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Abstract
Unfortunately, many people die in car accidents. To reduce these accidents, cars are equipped with driving safety 
systems. With autonomous vehicles, the driver’s behavior becomes irrelevant as the car drives autonomously. 
All autonomous driving algorithms must undergo extensive testing and validation, especially for safety-critical 
scenarios. Therefore, the detection of safety-critical driving scenarios is essential for autonomous vehicles. This 
publication describes safety indicator metrics based on time series covering longitudinal driving data to detect 
safety-critical driving scenarios.

Scientific Question: Which safety indicator metrics can be used to identify safety-critical driving scenarios 
based on time series covering longitudinal driving data?

Keywords: Autonomous driving, safety-critical, non-safety-critical, driving scenario, time series, longitudinal driving, safety indicator 
metrics, Time to Collision (TTC), Adaptive Time to Collision (ATTC), Modified Time to Collision (MTTC), Time Headway (THW), 
Time to Stop (TTS), Difference Space Stopping (DSS), Adaptive Difference Space Stopping (ADSS)

1. Motivation
Approximately 1.3 million people die in road crashes each year, 
often due to self-inflicted mistakes or the misconduct of other 
drivers [1]. To reduce road accidents, the automotive industry has 
introduced the concept of vehicles equipped with advanced driver-
assistance systems or the use of autonomous vehicles.

To ensure public trust and road safety, all autonomous driving 
algorithms must undergo thorough testing and validation, 
especially for safety-critical driving scenarios that pose risks to 
humans and the environment. Therefore, the detection of safety-
critical driving scenarios is crucial for autonomous vehicles [2].
Several approaches have been proposed in the literature to identify 
safety-critical driving scenarios such as hazard analysis techniques 
for system safety [3].

This publication describes safety indicator metrics that can be used 
to identify safety-critical driving scenarios based on time series 
covering longitudinal driving data. The metrics are evaluated 
and compared based on defined criteria specific to the use case. 
One of the most suitable safety indicator metrics is examined 

thoroughly for the underlying use case, employing synthetic data 
that encompasses a safety-critical driving scenario as a validation 
example.

2. Time Series
Time series are sequences of ordered observations of a specific 
characteristic corresponding to a certain period of time. The time 
values can be represented as 𝑡 = 𝑡 1, . . . ,𝑡 𝑁, with 𝑁 as the total 
number of observations.

The time vector can be arranged with constant, regular, or irregular 
distances [4]. In general, when assigning one data point of one 
size to one-time value, it is referred to as a univariate time series. 
On the other hand, when assigning data points of multiple sizes or 
vectors to one-time value, it is referred to as a multivariate time 
series.

Distinctions are defined based on continuous and discrete time 
space. Continuous time series focus on sequential data points 
without temporal or spatial interruptions, such as sensor values 
[5]. Discrete time series, on the other hand, refer to data points 
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that correspond to asynchronous time events, such as event-based 
driving scenarios.

In this publication, multivariate time series are considered since 
they are also relevant in the real world, taking into account 
sensor values collected during driving, such as position, speed, or 

acceleration sensor values, all pertaining to the same underlying 
time vector.

In general, a multivariate time series in real space can be defined 
as follows:
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Vehicles and cars play an essential role in society, both in the private and public sectors. 
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Engineers (SAE) has defined six levels of driving automation, ranging from Level 0 (fully 

manual) to Level 5 (fully autonomous) [7]. Figure 1 illustrates these levels. 

 

The time vector is defined by 𝑡. The observations 𝑌 of the 
characteristics 𝑘 are combined in 𝑌 𝑘. The number of data points in 
the multivariate time series is defined by 𝑁. [6].

3. Autonomous Driving
Vehicles and cars play an essential role in society, both in the private 
and public sectors. Manufacturers are constantly developing 
innovative enhancements and improvements. One notable 

advancement in this regard is autonomous driving. Autonomous 
vehicles offer increased safety through various assistance systems, 
also known as advanced driver assistance systems. These systems 
enable driving without human intervention [6]. The Society of 
Automotive Engineers (SAE) has defined six levels of driving 
automation, ranging from Level 0 (fully manual) to Level 5 (fully 
autonomous) [7]. Figure 1 illustrates these levels.

4 

 
 Fig. 1 SAE Levels of Autonomy [8] 

 
Autonomous driving algorithms rely on interpreting information to identify appropriate driving 

paths and detect obstacles or objects. To achieve this, autonomous cars use a variety of sensors to 

perceive their surroundings. The main types of sensors are visualized in Figure 2 [9] [10]. 

