system is more likely to switch to a placement with
better performance. Starting with an arbitrary initial place-
ment, denoted by Pinit, and changing placements according to
the above transition probabilities, the Markov approximation
iteratively approaches the steady-state of the Markov chain.

The time of a state transition is governed by a timer that is
run at each fog node FNn and by each application APr. With
placement P1, a fog node FNn remains in its current state
for an exponentially distributed random time proportional to
e−βEn(P1) with En(P1) from Eq. (9). This is motivated by the
fact that the time spent in a state of the created Markov chain
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higher utilization on the fog node leads to a shorter time out
value; thus, fog nodes with higher utilization get timeouts more
often. Hence the fog nodes compete with each other to reduce
their energy consumption resulting in a load balanced system.
Similarly, for an application APr under placement P2, the
timer value is proportional to e−βGr(P2) with Gr(P2) from
Eq. (10). In order to perform a joint optimization for the
FSP problem in Eq. (5), we set the value of timers for fog
nodes and applications, inversely proportional to the weights
given to the energy consumption and the communication cost
respectively. Thus, a larger value of σ lowers the time out
values at fog nodes and increases the sojourn time in a state
for each application. As a result, fog nodes observe more
frequent timer expiration, and at every time out, a fog node
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Since the sojourn time in a state is proportional to its steady-
state probability, and since the probabilities in Eq. (7) favor
states that minimize the objective function, the Markov ap-
proximation realizes a result that is or is close to the solution
of Eq. (6).

We define a state transition as the movement of a single
microservice from one node to another or swapping a pair of
microservice between two fog nodes such that the resultant
state is a feasible placement. However, an iterative placement
strategy that constructs the Markov chain by considering all
transitions between any pair of feasible placements in each
step of the iteration may result in an unreasonable large mi-
gration of microservices. We, therefore, truncate the transitions
performed by each fog node and application by considering
transitions only to a relevant set of nodes. As long as all
states remain reachable, the steady-state of the Markov chain
is unaffected by the truncation. We refer this algorithm to as
Relevant Set Exchange, abbreviated as RSE. Moreover, after
performing a state transition, our RSE algorithm considers
communication of the state transition only with the relevant
agents, i.e., the fog nodes and applications that are affected by
the migration of the microservices involved in the transition.
Thus the RSE algorithm keeps the information about state
changes private to the agents and does not require any global
information exchange.

Next, we define the relevant set for each fog node FNn,
each microservice MSm and each application APr, labelled as
Rn,Rmn(P ) and Rr(P ) respectively. For a fog node FNn,
the relevant set consists of only its neighbors, i.e., all the fog
nodes in the network that are one hop away, given by

Rn =
{
n′ ∈ N | hop count between FNn and FNn′ = 1

}
.

If MSm is assigned to FNn in placement P , that is, Pmn =
1, we define the relevant set of MSm at fog node FNn in
placement P , denoted by Rmn(P ), as

Rmn(P ) =
{
n′ ∈ N | ∃n′ ∈ N,m′ ∈ M :

Pmn = 1 ∧ Pm′n′ = 1 ∧ Cmm′ > 0
}
.

In other words, FNn′ ∈ Rmn(P ), if FNn′ holds a microservice
MSm′ that has a positive chaining degree with a microservice
MSm at fog node FNn. The relevant sets are readily available
in practice since a microservice must know the addresses of
the fog nodes where the next microservices in the chain are
located. Hence, when a microservice is migrated, it carries
with it information on the relevant set. The relevant set of

Gr(P ) =
∑

m1,m2∈Mr

Cm1m2

∑
n1,n2∈N

Pm1n1
Dn1n2

Pn2m2
.

(10)

Fog nodes compete with each other to decrease their energy
consumption En(P ), and applications compete to minimize
their communication costs Gr(P ). Consider two placements
P1, P2 ∈ P be the states of the Markov chains constructed
by the fog node FNn and the application APr, respectively.
Let P ′

n ⊂ P be the set of all possible placements that fog
node FNn can achieve by performing a state transition from
placement P1 and P ′

r ⊂ P represents the set of all possible
placements that application APr can obtain after performing
a transition from state P2. Let P ′

1 ∈ P ′
n and P ′

2 ∈ P ′
r be

the configurations obtained by FNn and APr respectively,
as a result of state transitions in their respective Markov
chains. We have En(P1) and En(P

′
1) (respectively, Gr(P2)

and Gr(P
′
2)) denoting the energy consumption (respectively,

communication costs) of these placements. Letting pn,P1P ′
1

and pr,P2P ′
2

denote the transition probabilities from placement
P1 to P ′

1 at node FNn and from P2 to P ′
2 by application APr,

respectively, and by using [6, OPT 4], we have

pn,P1P ′
1
=

e−β(En(P
′
1)−En(P1))∑

Q′∈P′
n
e−β(En(Q′)−En(P1))

, (11)

pr,P2P ′
2
=

e−β(Gr(P
′
2)−Gr(P2))∑

Q′∈P′
r
e−β(Gr(Q′)−Gr(P2))

. (12)

The transition rate between the two states is proportional
to the difference between the objective function in these states.
Hence, the system is more likely to switch to a placement with
better performance. Starting with an arbitrary initial place-
ment, denoted by Pinit, and changing placements according to
the above transition probabilities, the Markov approximation
iteratively approaches the steady-state of the Markov chain.

The time of a state transition is governed by a timer that is
run at each fog node FNn and by each application APr. With
placement P1, a fog node FNn remains in its current state
for an exponentially distributed random time proportional to
e−βEn(P1) with En(P1) from Eq. (9). This is motivated by the
fact that the time spent in a state of the created Markov chain
is proportional to the steady-state probability of that state. A
higher utilization on the fog node leads to a shorter time out
value; thus, fog nodes with higher utilization get timeouts more
often. Hence the fog nodes compete with each other to reduce
their energy consumption resulting in a load balanced system.
Similarly, for an application APr under placement P2, the
timer value is proportional to e−βGr(P2) with Gr(P2) from
Eq. (10). In order to perform a joint optimization for the
FSP problem in Eq. (5), we set the value of timers for fog
nodes and applications, inversely proportional to the weights
given to the energy consumption and the communication cost
respectively. Thus, a larger value of σ lowers the time out
values at fog nodes and increases the sojourn time in a state
for each application. As a result, fog nodes observe more
frequent timer expiration, and at every time out, a fog node

tries to decrease its energy consumption, thereby prioritizing
optimization of energy consumption over communication cost.
The timer values at fog node FNn with placement P1 and
application APr with placement P2, denoted by Ntin(P1) and
Atir(P2), respectively are set to

Ntin(P1) =
e−βEn(P1)

σ
, (13)

Atir(P2) =
e−βGr(P2)

1− σ
. (14)

Since the sojourn time in a state is proportional to its steady-
state probability, and since the probabilities in Eq. (7) favor
states that minimize the objective function, the Markov ap-
proximation realizes a result that is or is close to the solution
of Eq. (6).

We define a state transition as the movement of a single
microservice from one node to another or swapping a pair of
microservice between two fog nodes such that the resultant
state is a feasible placement. However, an iterative placement
strategy that constructs the Markov chain by considering all
transitions between any pair of feasible placements in each
step of the iteration may result in an unreasonable large mi-
gration of microservices. We, therefore, truncate the transitions
performed by each fog node and application by considering
transitions only to a relevant set of nodes. As long as all
states remain reachable, the steady-state of the Markov chain
is unaffected by the truncation. We refer this algorithm to as
Relevant Set Exchange, abbreviated as RSE. Moreover, after
performing a state transition, our RSE algorithm considers
communication of the state transition only with the relevant
agents, i.e., the fog nodes and applications that are affected by
the migration of the microservices involved in the transition.
Thus the RSE algorithm keeps the information about state
changes private to the agents and does not require any global
information exchange.

Next, we define the relevant set for each fog node FNn,
each microservice MSm and each application APr, labelled as
Rn,Rmn(P ) and Rr(P ) respectively. For a fog node FNn,
the relevant set consists of only its neighbors, i.e., all the fog
nodes in the network that are one hop away, given by

Rn =
{
n′ ∈ N | hop count between FNn and FNn′ = 1

}
.

If MSm is assigned to FNn in placement P , that is, Pmn =
1, we define the relevant set of MSm at fog node FNn in
placement P , denoted by Rmn(P ), as

Rmn(P ) =
{
n′ ∈ N | ∃n′ ∈ N,m′ ∈ M :

Pmn = 1 ∧ Pm′n′ = 1 ∧ Cmm′ > 0
}
.

In other words, FNn′ ∈ Rmn(P ), if FNn′ holds a microservice
MSm′ that has a positive chaining degree with a microservice
MSm at fog node FNn. The relevant sets are readily available
in practice since a microservice must know the addresses of
the fog nodes where the next microservices in the chain are
located. Hence, when a microservice is migrated, it carries
with it information on the relevant set. The relevant set of

The transition rate between the two states is proportional to 
the difference between the objective function in these states. 
Hence, the system is more likely to switch to a placement with 
better performance. Starting with an arbitrary initial placement, 
denoted by Pinit, and changing placements according to the above 
transition probabilities, the Markov approximation iteratively 
approaches the steady-state of the Markov chain.

The time of a state transition is governed by a timer that is run at 
each fog node FNn and by each application APr. With placement 
P1, a fog node FNn remains in its current state for an exponentially 
distributed random time proportional to e−βEn(P1) with En(P1) from 
Eq. (9). This is motivated by the fact that the time spent in a state 
of the created Markov chain is proportional to the steady-state 
probability of that state. A higher utilization on the fog node 
leads to a shorter time out value; thus, fog nodes with higher 

utilization get timeouts more often. Hence the fog nodes compete 
with each other to reduce their energy consumption resulting in 
a load balanced system. Similarly, for an application APr under 
placement P2, the timer value is proportional to e−βGr(P2) with 
Gr(P2) from Eq. (10). In order to perform a joint optimization 
for the FSP problem in Eq. (5), we set the value of timers for 
fog nodes and applications, inversely proportional to the weights 
given to the energy consumption and the communication cost 
respectively. Thus, a larger value of σ lowers the time out values 
at fog nodes and increases the sojourn time in a state for each 
application. As a result, fog nodes observe more frequent timer 
expiration, and at every time out, a fog node tries to decrease its 
energy consumption, thereby prioritizing optimization of energy 
consumption over communication cost. The timer values at fog 
node FNn with placement P1 and application APr with placement 
P2, denoted by Ntin(P1) and Atir(P2), respectively are set to

Since the sojourn time in a state is proportional to its steadystate 
probability, and since the probabilities in Eq. (7) favor states 
that minimize the objective function, the Markov approximation 
realizes a result that is or is close to the solution of Eq. (6).

We define a state transition as the movement of a single 
microservice from one node to another or swapping a pair of 
microservice between two fog nodes such that the resultant 
state is a feasible placement. However, an iterative placement 
strategy that constructs the Markov chain by considering all 
transitions between any pair of feasible placements in each step 
of the iteration may result in an unreasonable large migration of 

microservices. We, therefore, truncate the transitions performed 
by each fog node and application by considering transitions 
only to a relevant set of nodes. As long as all states remain 
reachable, the steady-state of the Markov chain is unaffected 
by the truncation. We refer this algorithm to as Relevant Set 
Exchange, abbreviated as RSE. Moreover, after performing a 
state transition, our RSE algorithm considers communication of 
the state transition only with the relevant agents, i.e., the fog 
nodes and applications that are affected by the migration of the 
microservices involved in the transition. Thus the RSE algorithm 
keeps the information about state changes private to the agents 
and does not require any global information exchange.
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Next, we define the relevant set for each fog node FNn, each 
microservice MSm and each application APr, labelled as 
Rn,Rmn(P) and Rr(P) respectively. For a fog node FNn, the 

relevant set consists of only its neighbors, i.e., all the fog nodes 
in the network that are one hop away, given by

Gr(P ) =
∑

m1,m2∈Mr

Cm1m2

∑
n1,n2∈N

Pm1n1
Dn1n2

Pn2m2
.