 
 Fig. 2 Autonomous Vehicle Sensors [10] 

 

Figure 1: SAE Levels of Autonomy [8]

Autonomous driving algorithms rely on interpreting information to identify appropriate driving paths and detect obstacles or objects. 
To achieve this, autonomous cars use a variety of sensors to perceive their surroundings. The main types of sensors are visualized in 
Figure 2 [9,10].
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Figure 2: Autonomous Vehicle Sensors [10]

4. Assessment of Safety-Critical Driving
Safety-critical driving scenarios have the potential to result in severe accidents and loss of human lives. These scenarios can be categorized 
into different groups. Figure 3 presents a taxonomy of safety-critical driving scenarios [10].

5 

4. Assessment of Safety-Critical Driving 

Safety-critical driving scenarios have the potential to result in severe accidents and loss of human 

lives. These scenarios can be categorized into different groups. Figure 3 presents a taxonomy of 

safety-critical driving scenarios [10]. 

 
 Fig. 3 Taxonomy: Safety-Critical Driving Scenarios [10] 

 
Figure 3 provides a generalized taxonomy of these driving scenarios, highlighting the challenge 

of classifying a driving scenario as safety-critical [10]. For instance, consider the act of pulling 

out of a parking space. If there are no moving objects nearby, the scenario can be classified as 

non-safety-critical. However, depending on the distance to the object and its speed, it could 

become safety-critical. 

The safety relevance of driving scenarios generally depends on factors such as distance, speed 

differences, and acceleration of the objects involved (e.g., a following drive with two cars). It is 

crucial to distinguish between safety-critical and non-safety-critical driving scenarios, not only 

for vehicles in general but also for autonomous vehicles. Various methods can be employed to 

assess the criticality of driving scenarios. In this publication, we focus on time series data and 

longitudinal driving, and therefore, we focus on corresponding methods relevant to our specific 

use case [10]. 

In fact, Figure 4 depicts a taxonomy of safety indicator metrics that can be used to identify safety-

critical driving scenarios. It should be noted that [11] and [12] also cover many different metrics 

in this regard. 

 

Figure 3: Taxonomy: Safety-Critical Driving Scenarios [10]

Figure 3 provides a generalized taxonomy of these driving 
scenarios, highlighting the challenge of classifying a driving 
scenario as safety-critical [10]. For instance, consider the act of 
pulling out of a parking space. If there are no moving objects 
nearby, the scenario can be classified as non-safety-critical. 
However, depending on the distance to the object and its speed, it 
could become safety-critical.

The safety relevance of driving scenarios generally depends on 
factors such as distance, speed differences, and acceleration of 
the objects involved (e.g., a following drive with two cars). It 
is crucial to distinguish between safety-critical and non-safety-

critical driving scenarios, not only for vehicles in general but also 
for autonomous vehicles. Various methods can be employed to 
assess the criticality of driving scenarios. In this publication, we 
focus on time series data and longitudinal driving, and therefore, 
we focus on corresponding methods relevant to our specific use 
case [10].

In fact, Figure 4 depicts a taxonomy of safety indicator metrics that 
can be used to identify safety-critical driving scenarios. It should 
be noted that [11] and [12] also cover many different metrics in 
this regard.
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 Figure 4: Safety Indicator Metrics (Longitudinal Driving)

In general, the risk assessment of driving scenarios can be 
approached deterministically or probabilistically. A deterministic 
approach relies on rule-based systems that estimate the possibility 
of collisions as a binary prediction. This approach allows for a 
clear differentiation between non-safety-critical and safety-critical 
driving scenarios and depends on certain threshold values. The 
main advantages of such rule-based systems are simplicity and 
computational efficiency. However, deterministic approaches do 
not explicitly model uncertainties, such as transitions between 
non-safety-critical and safety-critical scenarios. To address 
uncertainties, probabilistic methods can be employed, which rely 
on probabilistic descriptions of temporal and spatial relationships 
between vehicles. These methods can be implemented using 
various approaches, such as Markov processes, Bayesian networks, 
Monte Carlo simulations, or fuzzy logic. It should be noted that 
deterministic and probabilistic methods can also be combined in 
hybrid approaches [10].

In the following sections, we provide a detailed description of all 
the metrics shown in Figure 4.

A. Time to Collision (TTC)
TTC is defined as the time remaining until a collision occurs 
[10,13]

𝑥𝐿 − 𝑥𝐹 − 𝑙𝑉
                 𝑇𝑇𝐶 =                                                                  (2)
𝑣𝐹 − 𝑣𝐿 

Here, 𝑥 represents the position, 𝑣 represents the speed, and 𝑙𝑉 
represents the length of the vehicle.
The subscripts 𝐿 and 𝐹 refer to the leading and following vehicles, 
respectively [10,13].

TTC is based on the assumption that both the following and leading 
vehicles are traveling at a constant speed. It does not consider the 
acceleration or deceleration of either vehicle. TTC is only valid 
when the speed of the following vehicle is greater than that of the 
leading vehicle [10,13].

1. Effective Distance
Figure 5 illustrates the importance of vehicle length for such 
metrics. The distance between the vehicles depends on the 
positions of both vehicles as well as the length of the following 
vehicle, denoted by 𝑙𝑉. Consequently, the safety-related distance 
between the vehicles is defined as
𝑑 := 𝑥𝐿 − 𝑥𝐹 − 𝑙𝑉 (effective distance). In this regard, a homogeneous 
mass distribution is assumed for both vehicles, with the center of 
gravity 𝑆 positioned in the middle.
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B. Modified Time to Collision (MTTC)
MTTC is a modified version of TTC that takes into account 
changes in the speeds of both vehicles, making it applicable to 
a wider range of driving scenarios, particularly those involving 
dynamic behavior of the vehicles. [10,14].

√
−Δ𝑉 ± Δ𝑉2 + 2Δ𝐴 𝑑
𝑀𝑇𝑇𝐶 = (3)
Δ𝐴 

Here, Δ𝑉 represents the relative speed (𝑣𝐹  −𝑣𝐿 ), Δ𝐴  represents the 
relative acceleration (𝑎𝐹  −𝑎𝐿 ), and 𝑑 represents the aforementioned 
distance (𝑥𝐿  − 𝑥𝐹  − 𝑙𝑉) between the vehicles.

MTTC is considered to be more reliable than TTC because it takes 
into consideration the dynamic parameters of two consecutive 
vehicles, including their relative distance, speed, and acceleration, 
when assessing the likelihood of a conflict occurrence. However, 
MTTC cannot be used when acceleration values are changing. In 
summary, MTTC can be applied in car-following scenarios as long 
as the acceleration values remain constant [10,14].

C. Adaptive Time to Collision (ATTC)
ATTC is a generalized formulation of TTC based on equations 
of motion. It can be employed depending on data availability and 
the required level of accuracy [10,13]. Table 1 describes the three 
different cases for calculating TTC [10,13]
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ATTC is based on fundamental kinematic equations, and solving 
these equations provides computable expressions for the TTC 
value. ATTC is divided into three different TTC types. 𝑇𝑇𝐶 1 
represents the normal TTC calculation, 𝑇𝑇𝐶 2 represents MTTC, 
and 𝑇𝑇𝐶 3 can be interpreted as an extension of MTTC. 𝑇𝑇𝐶 3 also 
accommodates linear changes in acceleration and deceleration 
over time. However, it should be noted that not all acceleration 
or deceleration phases of vehicles are linear, as movement can be 
uneven. The implementation of ATTC relies on determining which 
assumption is currently fulfilled [10,13].

D. Time Headway (THW)
THW measures the time that elapses between two vehicles 
reaching the same position [10,15]:

𝑥𝐿 − 𝑥𝐹 − 𝑙𝑉
                       𝑇𝐻𝑊 =                                                                           (4)
𝑣𝐹

THW is similar to TTC, but it is defined solely by the distance 
between the following and leading vehicles and the speed of the 
following vehicle. It does not take into account the dynamics of 
the leading vehicle. Consequently, THW does not consider the 
influence of the leading vehicle, which can be significant in certain 
driving scenarios [10,16].