(10)

Fog nodes compete with each other to decrease their energy
consumption En(P ), and applications compete to minimize
their communication costs Gr(P ). Consider two placements
P1, P2 ∈ P be the states of the Markov chains constructed
by the fog node FNn and the application APr, respectively.
Let P ′

n ⊂ P be the set of all possible placements that fog
node FNn can achieve by performing a state transition from
placement P1 and P ′

r ⊂ P represents the set of all possible
placements that application APr can obtain after performing
a transition from state P2. Let P ′

1 ∈ P ′
n and P ′

2 ∈ P ′
r be

the configurations obtained by FNn and APr respectively,
as a result of state transitions in their respective Markov
chains. We have En(P1) and En(P

′
1) (respectively, Gr(P2)

and Gr(P
′
2)) denoting the energy consumption (respectively,

communication costs) of these placements. Letting pn,P1P ′
1

and pr,P2P ′
2

denote the transition probabilities from placement
P1 to P ′

1 at node FNn and from P2 to P ′
2 by application APr,

respectively, and by using [6, OPT 4], we have

pn,P1P ′
1
=

e−β(En(P
′
1)−En(P1))∑

Q′∈P′
n
e−β(En(Q′)−En(P1))

, (11)

pr,P2P ′
2
=

e−β(Gr(P
′
2)−Gr(P2))∑

Q′∈P′
r
e−β(Gr(Q′)−Gr(P2))

. (12)

The transition rate between the two states is proportional
to the difference between the objective function in these states.
Hence, the system is more likely to switch to a placement with
better performance. Starting with an arbitrary initial place-
ment, denoted by Pinit, and changing placements according to
the above transition probabilities, the Markov approximation
iteratively approaches the steady-state of the Markov chain.

The time of a state transition is governed by a timer that is
run at each fog node FNn and by each application APr. With
placement P1, a fog node FNn remains in its current state
for an exponentially distributed random time proportional to
e−βEn(P1) with En(P1) from Eq. (9). This is motivated by the
fact that the time spent in a state of the created Markov chain
is proportional to the steady-state probability of that state. A
higher utilization on the fog node leads to a shorter time out
value; thus, fog nodes with higher utilization get timeouts more
often. Hence the fog nodes compete with each other to reduce
their energy consumption resulting in a load balanced system.
Similarly, for an application APr under placement P2, the
timer value is proportional to e−βGr(P2) with Gr(P2) from
Eq. (10). In order to perform a joint optimization for the
FSP problem in Eq. (5), we set the value of timers for fog
nodes and applications, inversely proportional to the weights
given to the energy consumption and the communication cost
respectively. Thus, a larger value of σ lowers the time out
values at fog nodes and increases the sojourn time in a state
for each application. As a result, fog nodes observe more
frequent timer expiration, and at every time out, a fog node

tries to decrease its energy consumption, thereby prioritizing
optimization of energy consumption over communication cost.
The timer values at fog node FNn with placement P1 and
application APr with placement P2, denoted by Ntin(P1) and
Atir(P2), respectively are set to

Ntin(P1) =
e−βEn(P1)

σ
, (13)

Atir(P2) =
e−βGr(P2)

1− σ
. (14)

Since the sojourn time in a state is proportional to its steady-
state probability, and since the probabilities in Eq. (7) favor
states that minimize the objective function, the Markov ap-
proximation realizes a result that is or is close to the solution
of Eq. (6).

We define a state transition as the movement of a single
microservice from one node to another or swapping a pair of
microservice between two fog nodes such that the resultant
state is a feasible placement. However, an iterative placement
strategy that constructs the Markov chain by considering all
transitions between any pair of feasible placements in each
step of the iteration may result in an unreasonable large mi-
gration of microservices. We, therefore, truncate the transitions
performed by each fog node and application by considering
transitions only to a relevant set of nodes. As long as all
states remain reachable, the steady-state of the Markov chain
is unaffected by the truncation. We refer this algorithm to as
Relevant Set Exchange, abbreviated as RSE. Moreover, after
performing a state transition, our RSE algorithm considers
communication of the state transition only with the relevant
agents, i.e., the fog nodes and applications that are affected by
the migration of the microservices involved in the transition.
Thus the RSE algorithm keeps the information about state
changes private to the agents and does not require any global
information exchange.

Next, we define the relevant set for each fog node FNn,
each microservice MSm and each application APr, labelled as
Rn,Rmn(P ) and Rr(P ) respectively. For a fog node FNn,
the relevant set consists of only its neighbors, i.e., all the fog
nodes in the network that are one hop away, given by

Rn =
{
n′ ∈ N | hop count between FNn and FNn′ = 1

}
.

If MSm is assigned to FNn in placement P , that is, Pmn =
1, we define the relevant set of MSm at fog node FNn in
placement P , denoted by Rmn(P ), as

Rmn(P ) =
{
n′ ∈ N | ∃n′ ∈ N,m′ ∈ M :

Pmn = 1 ∧ Pm′n′ = 1 ∧ Cmm′ > 0
}
.

In other words, FNn′ ∈ Rmn(P ), if FNn′ holds a microservice
MSm′ that has a positive chaining degree with a microservice
MSm at fog node FNn. The relevant sets are readily available
in practice since a microservice must know the addresses of
the fog nodes where the next microservices in the chain are
located. Hence, when a microservice is migrated, it carries
with it information on the relevant set. The relevant set of

Gr(P ) =
∑

m1,m2∈Mr

Cm1m2

∑
n1,n2∈N

Pm1n1
Dn1n2

Pn2m2
.

(10)

Fog nodes compete with each other to decrease their energy
consumption En(P ), and applications compete to minimize
their communication costs Gr(P ). Consider two placements
P1, P2 ∈ P be the states of the Markov chains constructed
by the fog node FNn and the application APr, respectively.
Let P ′

n ⊂ P be the set of all possible placements that fog
node FNn can achieve by performing a state transition from
placement P1 and P ′

r ⊂ P represents the set of all possible
placements that application APr can obtain after performing
a transition from state P2. Let P ′

1 ∈ P ′
n and P ′

2 ∈ P ′
r be

the configurations obtained by FNn and APr respectively,
as a result of state transitions in their respective Markov
chains. We have En(P1) and En(P

′
1) (respectively, Gr(P2)

and Gr(P
′
2)) denoting the energy consumption (respectively,

communication costs) of these placements. Letting pn,P1P ′
1

and pr,P2P ′
2

denote the transition probabilities from placement
P1 to P ′

1 at node FNn and from P2 to P ′
2 by application APr,

respectively, and by using [6, OPT 4], we have

pn,P1P ′
1
=

e−β(En(P
′
1)−En(P1))∑

Q′∈P′
n
e−β(En(Q′)−En(P1))

, (11)

pr,P2P ′
2
=

e−β(Gr(P
′
2)−Gr(P2))∑

Q′∈P′
r
e−β(Gr(Q′)−Gr(P2))

. (12)

The transition rate between the two states is proportional
to the difference between the objective function in these states.
Hence, the system is more likely to switch to a placement with
better performance. Starting with an arbitrary initial place-
ment, denoted by Pinit, and changing placements according to
the above transition probabilities, the Markov approximation
iteratively approaches the steady-state of the Markov chain.

The time of a state transition is governed by a timer that is
run at each fog node FNn and by each application APr. With
placement P1, a fog node FNn remains in its current state
for an exponentially distributed random time proportional to
e−βEn(P1) with En(P1) from Eq. (9). This is motivated by the
fact that the time spent in a state of the created Markov chain
is proportional to the steady-state probability of that state. A
higher utilization on the fog node leads to a shorter time out
value; thus, fog nodes with higher utilization get timeouts more
often. Hence the fog nodes compete with each other to reduce
their energy consumption resulting in a load balanced system.
Similarly, for an application APr under placement P2, the
timer value is proportional to e−βGr(P2) with Gr(P2) from
Eq. (10). In order to perform a joint optimization for the
FSP problem in Eq. (5), we set the value of timers for fog
nodes and applications, inversely proportional to the weights
given to the energy consumption and the communication cost
respectively. Thus, a larger value of σ lowers the time out
values at fog nodes and increases the sojourn time in a state
for each application. As a result, fog nodes observe more
frequent timer expiration, and at every time out, a fog node

tries to decrease its energy consumption, thereby prioritizing
optimization of energy consumption over communication cost.
The timer values at fog node FNn with placement P1 and
application APr with placement P2, denoted by Ntin(P1) and
Atir(P2), respectively are set to

Ntin(P1) =
e−βEn(P1)

σ
, (13)

Atir(P2) =
e−βGr(P2)

1− σ
. (14)

Since the sojourn time in a state is proportional to its steady-
state probability, and since the probabilities in Eq. (7) favor
states that minimize the objective function, the Markov ap-
proximation realizes a result that is or is close to the solution
of Eq. (6).

We define a state transition as the movement of a single
microservice from one node to another or swapping a pair of
microservice between two fog nodes such that the resultant
state is a feasible placement. However, an iterative placement
strategy that constructs the Markov chain by considering all
transitions between any pair of feasible placements in each
step of the iteration may result in an unreasonable large mi-
gration of microservices. We, therefore, truncate the transitions
performed by each fog node and application by considering
transitions only to a relevant set of nodes. As long as all
states remain reachable, the steady-state of the Markov chain
is unaffected by the truncation. We refer this algorithm to as
Relevant Set Exchange, abbreviated as RSE. Moreover, after
performing a state transition, our RSE algorithm considers
communication of the state transition only with the relevant
agents, i.e., the fog nodes and applications that are affected by
the migration of the microservices involved in the transition.
Thus the RSE algorithm keeps the information about state
changes private to the agents and does not require any global
information exchange.

Next, we define the relevant set for each fog node FNn,
each microservice MSm and each application APr, labelled as
Rn,Rmn(P ) and Rr(P ) respectively. For a fog node FNn,
the relevant set consists of only its neighbors, i.e., all the fog
nodes in the network that are one hop away, given by

Rn =
{
n′ ∈ N | hop count between FNn and FNn′ = 1

}
.

If MSm is assigned to FNn in placement P , that is, Pmn =
1, we define the relevant set of MSm at fog node FNn in
placement P , denoted by Rmn(P ), as

Rmn(P ) =
{
n′ ∈ N | ∃n′ ∈ N,m′ ∈ M :

Pmn = 1 ∧ Pm′n′ = 1 ∧ Cmm′ > 0
}
.

In other words, FNn′ ∈ Rmn(P ), if FNn′ holds a microservice
MSm′ that has a positive chaining degree with a microservice
MSm at fog node FNn. The relevant sets are readily available
in practice since a microservice must know the addresses of
the fog nodes where the next microservices in the chain are
located. Hence, when a microservice is migrated, it carries
with it information on the relevant set. The relevant set of

If MSm is assigned to FNn in placement P, that is, Pmn = 1, we define the relevant set of MSm at fog node FNn in placement P, denoted 
by Rmn(P), as

In other words, FNn' ∈ Rmn(P), if FNn' holds a microservice MSm' 
that has a positive chaining degree with a microservice MSm at 
fog node FNn. The relevant sets are readily available in practice 
since a microservice must know the addresses of the fog nodes 
where the next microservices in the chain are located. Hence, 

when a microservice is migrated, it carries with it information on 
the relevant set. The relevant set of an application consists of all 
the fog nodes on which the microservices of the application are 
placed. We define the relevant set of an application APr for MSs 
in placement P, denoted by Rr(P), as

an application consists of all the fog nodes on which the
microservices of the application are placed. We define the
relevant set of an application APr for MSs in placement P ,
denoted by Rr(P ), as

Rr(P ) =
{
n′ ∈ N | ∃n′ ∈ N,m′ ∈ Mr : Pm′n′ = 1

}
.

Since the sets Rn,Rmn(P ) and Rr(P ) will generally include
only a small number of fog nodes, the search space for an
exchange operation is quite contained. We present the steps
of our distributed algorithm executed by each fog node FNn

and each application APr in the following subsections.

A. Relevant Set Exchange at Fog Nodes

With placement P1, a fog node FNn computes En(P1)
from Eq. (9) and starts its timer Ntin(P1) with Eq. (13).
If a timeout occurs at FNn, the fog node computes En(P

′
1)

with Eq. (9), ∀P ′
1 ∈ P ′

n. Then, FNn selects a new placement
P̂ ′
1 ∈ P ′

n with probabilities given in Eq. (11). Note that a state
transition can result in the addition or the removal of a mi-
croservice, or both. Therefore, a fog node is permitted to make
three types of state transitions: offload one of its microservices,
pull a microservice, or swap one of its microservices with a
fog node n′ ∈ Rn. Hence, the state space P ′

n, consisting of
all possible state transitions that must be considered by node
FNn, is polynomial. The change of the placement, given by
∆P = P̂ ′

1−P1, is then communicated only to the relevant fog
nodes and applications. In case of offloading a microservice
MSm to FNl, the fog nodes in Rmn(P1) as well as fog node l
are updated. If the neighbor exchange adds MSm to FNn from
FNl, then FNn informs fog nodes with index in Rmn(P̂ ′

1), that
is, the nodes in the relevant set after the state transition as well
as FNl, the node from which microservice was obtained. In
both cases, the application APr | MSm ∈ Mr is also updated.
Lastly, when FNn swaps MSm with MSm′ on FNl, then all
the fog nodes in Rmn(P1), Rm′n(P̂ ′

1), and l get an update
message. In this case applications APr | MSm ‖m′ ∈ Mr

are updated. After that FNn restarts its timer Ntin(P1) with
Eq. (13). When a fog node FNk receives the update ∆P , it
updates P1, re-computes Ek(P1) with Eq. (9) and restarts its
timer Ntik(P1) with Eq. (13). Algorithm 1 summarizes the
operations performed by FNn upon initialization, timeout, and
receipt of an update. Since the timeout value in a state is
proportional to the probability of the state, fog nodes in the
steady-state tend to be in a placement that is close to the
minimum energy consumption. Even in the steady-state, fog
nodes continue to perform neighbor changes, albeit at a lower
frequency. This can be prevented by adding a criterion that
terminates the algorithm if a change of the total cost after an
update does not exceed a given threshold.