E. Time to Stop (TTS)
TTS [17] considers the time needed to bring a vehicle to a complete 
stop under different environmental conditions. It can be seen as a 
correction of TTC, incorporating factors such as road and weather 
conditions through the friction coefficient 𝜇. TTS is based on three 
different deceleration values 𝑎𝑖 ∈ {𝐷, 𝐴, 𝐺},  representing different 
levels of criticality (D: Dangerous, A: Attentive, G: Gentle). A 
Gaussian model is employed to determine threat scores 𝜑𝑖 for 
each level, accounting for deviations from TTC due to 𝜇, different 
deceleration profiles, and the uncertainty 𝜎 of the Gaussian model. 
However, TTS still relies on TTC as an underlying assumption. 
The threat scores 𝜑𝑖 for the different levels are defined as follows:
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environmental conditions. It can be seen as a correction of TTC, incorporating factors such as 

road and weather conditions through the friction coefficient 𝜇𝜇. TTS is based on three different 

deceleration values 𝑎𝑎𝑖𝑖 ∈ {𝐷𝐷, 𝐴𝐴, 𝐺𝐺}, representing different levels of criticality (D: Dangerous, A: 

Attentive, G: Gentle). A Gaussian model is employed to determine threat scores 𝜑𝜑𝑖𝑖 for each level, 

accounting for deviations from TTC due to 𝜇𝜇, different deceleration profiles, and the uncertainty 

𝜎𝜎 of the Gaussian model. However, TTS still relies on TTC as an underlying assumption. The 

threat scores 𝜑𝜑𝑖𝑖 for the different levels are defined as follows: 

 1, 𝑡𝑡2 𝑇𝑇𝑇𝑇𝐶𝐶 ≤ 𝑇𝑇𝑇𝑇𝑆𝑆𝑎𝑎𝐷𝐷 

 𝜑𝜑𝐷𝐷 (𝜏𝜏 = 𝐷𝐷 | 𝑇𝑇𝑇𝑇𝑆𝑆𝑎𝑎𝐷𝐷,𝑇𝑇𝑇𝑇𝐶𝐶) = Δ 

− 𝐷𝐷 

 𝑒𝑒 2𝜎𝜎2 , Otherwise 

 

(5) 

Δ𝑡𝑡2 

− 𝐴𝐴 (6) 
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(9) 

The probability 𝑃𝑃𝑖𝑖 for the different criticality levels can be calculated based on the threat 

scores: 

𝜑𝜑𝑖𝑖(𝜏𝜏 = 𝑖𝑖 | 𝑇𝑇𝑇𝑇𝑆𝑆𝑎𝑎𝑖𝑖,𝑇𝑇𝑇𝑇𝐶𝐶) 
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For binary classification of safety-critical versus non-safety-critical driving scenarios, the 

probability calculation can be simplified as follows: 

𝜑𝜑𝐷𝐷 (𝜏𝜏 = 𝐷𝐷 | 𝑇𝑇𝑇𝑇𝑆𝑆𝑎𝑎𝐷𝐷,𝑇𝑇𝑇𝑇𝐶𝐶) 
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Í𝑖𝑖 𝜑𝜑𝑖𝑖(𝜏𝜏 = 𝑖𝑖 | 𝑇𝑇𝑇𝑇𝑆𝑆𝑎𝑎𝑖𝑖,𝑇𝑇𝑇𝑇𝐶𝐶) 

 

(11) 

Based on 𝑃𝑃𝐷𝐷, a distinct split between safety-critical and non-safety-critical driving scenarios can 

be defined: 

( 

 1, 𝑃𝑃𝐷𝐷 ≥ 𝑃𝑃𝐷𝐷,𝑡𝑡ℎ𝑟𝑟𝑒𝑒𝑠𝑠 

 𝑏𝑏𝐶𝐶𝑟𝑟𝑖𝑖𝑡𝑡 = (12) 

 0, Otherwise 
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For binary classification of safety-critical versus non-safety-critical driving scenarios, the 

probability calculation can be simplified as follows: 
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(11) 

Based on 𝑃𝑃𝐷𝐷, a distinct split between safety-critical and non-safety-critical driving scenarios can 

be defined: 
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 1, 𝑃𝑃𝐷𝐷 ≥ 𝑃𝑃𝐷𝐷,𝑡𝑡ℎ𝑟𝑟𝑒𝑒𝑠𝑠 
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 0, Otherwise 
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(11) 

Based on 𝑃𝑃𝐷𝐷, a distinct split between safety-critical and non-safety-critical driving scenarios can 

be defined: 
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 1, 𝑃𝑃𝐷𝐷 ≥ 𝑃𝑃𝐷𝐷,𝑡𝑡ℎ𝑟𝑟𝑒𝑒𝑠𝑠 
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where: 
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The probability 𝑃𝑃𝑖𝑖 for the different criticality levels can be calculated based on the threat 

scores: 
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(11) 