B. Relevant Set Exchange by Applications

For an application APr with placement P2, we restrict the
transitions of microservices only between the fog nodes in
the set Rr(P2), i.e., only between the fog nodes on which
the microservices of application APr are present. After every

Algorithm 1 Relevant Set Exchange at Fog Nodes
Initialize:
P1 ← Pinit

Compute En(P1) with Eq. (9) and start timer Ntin(P1) with Eq. (13)

Upon timeout:
Compute En(P

′
1) with Eq. (9) for all P ′

1 ∈ P′
n

Choose next state P̂ ′
1 with Eq. (11)

∆P ← P̂ ′
1 − P1

if an MSm was migrated from FNn to FNl then
Send ∆P to fog nodes FNk with k ∈ Rmn(P1)∪{l}∪APr | MSm ∈ Mr

end if
if an MSm′ was migrated from FNl to FNn then

Send ∆P to fog nodes FNk with k ∈ Rm′n(P
′
1)∪{l}∪APr | MSm′ ∈ Mr

end if
Perform relevant set exchange, P1 ← P̂ ′

1
Restart timer Ntin(P1) with Eq. (13)

Upon receiving ∆P :
P1 ← P1 + ∆P
Compute En(P1) with Eq. (9) and restart timer Ntin(P1) with Eq. (13)

transition, it is sufficient to notify nodes in Rr(P
′
2) by sending

∆P through an update message. Subsequently, the fog nodes
in Rr(P

′
2) and APr restart their timers. By restarting the timer

values of relevant agents, we can largely avoid the algorithm
from getting stuck in some local minima, as it ensures that the
same set of fog nodes and applications does not get frequent
timeouts. Algorithm 2 shows the operations of RSE run by
applications.

Algorithm 2 Relevant Set Exchange by Applications
Initialize:
P2 ← Pinit

Compute Gr(P2) with Eq. (10) and start timer Ntir(P2) with Eq. (14)

Upon timeout:
Compute Gr(P

′
2) with Eq. (10) for all P ′

2 ∈ P′
r

Choose next state P̂ ′
2 with Eq. (12)

∆P ← P̂ ′
2 − P2

Send ∆P to fog nodes FNk with k ∈ Rr(P̂ ′
2)

Perform relevant set exchange, P2 ← P̂ ′
2

Restart timer Ntir(P2) with Eq. (14)

Upon receiving ∆P :
P2 ← P2 + ∆P
Compute Gr(P2) with Eq. (10) and restart timer Ntir(P2) with Eq. (14)

As an example, consider Fig. 3, where the figure in the
middle depicts a placement, P , of application AP1 consisting
of five microservices on a network of four fog nodes. Here,
the relevant set for FN1 is R1 = {2, 3}, the relevant set for
MS1 at FN1 is R11(P ) = {2}, and that of MS4 at FN3 is
R43(P ) = {2, 4}. If FN1 pushes MS1 to FN2, as shown in
the Figure 3 in the left, then the migration only affects the
fog nodes in the relevant set R11(P ) and application AP1.
Therefore, it is sufficient to notify FN2, and application AP1

about the transfer, subsequently, FN1, FN2 and application
AP1 restart their timers. Similarly, the relevant set of AP1 is
R1(P ) = {1, 2, 3, 4}. Application AP1, perform an exchange
between the nodes in R1(P ) by pushing MS4 from FN3 to
FN2 as shown in the Figure 3 in the right. As a result, all the
fog nodes in the new relevant set R1(P

′) = {1, 2, 4} gets an
update message and, subsequently, application AP1, and all
the fog nodes in R1(P

′) restart their timers.

an application consists of all the fog nodes on which the
microservices of the application are placed. We define the
relevant set of an application APr for MSs in placement P ,
denoted by Rr(P ), as

Rr(P ) =
{
n′ ∈ N | ∃n′ ∈ N,m′ ∈ Mr : Pm′n′ = 1

}
.

Since the sets Rn,Rmn(P ) and Rr(P ) will generally include
only a small number of fog nodes, the search space for an
exchange operation is quite contained. We present the steps
of our distributed algorithm executed by each fog node FNn

and each application APr in the following subsections.

A. Relevant Set Exchange at Fog Nodes

With placement P1, a fog node FNn computes En(P1)
from Eq. (9) and starts its timer Ntin(P1) with Eq. (13).
If a timeout occurs at FNn, the fog node computes En(P

′
1)

with Eq. (9), ∀P ′
1 ∈ P ′

n. Then, FNn selects a new placement
P̂ ′
1 ∈ P ′

n with probabilities given in Eq. (11). Note that a state
transition can result in the addition or the removal of a mi-
croservice, or both. Therefore, a fog node is permitted to make
three types of state transitions: offload one of its microservices,
pull a microservice, or swap one of its microservices with a
fog node n′ ∈ Rn. Hence, the state space P ′

n, consisting of
all possible state transitions that must be considered by node
FNn, is polynomial. The change of the placement, given by
∆P = P̂ ′

1−P1, is then communicated only to the relevant fog
nodes and applications. In case of offloading a microservice
MSm to FNl, the fog nodes in Rmn(P1) as well as fog node l
are updated. If the neighbor exchange adds MSm to FNn from
FNl, then FNn informs fog nodes with index in Rmn(P̂ ′

1), that
is, the nodes in the relevant set after the state transition as well
as FNl, the node from which microservice was obtained. In
both cases, the application APr | MSm ∈ Mr is also updated.
Lastly, when FNn swaps MSm with MSm′ on FNl, then all
the fog nodes in Rmn(P1), Rm′n(P̂ ′

1), and l get an update
message. In this case applications APr | MSm ‖m′ ∈ Mr

are updated. After that FNn restarts its timer Ntin(P1) with
Eq. (13). When a fog node FNk receives the update ∆P , it
updates P1, re-computes Ek(P1) with Eq. (9) and restarts its
timer Ntik(P1) with Eq. (13). Algorithm 1 summarizes the
operations performed by FNn upon initialization, timeout, and
receipt of an update. Since the timeout value in a state is
proportional to the probability of the state, fog nodes in the
steady-state tend to be in a placement that is close to the
minimum energy consumption. Even in the steady-state, fog
nodes continue to perform neighbor changes, albeit at a lower
frequency. This can be prevented by adding a criterion that
terminates the algorithm if a change of the total cost after an
update does not exceed a given threshold.

B. Relevant Set Exchange by Applications

For an application APr with placement P2, we restrict the
transitions of microservices only between the fog nodes in
the set Rr(P2), i.e., only between the fog nodes on which
the microservices of application APr are present. After every

Algorithm 1 Relevant Set Exchange at Fog Nodes
Initialize:
P1 ← Pinit

Compute En(P1) with Eq. (9) and start timer Ntin(P1) with Eq. (13)

Upon timeout:
Compute En(P

′
1) with Eq. (9) for all P ′

1 ∈ P′
n

Choose next state P̂ ′
1 with Eq. (11)

∆P ← P̂ ′
1 − P1

if an MSm was migrated from FNn to FNl then
Send ∆P to fog nodes FNk with k ∈ Rmn(P1)∪{l}∪APr | MSm ∈ Mr

end if
if an MSm′ was migrated from FNl to FNn then

Send ∆P to fog nodes FNk with k ∈ Rm′n(P
′
1)∪{l}∪APr | MSm′ ∈ Mr

end if
Perform relevant set exchange, P1 ← P̂ ′

1
Restart timer Ntin(P1) with Eq. (13)

Upon receiving ∆P :
P1 ← P1 + ∆P
Compute En(P1) with Eq. (9) and restart timer Ntin(P1) with Eq. (13)

transition, it is sufficient to notify nodes in Rr(P
′
2) by sending

∆P through an update message. Subsequently, the fog nodes
in Rr(P

′
2) and APr restart their timers. By restarting the timer

values of relevant agents, we can largely avoid the algorithm
from getting stuck in some local minima, as it ensures that the
same set of fog nodes and applications does not get frequent
timeouts. Algorithm 2 shows the operations of RSE run by
applications.

Algorithm 2 Relevant Set Exchange by Applications
Initialize:
P2 ← Pinit

Compute Gr(P2) with Eq. (10) and start timer Ntir(P2) with Eq. (14)

Upon timeout:
Compute Gr(P

′
2) with Eq. (10) for all P ′

2 ∈ P′
r

Choose next state P̂ ′
2 with Eq. (12)

∆P ← P̂ ′
2 − P2

Send ∆P to fog nodes FNk with k ∈ Rr(P̂ ′
2)

Perform relevant set exchange, P2 ← P̂ ′
2

Restart timer Ntir(P2) with Eq. (14)

Upon receiving ∆P :
P2 ← P2 + ∆P
Compute Gr(P2) with Eq. (10) and restart timer Ntir(P2) with Eq. (14)

As an example, consider Fig. 3, where the figure in the
middle depicts a placement, P , of application AP1 consisting
of five microservices on a network of four fog nodes. Here,
the relevant set for FN1 is R1 = {2, 3}, the relevant set for
MS1 at FN1 is R11(P ) = {2}, and that of MS4 at FN3 is
R43(P ) = {2, 4}. If FN1 pushes MS1 to FN2, as shown in
the Figure 3 in the left, then the migration only affects the
fog nodes in the relevant set R11(P ) and application AP1.
Therefore, it is sufficient to notify FN2, and application AP1

about the transfer, subsequently, FN1, FN2 and application
AP1 restart their timers. Similarly, the relevant set of AP1 is
R1(P ) = {1, 2, 3, 4}. Application AP1, perform an exchange
between the nodes in R1(P ) by pushing MS4 from FN3 to
FN2 as shown in the Figure 3 in the right. As a result, all the
fog nodes in the new relevant set R1(P

′) = {1, 2, 4} gets an
update message and, subsequently, application AP1, and all
the fog nodes in R1(P

′) restart their timers.

an application consists of all the fog nodes on which the
microservices of the application are placed. We define the
relevant set of an application APr for MSs in placement P ,
denoted by Rr(P ), as

Rr(P ) =
{
n′ ∈ N | ∃n′ ∈ N,m′ ∈ Mr : Pm′n′ = 1

}
.

Since the sets Rn,Rmn(P ) and Rr(P ) will generally include
only a small number of fog nodes, the search space for an
exchange operation is quite contained. We present the steps
of our distributed algorithm executed by each fog node FNn

and each application APr in the following subsections.

A. Relevant Set Exchange at Fog Nodes

With placement P1, a fog node FNn computes En(P1)
from Eq. (9) and starts its timer Ntin(P1) with Eq. (13).
If a timeout occurs at FNn, the fog node computes En(P

′
1)

with Eq. (9), ∀P ′
1 ∈ P ′

n. Then, FNn selects a new placement
P̂ ′
1 ∈ P ′

n with probabilities given in Eq. (11). Note that a state
transition can result in the addition or the removal of a mi-
croservice, or both. Therefore, a fog node is permitted to make
three types of state transitions: offload one of its microservices,
pull a microservice, or swap one of its microservices with a
fog node n′ ∈ Rn. Hence, the state space P ′

n, consisting of
all possible state transitions that must be considered by node
FNn, is polynomial. The change of the placement, given by
∆P = P̂ ′

1−P1, is then communicated only to the relevant fog
nodes and applications. In case of offloading a microservice
MSm to FNl, the fog nodes in Rmn(P1) as well as fog node l
are updated. If the neighbor exchange adds MSm to FNn from
FNl, then FNn informs fog nodes with index in Rmn(P̂ ′

1), that
is, the nodes in the relevant set after the state transition as well
as FNl, the node from which microservice was obtained. In
both cases, the application APr | MSm ∈ Mr is also updated.
Lastly, when FNn swaps MSm with MSm′ on FNl, then all
the fog nodes in Rmn(P1), Rm′n(P̂ ′

1), and l get an update
message. In this case applications APr | MSm ‖m′ ∈ Mr

are updated. After that FNn restarts its timer Ntin(P1) with
Eq. (13). When a fog node FNk receives the update ∆P , it
updates P1, re-computes Ek(P1) with Eq. (9) and restarts its
timer Ntik(P1) with Eq. (13). Algorithm 1 summarizes the
operations performed by FNn upon initialization, timeout, and
receipt of an update. Since the timeout value in a state is
proportional to the probability of the state, fog nodes in the
steady-state tend to be in a placement that is close to the
minimum energy consumption. Even in the steady-state, fog
nodes continue to perform neighbor changes, albeit at a lower
frequency. This can be prevented by adding a criterion that
terminates the algorithm if a change of the total cost after an
update does not exceed a given threshold.

B. Relevant Set Exchange by Applications

For an application APr with placement P2, we restrict the
transitions of microservices only between the fog nodes in
the set Rr(P2), i.e., only between the fog nodes on which
the microservices of application APr are present. After every

Algorithm 1 Relevant Set Exchange at Fog Nodes
Initialize:
P1 ← Pinit

Compute En(P1) with Eq. (9) and start timer Ntin(P1) with Eq. (13)

Upon timeout:
Compute En(P

′
1) with Eq. (9) for all P ′

1 ∈ P′
n

Choose next state P̂ ′
1 with Eq. (11)

∆P ← P̂ ′
1 − P1

if an MSm was migrated from FNn to FNl then
Send ∆P to fog nodes FNk with k ∈ Rmn(P1)∪{l}∪APr | MSm ∈ Mr

end if
if an MSm′ was migrated from FNl to FNn then

Send ∆P to fog nodes FNk with k ∈ Rm′n(P
′
1)∪{l}∪APr | MSm′ ∈ Mr

end if
Perform relevant set exchange, P1 ← P̂ ′

1
Restart timer Ntin(P1) with Eq. (13)

Upon receiving ∆P :
P1 ← P1 + ∆P
Compute En(P1) with Eq. (9) and restart timer Ntin(P1) with Eq. (13)

transition, it is sufficient to notify nodes in Rr(P
′
2) by sending

∆P through an update message. Subsequently, the fog nodes
in Rr(P

′
2) and APr restart their timers. By restarting the timer

values of relevant agents, we can largely avoid the algorithm
from getting stuck in some local minima, as it ensures that the
same set of fog nodes and applications does not get frequent
timeouts. Algorithm 2 shows the operations of RSE run by
applications.

Algorithm 2 Relevant Set Exchange by Applications
Initialize:
P2 ← Pinit

Compute Gr(P2) with Eq. (10) and start timer Ntir(P2) with Eq. (14)

Upon timeout:
Compute Gr(P

′
2) with Eq. (10) for all P ′

2 ∈ P′
r

Choose next state P̂ ′
2 with Eq. (12)

∆P ← P̂ ′
2 − P2

Send ∆P to fog nodes FNk with k ∈ Rr(P̂ ′
2)

Perform relevant set exchange, P2 ← P̂ ′
2

Restart timer Ntir(P2) with Eq. (14)

Upon receiving ∆P :
P2 ← P2 + ∆P
Compute Gr(P2) with Eq. (10) and restart timer Ntir(P2) with Eq. (14)

As an example, consider Fig. 3, where the figure in the
middle depicts a placement, P , of application AP1 consisting
of five microservices on a network of four fog nodes. Here,
the relevant set for FN1 is R1 = {2, 3}, the relevant set for
MS1 at FN1 is R11(P ) = {2}, and that of MS4 at FN3 is
R43(P ) = {2, 4}. If FN1 pushes MS1 to FN2, as shown in
the Figure 3 in the left, then the migration only affects the
fog nodes in the relevant set R11(P ) and application AP1.
Therefore, it is sufficient to notify FN2, and application AP1

about the transfer, subsequently, FN1, FN2 and application
AP1 restart their timers. Similarly, the relevant set of AP1 is
R1(P ) = {1, 2, 3, 4}. Application AP1, perform an exchange
between the nodes in R1(P ) by pushing MS4 from FN3 to
FN2 as shown in the Figure 3 in the right. As a result, all the
fog nodes in the new relevant set R1(P

′) = {1, 2, 4} gets an
update message and, subsequently, application AP1, and all
the fog nodes in R1(P

′) restart their timers.

an application consists of all the fog nodes on which the
microservices of the application are placed. We define the
relevant set of an application APr for MSs in placement P ,
denoted by Rr(P ), as

Rr(P ) =
{
n′ ∈ N | ∃n′ ∈ N,m′ ∈ Mr : Pm′n′ = 1

}
.

Since the sets Rn,Rmn(P ) and Rr(P ) will generally include
only a small number of fog nodes, the search space for an
exchange operation is quite contained. We present the steps
of our distributed algorithm executed by each fog node FNn

and each application APr in the following subsections.

A. Relevant Set Exchange at Fog Nodes

With placement P1, a fog node FNn computes En(P1)
from Eq. (9) and starts its timer Ntin(P1) with Eq. (13).
If a timeout occurs at FNn, the fog node computes En(P

′
1)

with Eq. (9), ∀P ′
1 ∈ P ′

n. Then, FNn selects a new placement
P̂ ′
1 ∈ P ′

n with probabilities given in Eq. (11). Note that a state
transition can result in the addition or the removal of a mi-
croservice, or both. Therefore, a fog node is permitted to make
three types of state transitions: offload one of its microservices,
pull a microservice, or swap one of its microservices with a
fog node n′ ∈ Rn. Hence, the state space P ′

n, consisting of
all possible state transitions that must be considered by node
FNn, is polynomial. The change of the placement, given by
∆P = P̂ ′

1−P1, is then communicated only to the relevant fog
nodes and applications. In case of offloading a microservice
MSm to FNl, the fog nodes in Rmn(P1) as well as fog node l
are updated. If the neighbor exchange adds MSm to FNn from
FNl, then FNn informs fog nodes with index in Rmn(P̂ ′

1), that
is, the nodes in the relevant set after the state transition as well
as FNl, the node from which microservice was obtained. In
both cases, the application APr | MSm ∈ Mr is also updated.
Lastly, when FNn swaps MSm with MSm′ on FNl, then all
the fog nodes in Rmn(P1), Rm′n(P̂ ′

1), and l get an update
message. In this case applications APr | MSm ‖m′ ∈ Mr

are updated. After that FNn restarts its timer Ntin(P1) with
Eq. (13). When a fog node FNk receives the update ∆P , it
updates P1, re-computes Ek(P1) with Eq. (9) and restarts its
timer Ntik(P1) with Eq. (13). Algorithm 1 summarizes the
operations performed by FNn upon initialization, timeout, and
receipt of an update. Since the timeout value in a state is
proportional to the probability of the state, fog nodes in the
steady-state tend to be in a placement that is close to the
minimum energy consumption. Even in the steady-state, fog
nodes continue to perform neighbor changes, albeit at a lower
frequency. This can be prevented by adding a criterion that
terminates the algorithm if a change of the total cost after an
update does not exceed a given threshold.

B. Relevant Set Exchange by Applications

For an application APr with placement P2, we restrict the
transitions of microservices only between the fog nodes in
the set Rr(P2), i.e., only between the fog nodes on which
the microservices of application APr are present. After every

Algorithm 1 Relevant Set Exchange at Fog Nodes
Initialize:
P1 ← Pinit

Compute En(P1) with Eq. (9) and start timer Ntin(P1) with Eq. (13)

Upon timeout:
Compute En(P

′
1) with Eq. (9) for all P ′

1 ∈ P′
n

Choose next state P̂ ′
1 with Eq. (11)

∆P ← P̂ ′
1 − P1

if an MSm was migrated from FNn to FNl then
Send ∆P to fog nodes FNk with k ∈ Rmn(P1)∪{l}∪APr | MSm ∈ Mr

end if
if an MSm′ was migrated from FNl to FNn then

Send ∆P to fog nodes FNk with k ∈ Rm′n(P
′
1)∪{l}∪APr | MSm′ ∈ Mr

end if
Perform relevant set exchange, P1 ← P̂ ′

1
Restart timer Ntin(P1) with Eq. (13)

Upon receiving ∆P :
P1 ← P1 + ∆P
Compute En(P1) with Eq. (9) and restart timer Ntin(P1) with Eq. (13)

transition, it is sufficient to notify nodes in Rr(P
′
2) by sending

∆P through an update message. Subsequently, the fog nodes
in Rr(P

′
2) and APr restart their timers. By restarting the timer

values of relevant agents, we can largely avoid the algorithm
from getting stuck in some local minima, as it ensures that the
same set of fog nodes and applications does not get frequent
timeouts. Algorithm 2 shows the operations of RSE run by
applications.

Algorithm 2 Relevant Set Exchange by Applications
Initialize:
P2 ← Pinit

Compute Gr(P2) with Eq. (10) and start timer Ntir(P2) with Eq. (14)

Upon timeout:
Compute Gr(P

′
2) with Eq. (10) for all P ′

2 ∈ P′
r

Choose next state P̂ ′
2 with Eq. (12)

∆P ← P̂ ′
2 − P2

Send ∆P to fog nodes FNk with k ∈ Rr(P̂ ′
2)

Perform relevant set exchange, P2 ← P̂ ′
2

Restart timer Ntir(P2) with Eq. (14)

Upon receiving ∆P :
P2 ← P2 + ∆P
Compute Gr(P2) with Eq. (10) and restart timer Ntir(P2) with Eq. (14)

As an example, consider Fig. 3, where the figure in the
middle depicts a placement, P , of application AP1 consisting
of five microservices on a network of four fog nodes. Here,
the relevant set for FN1 is R1 = {2, 3}, the relevant set for
MS1 at FN1 is R11(P ) = {2}, and that of MS4 at FN3 is
R43(P ) = {2, 4}. If FN1 pushes MS1 to FN2, as shown in
the Figure 3 in the left, then the migration only affects the
fog nodes in the relevant set R11(P ) and application AP1.
Therefore, it is sufficient to notify FN2, and application AP1

about the transfer, subsequently, FN1, FN2 and application
AP1 restart their timers. Similarly, the relevant set of AP1 is
R1(P ) = {1, 2, 3, 4}. Application AP1, perform an exchange
between the nodes in R1(P ) by pushing MS4 from FN3 to
FN2 as shown in the Figure 3 in the right. As a result, all the
fog nodes in the new relevant set R1(P

′) = {1, 2, 4} gets an
update message and, subsequently, application AP1, and all
the fog nodes in R1(P

′) restart their timers.

an application consists of all the fog nodes on which the
microservices of the application are placed. We define the
relevant set of an application APr for MSs in placement P ,
denoted by Rr(P ), as

Rr(P ) =
{
n′ ∈ N | ∃n′ ∈ N,m′ ∈ Mr : Pm′n′ = 1

}
.

Since the sets Rn,Rmn(P ) and Rr(P ) will generally include
only a small number of fog nodes, the search space for an
exchange operation is quite contained. We present the steps
of our distributed algorithm executed by each fog node FNn

and each application APr in the following subsections.

A. Relevant Set Exchange at Fog Nodes

With placement P1, a fog node FNn computes En(P1)
from Eq. (9) and starts its timer Ntin(P1) with Eq. (13).
If a timeout occurs at FNn, the fog node computes En(P

′
1)

with Eq. (9), ∀P ′
1 ∈ P ′

n. Then, FNn selects a new placement
P̂ ′
1 ∈ P ′

n with probabilities given in Eq. (11). Note that a state
transition can result in the addition or the removal of a mi-
croservice, or both. Therefore, a fog node is permitted to make
three types of state transitions: offload one of its microservices,
pull a microservice, or swap one of its microservices with a
fog node n′ ∈ Rn. Hence, the state space P ′

n, consisting of
all possible state transitions that must be considered by node
FNn, is polynomial. The change of the placement, given by
∆P = P̂ ′

1−P1, is then communicated only to the relevant fog
nodes and applications. In case of offloading a microservice
MSm to FNl, the fog nodes in Rmn(P1) as well as fog node l
are updated. If the neighbor exchange adds MSm to FNn from
FNl, then FNn informs fog nodes with index in Rmn(P̂ ′

1), that
is, the nodes in the relevant set after the state transition as well
as FNl, the node from which microservice was obtained. In
both cases, the application APr | MSm ∈ Mr is also updated.
Lastly, when FNn swaps MSm with MSm′ on FNl, then all
the fog nodes in Rmn(P1), Rm′n(P̂ ′

1), and l get an update
message. In this case applications APr | MSm ‖m′ ∈ Mr

are updated. After that FNn restarts its timer Ntin(P1) with
Eq. (13). When a fog node FNk receives the update ∆P , it
updates P1, re-computes Ek(P1) with Eq. (9) and restarts its
timer Ntik(P1) with Eq. (13). Algorithm 1 summarizes the
operations performed by FNn upon initialization, timeout, and
receipt of an update. Since the timeout value in a state is
proportional to the probability of the state, fog nodes in the
steady-state tend to be in a placement that is close to the
minimum energy consumption. Even in the steady-state, fog
nodes continue to perform neighbor changes, albeit at a lower
frequency. This can be prevented by adding a criterion that
terminates the algorithm if a change of the total cost after an
update does not exceed a given threshold.

B. Relevant Set Exchange by Applications

For an application APr with placement P2, we restrict the
transitions of microservices only between the fog nodes in
the set Rr(P2), i.e., only between the fog nodes on which
the microservices of application APr are present. After every

Algorithm 1 Relevant Set Exchange at Fog Nodes
Initialize:
P1 ← Pinit

Compute En(P1) with Eq. (9) and start timer Ntin(P1) with Eq. (13)

Upon timeout:
Compute En(P

′
1) with Eq. (9) for all P ′

1 ∈ P′
n

Choose next state P̂ ′
1 with Eq. (11)

∆P ← P̂ ′
1 − P1

if an MSm was migrated from FNn to FNl then
Send ∆P to fog nodes FNk with k ∈ Rmn(P1)∪{l}∪APr | MSm ∈ Mr

end if
if an MSm′ was migrated from FNl to FNn then

Send ∆P to fog nodes FNk with k ∈ Rm′n(P
′
1)∪{l}∪APr | MSm′ ∈ Mr

end if
Perform relevant set exchange, P1 ← P̂ ′

1
Restart timer Ntin(P1) with Eq. (13)

Upon receiving ∆P :
P1 ← P1 + ∆P
Compute En(P1) with Eq. (9) and restart timer Ntin(P1) with Eq. (13)

transition, it is sufficient to notify nodes in Rr(P
′
2) by sending

∆P through an update message. Subsequently, the fog nodes
in Rr(P

′
2) and APr restart their timers. By restarting the timer

values of relevant agents, we can largely avoid the algorithm
from getting stuck in some local minima, as it ensures that the
same set of fog nodes and applications does not get frequent
timeouts. Algorithm 2 shows the operations of RSE run by
applications.

Algorithm 2 Relevant Set Exchange by Applications
Initialize:
P2 ← Pinit

Compute Gr(P2) with Eq. (10) and start timer Ntir(P2) with Eq. (14)

Upon timeout:
Compute Gr(P

′
2) with Eq. (10) for all P ′

2 ∈ P′
r

Choose next state P̂ ′
2 with Eq. (12)

∆P ← P̂ ′
2 − P2

Send ∆P to fog nodes FNk with k ∈ Rr(P̂ ′
2)

Perform relevant set exchange, P2 ← P̂ ′
2

Restart timer Ntir(P2) with Eq. (14)

Upon receiving ∆P :
P2 ← P2 + ∆P
Compute Gr(P2) with Eq. (10) and restart timer Ntir(P2) with Eq. (14)

As an example, consider Fig. 3, where the figure in the
middle depicts a placement, P , of application AP1 consisting
of five microservices on a network of four fog nodes. Here,
the relevant set for FN1 is R1 = {2, 3}, the relevant set for
MS1 at FN1 is R11(P ) = {2}, and that of MS4 at FN3 is
R43(P ) = {2, 4}. If FN1 pushes MS1 to FN2, as shown in
the Figure 3 in the left, then the migration only affects the
fog nodes in the relevant set R11(P ) and application AP1.
Therefore, it is sufficient to notify FN2, and application AP1

about the transfer, subsequently, FN1, FN2 and application
AP1 restart their timers. Similarly, the relevant set of AP1 is
R1(P ) = {1, 2, 3, 4}. Application AP1, perform an exchange
between the nodes in R1(P ) by pushing MS4 from FN3 to
FN2 as shown in the Figure 3 in the right. As a result, all the
fog nodes in the new relevant set R1(P

′) = {1, 2, 4} gets an
update message and, subsequently, application AP1, and all
the fog nodes in R1(P

′) restart their timers.

A. Relevant Set Exchange at Fog Nodes

B. Relevant Set Exchange by Applications
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an application consists of all the fog nodes on which the
microservices of the application are placed. We define the
relevant set of an application APr for MSs in placement P ,
denoted by Rr(P ), as

Rr(P ) =
{
n′ ∈ N | ∃n′ ∈ N,m′ ∈ Mr : Pm′n′ = 1

}
.

Since the sets Rn,Rmn(P ) and Rr(P ) will generally include
only a small number of fog nodes, the search space for an
exchange operation is quite contained. We present the steps
of our distributed algorithm executed by each fog node FNn

and each application APr in the following subsections.

A. Relevant Set Exchange at Fog Nodes

With placement P1, a fog node FNn computes En(P1)
from Eq. (9) and starts its timer Ntin(P1) with Eq. (13).
If a timeout occurs at FNn, the fog node computes En(P

′
1)

with Eq. (9), ∀P ′
1 ∈ P ′

n. Then, FNn selects a new placement
P̂ ′
1 ∈ P ′

n with probabilities given in Eq. (11). Note that a state
transition can result in the addition or the removal of a mi-
croservice, or both. Therefore, a fog node is permitted to make
three types of state transitions: offload one of its microservices,
pull a microservice, or swap one of its microservices with a
fog node n′ ∈ Rn. Hence, the state space P ′

n, consisting of
all possible state transitions that must be considered by node
FNn, is polynomial. The change of the placement, given by
∆P = P̂ ′

1−P1, is then communicated only to the relevant fog
nodes and applications. In case of offloading a microservice
MSm to FNl, the fog nodes in Rmn(P1) as well as fog node l
are updated. If the neighbor exchange adds MSm to FNn from
FNl, then FNn informs fog nodes with index in Rmn(P̂ ′

1), that
is, the nodes in the relevant set after the state transition as well
as FNl, the node from which microservice was obtained. In
both cases, the application APr | MSm ∈ Mr is also updated.
Lastly, when FNn swaps MSm with MSm′ on FNl, then all
the fog nodes in Rmn(P1), Rm′n(P̂ ′

1), and l get an update
message. In this case applications APr | MSm ‖m′ ∈ Mr

are updated. After that FNn restarts its timer Ntin(P1) with
Eq. (13). When a fog node FNk receives the update ∆P , it
updates P1, re-computes Ek(P1) with Eq. (9) and restarts its
timer Ntik(P1) with Eq. (13). Algorithm 1 summarizes the
operations performed by FNn upon initialization, timeout, and
receipt of an update. Since the timeout value in a state is
proportional to the probability of the state, fog nodes in the
steady-state tend to be in a placement that is close to the
minimum energy consumption. Even in the steady-state, fog
nodes continue to perform neighbor changes, albeit at a lower
frequency. This can be prevented by adding a criterion that
terminates the algorithm if a change of the total cost after an
update does not exceed a given threshold.

B. Relevant Set Exchange by Applications

For an application APr with placement P2, we restrict the
transitions of microservices only between the fog nodes in
the set Rr(P2), i.e., only between the fog nodes on which
the microservices of application APr are present. After every

Algorithm 1 Relevant Set Exchange at Fog Nodes
Initialize:
P1 ← Pinit

Compute En(P1) with Eq. (9) and start timer Ntin(P1) with Eq. (13)

Upon timeout:
Compute En(P

′
1) with Eq. (9) for all P ′

1 ∈ P′
n

Choose next state P̂ ′
1 with Eq. (11)

∆P ← P̂ ′
1 − P1

if an MSm was migrated from FNn to FNl then
Send ∆P to fog nodes FNk with k ∈ Rmn(P1)∪{l}∪APr | MSm ∈ Mr

end if
if an MSm′ was migrated from FNl to FNn then

Send ∆P to fog nodes FNk with k ∈ Rm′n(P
′
1)∪{l}∪APr | MSm′ ∈ Mr

end if
Perform relevant set exchange, P1 ← P̂ ′

1
Restart timer Ntin(P1) with Eq. (13)

Upon receiving ∆P :
P1 ← P1 + ∆P
Compute En(P1) with Eq. (9) and restart timer Ntin(P1) with Eq. (13)

transition, it is sufficient to notify nodes in Rr(P
′
2) by sending

∆P through an update message. Subsequently, the fog nodes
in Rr(P

′
2) and APr restart their timers. By restarting the timer

values of relevant agents, we can largely avoid the algorithm
from getting stuck in some local minima, as it ensures that the
same set of fog nodes and applications does not get frequent
timeouts. Algorithm 2 shows the operations of RSE run by
applications.

Algorithm 2 Relevant Set Exchange by Applications
Initialize:
P2 ← Pinit

Compute Gr(P2) with Eq. (10) and start timer Ntir(P2) with Eq. (14)

Upon timeout:
Compute Gr(P

′
2) with Eq. (10) for all P ′

2 ∈ P′
r

Choose next state P̂ ′
2 with Eq. (12)

∆P ← P̂ ′
2 − P2

Send ∆P to fog nodes FNk with k ∈ Rr(P̂ ′
2)

Perform relevant set exchange, P2 ← P̂ ′
2

Restart timer Ntir(P2) with Eq. (14)

Upon receiving ∆P :
P2 ← P2 + ∆P
Compute Gr(P2) with Eq. (10) and restart timer Ntir(P2) with Eq. (14)

As an example, consider Fig. 3, where the figure in the
middle depicts a placement, P , of application AP1 consisting
of five microservices on a network of four fog nodes. Here,
the relevant set for FN1 is R1 = {2, 3}, the relevant set for
MS1 at FN1 is R11(P ) = {2}, and that of MS4 at FN3 is
R43(P ) = {2, 4}. If FN1 pushes MS1 to FN2, as shown in
the Figure 3 in the left, then the migration only affects the
fog nodes in the relevant set R11(P ) and application AP1.
Therefore, it is sufficient to notify FN2, and application AP1

about the transfer, subsequently, FN1, FN2 and application
AP1 restart their timers. Similarly, the relevant set of AP1 is
R1(P ) = {1, 2, 3, 4}. Application AP1, perform an exchange
between the nodes in R1(P ) by pushing MS4 from FN3 to
FN2 as shown in the Figure 3 in the right. As a result, all the
fog nodes in the new relevant set R1(P

′) = {1, 2, 4} gets an
update message and, subsequently, application AP1, and all
the fog nodes in R1(P

′) restart their timers.

an application consists of all the fog nodes on which the
microservices of the application are placed. We define the
relevant set of an application APr for MSs in placement P ,
denoted by Rr(P ), as

Rr(P ) =
{
n′ ∈ N | ∃n′ ∈ N,m′ ∈ Mr : Pm′n′ = 1

}
.

Since the sets Rn,Rmn(P ) and Rr(P ) will generally include
only a small number of fog nodes, the search space for an
exchange operation is quite contained. We present the steps
of our distributed algorithm executed by each fog node FNn

and each application APr in the following subsections.

A. Relevant Set Exchange at Fog Nodes

With placement P1, a fog node FNn computes En(P1)
from Eq. (9) and starts its timer Ntin(P1) with Eq. (13).
If a timeout occurs at FNn, the fog node computes En(P

′
1)

with Eq. (9), ∀P ′
1 ∈ P ′

n. Then, FNn selects a new placement
P̂ ′
1 ∈ P ′

n with probabilities given in Eq. (11). Note that a state
transition can result in the addition or the removal of a mi-
croservice, or both. Therefore, a fog node is permitted to make
three types of state transitions: offload one of its microservices,
pull a microservice, or swap one of its microservices with a
fog node n′ ∈ Rn. Hence, the state space P ′

n, consisting of
all possible state transitions that must be considered by node
FNn, is polynomial. The change of the placement, given by
∆P = P̂ ′

1−P1, is then communicated only to the relevant fog
nodes and applications. In case of offloading a microservice
MSm to FNl, the fog nodes in Rmn(P1) as well as fog node l
are updated. If the neighbor exchange adds MSm to FNn from
FNl, then FNn informs fog nodes with index in Rmn(P̂ ′

1), that
is, the nodes in the relevant set after the state transition as well
as FNl, the node from which microservice was obtained. In
both cases, the application APr | MSm ∈ Mr is also updated.
Lastly, when FNn swaps MSm with MSm′ on FNl, then all
the fog nodes in Rmn(P1), Rm′n(P̂ ′

1), and l get an update
message. In this case applications APr | MSm ‖m′ ∈ Mr

are updated. After that FNn restarts its timer Ntin(P1) with
Eq. (13). When a fog node FNk receives the update ∆P , it
updates P1, re-computes Ek(P1) with Eq. (9) and restarts its
timer Ntik(P1) with Eq. (13). Algorithm 1 summarizes the
operations performed by FNn upon initialization, timeout, and
receipt of an update. Since the timeout value in a state is
proportional to the probability of the state, fog nodes in the
steady-state tend to be in a placement that is close to the
minimum energy consumption. Even in the steady-state, fog
nodes continue to perform neighbor changes, albeit at a lower
frequency. This can be prevented by adding a criterion that
terminates the algorithm if a change of the total cost after an
update does not exceed a given threshold.

B. Relevant Set Exchange by Applications

For an application APr with placement P2, we restrict the
transitions of microservices only between the fog nodes in
the set Rr(P2), i.e., only between the fog nodes on which
the microservices of application APr are present. After every

Algorithm 1 Relevant Set Exchange at Fog Nodes
Initialize:
P1 ← Pinit

Compute En(P1) with Eq. (9) and start timer Ntin(P1) with Eq. (13)

Upon timeout:
Compute En(P

′
1) with Eq. (9) for all P ′

1 ∈ P′
n

Choose next state P̂ ′
1 with Eq. (11)

∆P ← P̂ ′
1 − P1

if an MSm was migrated from FNn to FNl then
Send ∆P to fog nodes FNk with k ∈ Rmn(P1)∪{l}∪APr | MSm ∈ Mr

end if
if an MSm′ was migrated from FNl to FNn then

Send ∆P to fog nodes FNk with k ∈ Rm′n(P
′
1)∪{l}∪APr | MSm′ ∈ Mr

end if
Perform relevant set exchange, P1 ← P̂ ′

1
Restart timer Ntin(P1) with Eq. (13)

Upon receiving ∆P :
P1 ← P1 + ∆P
Compute En(P1) with Eq. (9) and restart timer Ntin(P1) with Eq. (13)

transition, it is sufficient to notify nodes in Rr(P
′
2) by sending

∆P through an update message. Subsequently, the fog nodes
in Rr(P

′
2) and APr restart their timers. By restarting the timer

values of relevant agents, we can largely avoid the algorithm
from getting stuck in some local minima, as it ensures that the
same set of fog nodes and applications does not get frequent
timeouts. Algorithm 2 shows the operations of RSE run by
applications.

Algorithm 2 Relevant Set Exchange by Applications
Initialize:
P2 ← Pinit

Compute Gr(P2) with Eq. (10) and start timer Ntir(P2) with Eq. (14)

Upon timeout:
Compute Gr(P

′
2) with Eq. (10) for all P ′

2 ∈ P′
r

Choose next state P̂ ′
2 with Eq. (12)

∆P ← P̂ ′
2 − P2

Send ∆P to fog nodes FNk with k ∈ Rr(P̂ ′
2)

Perform relevant set exchange, P2 ← P̂ ′
2

Restart timer Ntir(P2) with Eq. (14)

Upon receiving ∆P :
P2 ← P2 + ∆P
Compute Gr(P2) with Eq. (10) and restart timer Ntir(P2) with Eq. (14)

As an example, consider Fig. 3, where the figure in the
middle depicts a placement, P , of application AP1 consisting
of five microservices on a network of four fog nodes. Here,
the relevant set for FN1 is R1 = {2, 3}, the relevant set for
MS1 at FN1 is R11(P ) = {2}, and that of MS4 at FN3 is
R43(P ) = {2, 4}. If FN1 pushes MS1 to FN2, as shown in
the Figure 3 in the left, then the migration only affects the
fog nodes in the relevant set R11(P ) and application AP1.
Therefore, it is sufficient to notify FN2, and application AP1

about the transfer, subsequently, FN1, FN2 and application
AP1 restart their timers. Similarly, the relevant set of AP1 is
R1(P ) = {1, 2, 3, 4}. Application AP1, perform an exchange
between the nodes in R1(P ) by pushing MS4 from FN3 to
FN2 as shown in the Figure 3 in the right. As a result, all the
fog nodes in the new relevant set R1(P

′) = {1, 2, 4} gets an
update message and, subsequently, application AP1, and all
the fog nodes in R1(P

′) restart their timers.

an application consists of all the fog nodes on which the
microservices of the application are placed. We define the
relevant set of an application APr for MSs in placement P ,
denoted by Rr(P ), as

Rr(P ) =
{
n′ ∈ N | ∃n′ ∈ N,m′ ∈ Mr : Pm′n′ = 1

}
.

Since the sets Rn,Rmn(P ) and Rr(P ) will generally include
only a small number of fog nodes, the search space for an
exchange operation is quite contained. We present the steps
of our distributed algorithm executed by each fog node FNn

and each application APr in the following subsections.

A. Relevant Set Exchange at Fog Nodes

With placement P1, a fog node FNn computes En(P1)
from Eq. (9) and starts its timer Ntin(P1) with Eq. (13).
If a timeout occurs at FNn, the fog node computes En(P

′
1)

with Eq. (9), ∀P ′
1 ∈ P ′

n. Then, FNn selects a new placement
P̂ ′
1 ∈ P ′

n with probabilities given in Eq. (11). Note that a state
transition can result in the addition or the removal of a mi-
croservice, or both. Therefore, a fog node is permitted to make
three types of state transitions: offload one of its microservices,
pull a microservice, or swap one of its microservices with a
fog node n′ ∈ Rn. Hence, the state space P ′

n, consisting of
all possible state transitions that must be considered by node
FNn, is polynomial. The change of the placement, given by
∆P = P̂ ′

1−P1, is then communicated only to the relevant fog
nodes and applications. In case of offloading a microservice
MSm to FNl, the fog nodes in Rmn(P1) as well as fog node l
are updated. If the neighbor exchange adds MSm to FNn from
FNl, then FNn informs fog nodes with index in Rmn(P̂ ′

1), that
is, the nodes in the relevant set after the state transition as well
as FNl, the node from which microservice was obtained. In
both cases, the application APr | MSm ∈ Mr is also updated.
Lastly, when FNn swaps MSm with MSm′ on FNl, then all
the fog nodes in Rmn(P1), Rm′n(P̂ ′

1), and l get an update
message. In this case applications APr | MSm ‖m′ ∈ Mr

are updated. After that FNn restarts its timer Ntin(P1) with
Eq. (13). When a fog node FNk receives the update ∆P , it
updates P1, re-computes Ek(P1) with Eq. (9) and restarts its
timer Ntik(P1) with Eq. (13). Algorithm 1 summarizes the
operations performed by FNn upon initialization, timeout, and
receipt of an update. Since the timeout value in a state is
proportional to the probability of the state, fog nodes in the
steady-state tend to be in a placement that is close to the
minimum energy consumption. Even in the steady-state, fog
nodes continue to perform neighbor changes, albeit at a lower
frequency. This can be prevented by adding a criterion that
terminates the algorithm if a change of the total cost after an
update does not exceed a given threshold.

B. Relevant Set Exchange by Applications

For an application APr with placement P2, we restrict the
transitions of microservices only between the fog nodes in
the set Rr(P2), i.e., only between the fog nodes on which
the microservices of application APr are present. After every

Algorithm 1 Relevant Set Exchange at Fog Nodes
Initialize:
P1 ← Pinit

Compute En(P1) with Eq. (9) and start timer Ntin(P1) with Eq. (13)

Upon timeout:
Compute En(P

′
1) with Eq. (9) for all P ′

1 ∈ P′
n

Choose next state P̂ ′
1 with Eq. (11)

∆P ← P̂ ′
1 − P1

if an MSm was migrated from FNn to FNl then
Send ∆P to fog nodes FNk with k ∈ Rmn(P1)∪{l}∪APr | MSm ∈ Mr

end if
if an MSm′ was migrated from FNl to FNn then

Send ∆P to fog nodes FNk with k ∈ Rm′n(P
′
1)∪{l}∪APr | MSm′ ∈ Mr

end if
Perform relevant set exchange, P1 ← P̂ ′

1
Restart timer Ntin(P1) with Eq. (13)

Upon receiving ∆P :
P1 ← P1 + ∆P
Compute En(P1) with Eq. (9) and restart timer Ntin(P1) with Eq. (13)

transition, it is sufficient to notify nodes in Rr(P
′
2) by sending

∆P through an update message. Subsequently, the fog nodes
in Rr(P

′
2) and APr restart their timers. By restarting the timer

values of relevant agents, we can largely avoid the algorithm
from getting stuck in some local minima, as it ensures that the
same set of fog nodes and applications does not get frequent
timeouts. Algorithm 2 shows the operations of RSE run by
applications.

Algorithm 2 Relevant Set Exchange by Applications
Initialize:
P2 ← Pinit

Compute Gr(P2) with Eq. (10) and start timer Ntir(P2) with Eq. (14)

Upon timeout:
Compute Gr(P

′
2) with Eq. (10) for all P ′

2 ∈ P′
r

Choose next state P̂ ′
2 with Eq. (12)

∆P ← P̂ ′
2 − P2

Send ∆P to fog nodes FNk with k ∈ Rr(P̂ ′
2)

Perform relevant set exchange, P2 ← P̂ ′
2

Restart timer Ntir(P2) with Eq. (14)

Upon receiving ∆P :
P2 ← P2 + ∆P
Compute Gr(P2) with Eq. (10) and restart timer Ntir(P2) with Eq. (14)

As an example, consider Fig. 3, where the figure in the
middle depicts a placement, P , of application AP1 consisting
of five microservices on a network of four fog nodes. Here,
the relevant set for FN1 is R1 = {2, 3}, the relevant set for
MS1 at FN1 is R11(P ) = {2}, and that of MS4 at FN3 is
R43(P ) = {2, 4}. If FN1 pushes MS1 to FN2, as shown in
the Figure 3 in the left, then the migration only affects the
fog nodes in the relevant set R11(P ) and application AP1.
Therefore, it is sufficient to notify FN2, and application AP1

about the transfer, subsequently, FN1, FN2 and application
AP1 restart their timers. Similarly, the relevant set of AP1 is
R1(P ) = {1, 2, 3, 4}. Application AP1, perform an exchange
between the nodes in R1(P ) by pushing MS4 from FN3 to
FN2 as shown in the Figure 3 in the right. As a result, all the
fog nodes in the new relevant set R1(P

′) = {1, 2, 4} gets an
update message and, subsequently, application AP1, and all
the fog nodes in R1(P

′) restart their timers.

an application consists of all the fog nodes on which the
microservices of the application are placed. We define the
relevant set of an application APr for MSs in placement P ,
denoted by Rr(P ), as

Rr(P ) =
{
n′ ∈ N | ∃n′ ∈ N,m′ ∈ Mr : Pm′n′ = 1

}
.

Since the sets Rn,Rmn(P ) and Rr(P ) will generally include
only a small number of fog nodes, the search space for an
exchange operation is quite contained. We present the steps
of our distributed algorithm executed by each fog node FNn

and each application APr in the following subsections.

A. Relevant Set Exchange at Fog Nodes

With placement P1, a fog node FNn computes En(P1)
from Eq. (9) and starts its timer Ntin(P1) with Eq. (13).
If a timeout occurs at FNn, the fog node computes En(P

′
1)

with Eq. (9), ∀P ′
1 ∈ P ′

n. Then, FNn selects a new placement
P̂ ′
1 ∈ P ′

n with probabilities given in Eq. (11). Note that a state
transition can result in the addition or the removal of a mi-
croservice, or both. Therefore, a fog node is permitted to make
three types of state transitions: offload one of its microservices,
pull a microservice, or swap one of its microservices with a
fog node n′ ∈ Rn. Hence, the state space P ′

n, consisting of
all possible state transitions that must be considered by node
FNn, is polynomial. The change of the placement, given by
∆P = P̂ ′

1−P1, is then communicated only to the relevant fog
nodes and applications. In case of offloading a microservice
MSm to FNl, the fog nodes in Rmn(P1) as well as fog node l
are updated. If the neighbor exchange adds MSm to FNn from
FNl, then FNn informs fog nodes with index in Rmn(P̂ ′

1), that
is, the nodes in the relevant set after the state transition as well
as FNl, the node from which microservice was obtained. In
both cases, the application APr | MSm ∈ Mr is also updated.
Lastly, when FNn swaps MSm with MSm′ on FNl, then all
the fog nodes in Rmn(P1), Rm′n(P̂ ′

1), and l get an update
message. In this case applications APr | MSm ‖m′ ∈ Mr

are updated. After that FNn restarts its timer Ntin(P1) with
Eq. (13). When a fog node FNk receives the update ∆P , it
updates P1, re-computes Ek(P1) with Eq. (9) and restarts its
timer Ntik(P1) with Eq. (13). Algorithm 1 summarizes the
operations performed by FNn upon initialization, timeout, and
receipt of an update. Since the timeout value in a state is
proportional to the probability of the state, fog nodes in the
steady-state tend to be in a placement that is close to the
minimum energy consumption. Even in the steady-state, fog
nodes continue to perform neighbor changes, albeit at a lower
frequency. This can be prevented by adding a criterion that
terminates the algorithm if a change of the total cost after an
update does not exceed a given threshold.

B. Relevant Set Exchange by Applications

For an application APr with placement P2, we restrict the
transitions of microservices only between the fog nodes in
the set Rr(P2), i.e., only between the fog nodes on which
the microservices of application APr are present. After every

Algorithm 1 Relevant Set Exchange at Fog Nodes
Initialize:
P1 ← Pinit

Compute En(P1) with Eq. (9) and start timer Ntin(P1) with Eq. (13)

Upon timeout:
Compute En(P

′
1) with Eq. (9) for all P ′

1 ∈ P′
n

Choose next state P̂ ′
1 with Eq. (11)

∆P ← P̂ ′
1 − P1

if an MSm was migrated from FNn to FNl then
Send ∆P to fog nodes FNk with k ∈ Rmn(P1)∪{l}∪APr | MSm ∈ Mr

end if
if an MSm′ was migrated from FNl to FNn then

Send ∆P to fog nodes FNk with k ∈ Rm′n(P
′
1)∪{l}∪APr | MSm′ ∈ Mr

end if
Perform relevant set exchange, P1 ← P̂ ′

1
Restart timer Ntin(P1) with Eq. (13)

Upon receiving ∆P :
P1 ← P1 + ∆P
Compute En(P1) with Eq. (9) and restart timer Ntin(P1) with Eq. (13)

transition, it is sufficient to notify nodes in Rr(P
′
2) by sending

∆P through an update message. Subsequently, the fog nodes
in Rr(P

′
2) and APr restart their timers. By restarting the timer

values of relevant agents, we can largely avoid the algorithm
from getting stuck in some local minima, as it ensures that the
same set of fog nodes and applications does not get frequent
timeouts. Algorithm 2 shows the operations of RSE run by
applications.

Algorithm 2 Relevant Set Exchange by Applications
Initialize:
P2 ← Pinit

Compute Gr(P2) with Eq. (10) and start timer Ntir(P2) with Eq. (14)

Upon timeout:
Compute Gr(P

′
2) with Eq. (10) for all P ′

2 ∈ P′
r

Choose next state P̂ ′
2 with Eq. (12)

∆P ← P̂ ′
2 − P2

Send ∆P to fog nodes FNk with k ∈ Rr(P̂ ′
2)

Perform relevant set exchange, P2 ← P̂ ′
2

Restart timer Ntir(P2) with Eq. (14)

Upon receiving ∆P :
P2 ← P2 + ∆P
Compute Gr(P2) with Eq. (10) and restart timer Ntir(P2) with Eq. (14)

As an example, consider Fig. 3, where the figure in the
middle depicts a placement, P , of application AP1 consisting
of five microservices on a network of four fog nodes. Here,
the relevant set for FN1 is R1 = {2, 3}, the relevant set for
MS1 at FN1 is R11(P ) = {2}, and that of MS4 at FN3 is
R43(P ) = {2, 4}. If FN1 pushes MS1 to FN2, as shown in
the Figure 3 in the left, then the migration only affects the
fog nodes in the relevant set R11(P ) and application AP1.
Therefore, it is sufficient to notify FN2, and application AP1

about the transfer, subsequently, FN1, FN2 and application
AP1 restart their timers. Similarly, the relevant set of AP1 is
R1(P ) = {1, 2, 3, 4}. Application AP1, perform an exchange
between the nodes in R1(P ) by pushing MS4 from FN3 to
FN2 as shown in the Figure 3 in the right. As a result, all the
fog nodes in the new relevant set R1(P

′) = {1, 2, 4} gets an
update message and, subsequently, application AP1, and all
the fog nodes in R1(P

′) restart their timers.

an application consists of all the fog nodes on which the
microservices of the application are placed. We define the
relevant set of an application APr for MSs in placement P ,
denoted by Rr(P ), as

Rr(P ) =
{
n′ ∈ N | ∃n′ ∈ N,m′ ∈ Mr : Pm′n′ = 1

}
.

Since the sets Rn,Rmn(P ) and Rr(P ) will generally include
only a small number of fog nodes, the search space for an
exchange operation is quite contained. We present the steps
of our distributed algorithm executed by each fog node FNn

and each application APr in the following subsections.

A. Relevant Set Exchange at Fog Nodes

With placement P1, a fog node FNn computes En(P1)
from Eq. (9) and starts its timer Ntin(P1) with Eq. (13).
If a timeout occurs at FNn, the fog node computes En(P

′
1)

with Eq. (9), ∀P ′
1 ∈ P ′

n. Then, FNn selects a new placement
P̂ ′
1 ∈ P ′

n with probabilities given in Eq. (11). Note that a state
transition can result in the addition or the removal of a mi-
croservice, or both. Therefore, a fog node is permitted to make
three types of state transitions: offload one of its microservices,
pull a microservice, or swap one of its microservices with a
fog node n′ ∈ Rn. Hence, the state space P ′

n, consisting of
all possible state transitions that must be considered by node
FNn, is polynomial. The change of the placement, given by
∆P = P̂ ′

1−P1, is then communicated only to the relevant fog
nodes and applications. In case of offloading a microservice
MSm to FNl, the fog nodes in Rmn(P1) as well as fog node l
are updated. If the neighbor exchange adds MSm to FNn from
FNl, then FNn informs fog nodes with index in Rmn(P̂ ′

1), that
is, the nodes in the relevant set after the state transition as well
as FNl, the node from which microservice was obtained. In
both cases, the application APr | MSm ∈ Mr is also updated.
Lastly, when FNn swaps MSm with MSm′ on FNl, then all
the fog nodes in Rmn(P1), Rm′n(P̂ ′

1), and l get an update
message. In this case applications APr | MSm ‖m′ ∈ Mr

are updated. After that FNn restarts its timer Ntin(P1) with
Eq. (13). When a fog node FNk receives the update ∆P , it
updates P1, re-computes Ek(P1) with Eq. (9) and restarts its
timer Ntik(P1) with Eq. (13). Algorithm 1 summarizes the
operations performed by FNn upon initialization, timeout, and
receipt of an update. Since the timeout value in a state is
proportional to the probability of the state, fog nodes in the
steady-state tend to be in a placement that is close to the
minimum energy consumption. Even in the steady-state, fog
nodes continue to perform neighbor changes, albeit at a lower
frequency. This can be prevented by adding a criterion that
terminates the algorithm if a change of the total cost after an
update does not exceed a given threshold.

B. Relevant Set Exchange by Applications

For an application APr with placement P2, we restrict the
transitions of microservices only between the fog nodes in
the set Rr(P2), i.e., only between the fog nodes on which
the microservices of application APr are present. After every

Algorithm 1 Relevant Set Exchange at Fog Nodes
Initialize:
P1 ← Pinit

Compute En(P1) with Eq. (9) and start timer Ntin(P1) with Eq. (13)

Upon timeout:
Compute En(P

′
1) with Eq. (9) for all P ′

1 ∈ P′
n

Choose next state P̂ ′
1 with Eq. (11)

∆P ← P̂ ′
1 − P1

if an MSm was migrated from FNn to FNl then
Send ∆P to fog nodes FNk with k ∈ Rmn(P1)∪{l}∪APr | MSm ∈ Mr

end if
if an MSm′ was migrated from FNl to FNn then

Send ∆P to fog nodes FNk with k ∈ Rm′n(P
′
1)∪{l}∪APr | MSm′ ∈ Mr

end if
Perform relevant set exchange, P1 ← P̂ ′

1
Restart timer Ntin(P1) with Eq. (13)

Upon receiving ∆P :
P1 ← P1 + ∆P
Compute En(P1) with Eq. (9) and restart timer Ntin(P1) with Eq. (13)

transition, it is sufficient to notify nodes in Rr(P
′
2) by sending

∆P through an update message. Subsequently, the fog nodes
in Rr(P

′
2) and APr restart their timers. By restarting the timer

values of relevant agents, we can largely avoid the algorithm
from getting stuck in some local minima, as it ensures that the
same set of fog nodes and applications does not get frequent
timeouts. Algorithm 2 shows the operations of RSE run by
applications.

Algorithm 2 Relevant Set Exchange by Applications
Initialize:
P2 ← Pinit

Compute Gr(P2) with Eq. (10) and start timer Ntir(P2) with Eq. (14)

Upon timeout:
Compute Gr(P

′
2) with Eq. (10) for all P ′

2 ∈ P′
r

Choose next state P̂ ′
2 with Eq. (12)

∆P ← P̂ ′
2 − P2

Send ∆P to fog nodes FNk with k ∈ Rr(P̂ ′
2)

Perform relevant set exchange, P2 ← P̂ ′
2

Restart timer Ntir(P2) with Eq. (14)

Upon receiving ∆P :
P2 ← P2 + ∆P
Compute Gr(P2) with Eq. (10) and restart timer Ntir(P2) with Eq. (14)

As an example, consider Fig. 3, where the figure in the
middle depicts a placement, P , of application AP1 consisting
of five microservices on a network of four fog nodes. Here,
the relevant set for FN1 is R1 = {2, 3}, the relevant set for
MS1 at FN1 is R11(P ) = {2}, and that of MS4 at FN3 is
R43(P ) = {2, 4}. If FN1 pushes MS1 to FN2, as shown in
the Figure 3 in the left, then the migration only affects the
fog nodes in the relevant set R11(P ) and application AP1.
Therefore, it is sufficient to notify FN2, and application AP1

about the transfer, subsequently, FN1, FN2 and application
AP1 restart their timers. Similarly, the relevant set of AP1 is
R1(P ) = {1, 2, 3, 4}. Application AP1, perform an exchange
between the nodes in R1(P ) by pushing MS4 from FN3 to
FN2 as shown in the Figure 3 in the right. As a result, all the
fog nodes in the new relevant set R1(P

′) = {1, 2, 4} gets an
update message and, subsequently, application AP1, and all
the fog nodes in R1(P

′) restart their timers.

an application consists of all the fog nodes on which the
microservices of the application are placed. We define the
relevant set of an application APr for MSs in placement P ,
denoted by Rr(P ), as

Rr(P ) =
{
n′ ∈ N | ∃n′ ∈ N,m′ ∈ Mr : Pm′n′ = 1

}
.

Since the sets Rn,Rmn(P ) and Rr(P ) will generally include
only a small number of fog nodes, the search space for an
exchange operation is quite contained. We present the steps
of our distributed algorithm executed by each fog node FNn

and each application APr in the following subsections.

A. Relevant Set Exchange at Fog Nodes

With placement P1, a fog node FNn computes En(P1)
from Eq. (9) and starts its timer Ntin(P1) with Eq. (13).
If a timeout occurs at FNn, the fog node computes En(P

′
1)

with Eq. (9), ∀P ′
1 ∈ P ′

n. Then, FNn selects a new placement
P̂ ′
1 ∈ P ′

n with probabilities given in Eq. (11). Note that a state
transition can result in the addition or the removal of a mi-
croservice, or both. Therefore, a fog node is permitted to make
three types of state transitions: offload one of its microservices,
pull a microservice, or swap one of its microservices with a
fog node n′ ∈ Rn. Hence, the state space P ′

n, consisting of
all possible state transitions that must be considered by node
FNn, is polynomial. The change of the placement, given by
∆P = P̂ ′

1−P1, is then communicated only to the relevant fog
nodes and applications. In case of offloading a microservice
MSm to FNl, the fog nodes in Rmn(P1) as well as fog node l
are updated. If the neighbor exchange adds MSm to FNn from
FNl, then FNn informs fog nodes with index in Rmn(P̂ ′

1), that
is, the nodes in the relevant set after the state transition as well
as FNl, the node from which microservice was obtained. In
both cases, the application APr | MSm ∈ Mr is also updated.
Lastly, when FNn swaps MSm with MSm′ on FNl, then all
the fog nodes in Rmn(P1), Rm′n(P̂ ′

1), and l get an update
message. In this case applications APr | MSm ‖m′ ∈ Mr

are updated. After that FNn restarts its timer Ntin(P1) with
Eq. (13). When a fog node FNk receives the update ∆P , it
updates P1, re-computes Ek(P1) with Eq. (9) and restarts its
timer Ntik(P1) with Eq. (13). Algorithm 1 summarizes the
operations performed by FNn upon initialization, timeout, and
receipt of an update. Since the timeout value in a state is
proportional to the probability of the state, fog nodes in the
steady-state tend to be in a placement that is close to the
minimum energy consumption. Even in the steady-state, fog
nodes continue to perform neighbor changes, albeit at a lower
frequency. This can be prevented by adding a criterion that
terminates the algorithm if a change of the total cost after an
update does not exceed a given threshold.

B. Relevant Set Exchange by Applications

For an application APr with placement P2, we restrict the
transitions of microservices only between the fog nodes in
the set Rr(P2), i.e., only between the fog nodes on which
the microservices of application APr are present. After every

Algorithm 1 Relevant Set Exchange at Fog Nodes
Initialize:
P1 ← Pinit

Compute En(P1) with Eq. (9) and start timer Ntin(P1) with Eq. (13)

Upon timeout:
Compute En(P

′
1) with Eq. (9) for all P ′

1 ∈ P′
n

Choose next state P̂ ′
1 with Eq. (11)

∆P ← P̂ ′
1 − P1

if an MSm was migrated from FNn to FNl then
Send ∆P to fog nodes FNk with k ∈ Rmn(P1)∪{l}∪APr | MSm ∈ Mr

end if
if an MSm′ was migrated from FNl to FNn then

Send ∆P to fog nodes FNk with k ∈ Rm′n(P
′
1)∪{l}∪APr | MSm′ ∈ Mr

end if
Perform relevant set exchange, P1 ← P̂ ′

1
Restart timer Ntin(P1) with Eq. (13)

Upon receiving ∆P :
P1 ← P1 + ∆P
Compute En(P1) with Eq. (9) and restart timer Ntin(P1) with Eq. (13)

transition, it is sufficient to notify nodes in Rr(P
′
2) by sending

∆P through an update message. Subsequently, the fog nodes
in Rr(P

′
2) and APr restart their timers. By restarting the timer

values of relevant agents, we can largely avoid the algorithm
from getting stuck in some local minima, as it ensures that the
same set of fog nodes and applications does not get frequent
timeouts. Algorithm 2 shows the operations of RSE run by
applications.

Algorithm 2 Relevant Set Exchange by Applications
Initialize:
P2 ← Pinit

Compute Gr(P2) with Eq. (10) and start timer Ntir(P2) with Eq. (14)

Upon timeout:
Compute Gr(P

′
2) with Eq. (10) for all P ′

2 ∈ P′
r

Choose next state P̂ ′
2 with Eq. (12)

∆P ← P̂ ′
2 − P2

Send ∆P to fog nodes FNk with k ∈ Rr(P̂ ′
2)

Perform relevant set exchange, P2 ← P̂ ′
2

Restart timer Ntir(P2) with Eq. (14)

Upon receiving ∆P :
P2 ← P2 + ∆P
Compute Gr(P2) with Eq. (10) and restart timer Ntir(P2) with Eq. (14)

As an example, consider Fig. 3, where the figure in the
middle depicts a placement, P , of application AP1 consisting
of five microservices on a network of four fog nodes. Here,
the relevant set for FN1 is R1 = {2, 3}, the relevant set for
MS1 at FN1 is R11(P ) = {2}, and that of MS4 at FN3 is
R43(P ) = {2, 4}. If FN1 pushes MS1 to FN2, as shown in
the Figure 3 in the left, then the migration only affects the
fog nodes in the relevant set R11(P ) and application AP1.
Therefore, it is sufficient to notify FN2, and application AP1

about the transfer, subsequently, FN1, FN2 and application
AP1 restart their timers. Similarly, the relevant set of AP1 is
R1(P ) = {1, 2, 3, 4}. Application AP1, perform an exchange
between the nodes in R1(P ) by pushing MS4 from FN3 to
FN2 as shown in the Figure 3 in the right. As a result, all the
fog nodes in the new relevant set R1(P

′) = {1, 2, 4} gets an
update message and, subsequently, application AP1, and all
the fog nodes in R1(P

′) restart their timers.
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Fig. 3. Relevant Set Exchange.

(a) Network of fog nodes. (b) Convergence of joint optimization. (c) Comparison with previous methods.

Fig. 4. Results for fog network in Fig. 4a.

VI. EVALUATION

We next present a numerical evaluation of our proposed
RSE algorithm, where we evaluate (1) the convergence prop-
erties of the constructed Markov chains, (2) how they achieve
their objective compared to the previous autonomic methods.
Since, with the given space constraints, it is not feasible
to present an exhaustive evaluation, we attempt to create
numerical examples that are representative and address the
most pressing questions. For the examples, we consider a
network with 40 fog nodes, as shown in Fig 4a. We create
a heterogeneous fog network by setting the CPU capacity
of fog nodes uniform random in the range [100, 500] MIPS;
We do not account for other resources in the examples. We
consider ten applications, each with ten microservices, with
heterogeneous CPU requirements selected uniform random
from the range [50, 150] MIPS. The chaining costs Cij of
two microservices MSi and MSj in the same application are
selected uniform random from the interval (0, 1) and only
microservices belonging to the same application can have
a nonzero chaining cost between them. We run our RSE
algorithm for 2000 iterations with σ = 0.5, Fig. 4b on the
left axis shows the convergence of Markov chain constructed
by applications and on right axis shows the convergence of
the algorithm at fog nodes. Fig. 4c compares the total cost in
terms of T (P ) from Eq. (5) for different values of parameter
σ achieved by RSE algorithm after 2000 iterations, to our
previous autonomic algorithms (NE-G and NE-L) from [7].
The results show that the proposed RSE algorithm consistently
outperforms the previous methods.

VII. CONCLUSION

We have proposed a distributed service placement method
of microservice-based applications in the fog environment,
which seeks to jointly optimize energy consumption and
utilization of network resources. Different from centralized
service placements methods for clouds, the proposed Relevant
Set Exchange algorithm does not require central control or
global state information. The design of the algorithm models

the combinatorial optimization objective as a game and ap-
plies the Markov approximation method for obtaining a near-
optimal solution. Simulation results showed that the proposed
algorithm is superior to our previous autonomic placement
algorithms.
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5. Evaluation
We next present a numerical evaluation of our proposed RSE 
algorithm, where we evaluate (1) the convergence properties 
of the constructed Markov chains, (2) how they achieve their 
objective compared to the previous autonomic methods. Since, 
with the given space constraints, it is not feasible to present an 
exhaustive evaluation, we attempt to create numerical examples 
that are representative and address the most pressing questions. 
For the examples, we consider a network with 40 fog nodes, 
as shown in Fig 4a. We create a heterogeneous fog network 
by setting the CPU capacity of fog nodes uniform random 
in the range [100,500] MIPS; We do not account for other 
resources in the examples. We consider ten applications, each 
with ten microservices, with heterogeneous CPU requirements 
selected uniform random from the range [50,150] MIPS. The 
chaining costs Cij of two microservices MSi and MSj in the 
same application are selected uniform random from the interval 
(0,1) and only microservices belonging to the same application 
can have a nonzero chaining cost between them. We run our 
RSE algorithm for 2000 iterations with σ = 0.5, Fig. 4b on the 
left axis shows the convergence of Markov chain constructed 
by applications and on right axis shows the convergence of 
the algorithm at fog nodes. Fig. 4c compares the total cost in 
terms of T(P) from Eq. (5) for different values of parameter σ 
achieved by RSE algorithm after 2000 iterations, to our previous 
autonomic algorithms (NE-G and NE-L) from [7]. The results 
show that the proposed RSE algorithm consistently outperforms 
the previous methods.

6. Conclusion
We have proposed a distributed service placement method 
of microservice-based applications in the fog environment, 
which seeks to jointly optimize energy consumption and 
utilization of network resources. Different from centralized 
service placements methods for clouds, the proposed Relevant 
Set Exchange algorithm does not require central control or 
global state information. The design of the algorithm models 
the combinatorial optimization objective as a game and applies 
the Markov approximation method for obtaining a nearoptimal 
solution. Simulation results showed that the proposed algorithm 
is superior to our previous autonomic placement algorithms.

References
1. Butzin, B., Golatowski, F., & Timmermann, D. (2016, 

September). Microservices approach for the internet of 
things. In 2016 IEEE 21st International Conference on 
Emerging Technologies and Factory Automation (ETFA) 
(pp. 1-6). IEEE. 

2. Mann, Z. Á. (2015). Allocation of virtual machines in cloud 
data centers—a survey of problem models and optimization 
algorithms. Acm Computing Surveys (CSUR), 48(1), 1-34. 

3. Lopez-Pires, F., & Baran, B. (2015). Virtual 
machine placement literature review. arXiv preprint 
arXiv:1506.01509. 

4. Herrera, J. G., & Botero, J. F. (2016). Resource allocation 
in NFV: A comprehensive survey. IEEE Transactions on 
Network and Service Management, 13(3), 518-532. 

5. Li, X., & Qian, C. (2016, January). A survey of network 
function placement. In 2016 13th IEEE Annual Consumer 
Communications & Networking Conference (CCNC) (pp. 
948-953). IEEE. 

6. Chen, M., Liew, S. C., Shao, Z., & Kai, C. (2013). Markov 
approximation for combinatorial network optimization. 
IEEE transactions on information theory, 59(10), 6301-
6327. 

7. Kayal, P., & Liebeherr, J. (2019, June). Autonomic 
service placement in fog computing. In 2019 IEEE 20th 
International Symposium on" A World of Wireless, Mobile 
and Multimedia Networks"(WoWMoM) (pp. 1-9). IEEE.

8. Kayal, P., & Liebeherr, J. (2019, July). Distributed service 
placement in fog computing: An iterative combinatorial 
auction approach. In 2019 IEEE 39th International 
Conference on distributed computing systems (ICDCS) (pp. 
2145-2156). IEEE. 

9. Jiang, J. W., Lan, T., Ha, S., Chen, M., & Chiang, M. (2012, 
March). Joint VM placement and routing for data center 
traffic engineering. In 2012 Proceedings IEEE INFOCOM 
(pp. 2876-2880). IEEE.

10. Pham, C., Tran, N. H., Ren, S., Saad, W., & Hong, C. S. 
(2017). Traffic-aware and energy-efficient vNF placement 
for service chaining: Joint sampling and matching approach. 
IEEE Transactions on Services Computing, 13(1), 172-185. 

11. Pallewatta, S., Kostakos, V., & Buyya, R. (2019, December). 
Microservices-based IoT application placement within 
heterogeneous and resource constrained fog computing 
environments. In Proceedings of the 12th IEEE/ACM 
International Conference on Utility and Cloud Computing 
(pp. 71-81). 

12. Kayal, P., & Liebeherr, J. (2019, October). Poster: Autonomic 
service placement in fog computing. In Proceedings of the 
2019 on wireless of the students, by the students, and for the 
students workshop (pp. 17-17). 

13. Rivoire, S., Ranganathan, P., & Kozyrakis, C. (2008). 
A comparison of high-level full-system power models. 
HotPower, 8(2), 32-39.

https://doi.org/10.1109/ETFA.2016.7733707
https://doi.org/10.1109/ETFA.2016.7733707
https://doi.org/10.1109/ETFA.2016.7733707
https://doi.org/10.1109/ETFA.2016.7733707
https://doi.org/10.1109/ETFA.2016.7733707
https://doi.org/10.1145/2797211
https://doi.org/10.1145/2797211
https://doi.org/10.1145/2797211
https://doi.org/10.1109/TNSM.2016.2598420https://doi.org/10.1109/TNSM.2016.2598420Herrera, J. G., & Botero, J. F. (2016). Resource allocation in NFV: A comprehensive survey. IEEE Tra
https://doi.org/10.1109/TNSM.2016.2598420https://doi.org/10.1109/TNSM.2016.2598420Herrera, J. G., & Botero, J. F. (2016). Resource allocation in NFV: A comprehensive survey. IEEE Tra
https://doi.org/10.1109/TNSM.2016.2598420https://doi.org/10.1109/TNSM.2016.2598420Herrera, J. G., & Botero, J. F. (2016). Resource allocation in NFV: A comprehensive survey. IEEE Tra
https://doi.org/10.1109/CCNC.2016.7444915
https://doi.org/10.1109/CCNC.2016.7444915
https://doi.org/10.1109/CCNC.2016.7444915
https://doi.org/10.1109/CCNC.2016.7444915
https://doi.org/10.1109/CCNC.2016.7444915
https://doi.org/10.1109/CCNC.2016.7444915
https://doi.org/10.1109/CCNC.2016.7444915
https://doi.org/10.1109/CCNC.2016.7444915
https://doi.org/10.1109/CCNC.2016.7444915
https://doi.org/10.1109/CCNC.2016.7444915
https://doi.org/10.1109/CCNC.2016.7444915
https://doi.org/10.1109/CCNC.2016.7444915
https://doi.org/10.1109/CCNC.2016.7444915
https://doi.org/10.1109/CCNC.2016.7444915
https://doi.org/10.1109/CCNC.2016.7444915
https://doi.org/10.1109/CCNC.2016.7444915
https://doi.org/10.1109/CCNC.2016.7444915
https://doi.org/10.1109/INFCOM.2012.6195719
https://doi.org/10.1109/INFCOM.2012.6195719
https://doi.org/10.1109/INFCOM.2012.6195719
https://doi.org/10.1109/INFCOM.2012.6195719
https://doi.org/10.1109/TSC.2017.2671867
https://doi.org/10.1109/TSC.2017.2671867
https://doi.org/10.1109/TSC.2017.2671867
https://doi.org/10.1109/TSC.2017.2671867
https://doi.org/10.1145/3344341.3368800
https://doi.org/10.1145/3344341.3368800
https://doi.org/10.1145/3344341.3368800
https://doi.org/10.1145/3344341.3368800
https://doi.org/10.1145/3344341.3368800
https://doi.org/10.1145/3344341.3368800
https://doi.org/10.1145/3344341.3368800
https://doi.org/10.1145/3344341.3368800
https://doi.org/10.1145/3344341.3368800
https://doi.org/10.1145/3344341.3368800
https://dl.acm.org/doi/10.5555/1855610.1855613
https://dl.acm.org/doi/10.5555/1855610.1855613
https://dl.acm.org/doi/10.5555/1855610.1855613