Based on 𝑃𝑃𝐷𝐷, a distinct split between safety-critical and non-safety-critical driving scenarios can 

be defined: 
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 1, 𝑃𝑃𝐷𝐷 ≥ 𝑃𝑃𝐷𝐷,𝑡𝑡ℎ𝑟𝑟𝑒𝑒𝑠𝑠 

 𝑏𝑏𝐶𝐶𝑟𝑟𝑖𝑖𝑡𝑡 = (12) 

 0, Otherwise 

For binary classification of safety-critical versus non-safety-critical driving scenarios, the probability calculation can be simplified as 
follows:

Based on 𝑃𝐷, a distinct split between safety-critical and non-safety-critical driving scenarios can be defined:

where 𝑃𝐷, 𝑡ℎ𝑟𝑒𝑠 represents the probability threshold for interpreting 
driving scenarios as safety-
critical (𝑏𝐶𝑟𝑖𝑡 = 1) or non-safety-critical (𝑏𝐶𝑟𝑖𝑡 = 0). For more 
information on TTS, refer to the publication [17].

F. Adaptive Difference Space Stopping (ADSS)
ADSS is a novel safety indicator considered for the underlying 
use case. It is based on the Difference Space Stopping (DSS) 
metric [18]. In general, both metrics are defined by calculating the 
difference between the space distance and stopping distance of two 
vehicles following each other. The space distance is obtained by 
summing the braking distance 𝑥𝐵, 𝐿 of the leading vehicle and the 
effective distance 𝑑 𝑉 between the leading and following vehicles. 
The stopping distance is calculated by summing the brake reaction 
distance 𝑥𝑅, 𝐹 and the braking distance 𝑥𝐵, 𝐹 of the following vehicle. 
Both metrics can be interpreted as the frozen position of both 
vehicles when the leading vehicle suddenly applies the brakes, 
causing the following vehicle to also brake.

The main difference between ADSS and DSS lies in the 
deceleration values applied to both vehicles. For DSS, the 
maximum deceleration value 𝑎𝐵, 𝑚𝑎𝑥 = 𝜇 𝑔 is used for braking. As a 

result, DSS can be seen as a safety metric to determine whether a 
collision could be avoided in theory. In contrast, ADSS considers 
actual deceleration values (𝑎𝐵, 𝐿,  𝑎𝐵, 𝐹) for each vehicle individually. 
Generally, these deceleration values are smaller or equal to the 
maximum achievable braking deceleration value (𝑎𝐵, 𝐿 ≤ 𝑎𝐵, 𝑚𝑎𝑥,  𝑎𝐵, 𝐹 
≤ 𝑎𝐵, 𝑚𝑎𝑥), which depends on driver behavior, road conditions, and 
the coefficient of friction 𝜇.
Deceleration values and reaction times are influenced by 
psychological and physiological characteristics of the driver, as 
well as the strength and timing of the braking system activation. 
In practice, drivers do not react perfectly in terms of timing and 
adherence to theoretical expectations. Additionally, vehicles 
themselves have response delays and tolerances. Although 
autonomous cars aim to minimize these gaps, there will always 
be a minimal gap between driver reaction and the activation of 
the vehicle’s braking system. By incorporating actual deceleration 
values and realistic reaction times, ADSS becomes a more 
generalized safety indicator, providing more reliable datasets for 
testing purposes in autonomous cars. Therefore, the use of actual 
deceleration values and realistic reaction times increases ADSS’s 
potential to identify safety-critical driving scenarios. ADSS is 
defined by the equation:
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   𝑣𝑣2 !   𝑣𝑣2 ! 

 𝐴𝐴𝐷𝐷𝑆𝑆𝑆𝑆 = 𝑑𝑑𝑉𝑉 + 𝑥𝑥𝐵𝐵,𝐿𝐿 − 𝑥𝑥𝑅𝑅,𝐹𝐹 + 𝑥𝑥𝐵𝐵,𝐹𝐹 = (𝑥𝑥𝐿𝐿 − 𝑥𝑥𝐹𝐹 − 𝑙𝑙𝑉𝑉) + 𝐿𝐿 − 𝑣𝑣𝐹𝐹 𝑡𝑡𝑅𝑅 + 𝐹𝐹 (13) 

 2 𝑎𝑎𝐵𝐵,𝐿𝐿 2 𝑎𝑎𝐵𝐵,𝐹𝐹 

where 𝑎𝑎𝐵𝐵,𝐿𝐿 = max(|𝑎𝑎𝐿𝐿|, 𝑎𝑎𝐵𝐵,𝑚𝑚𝑎𝑎𝑥𝑥) and 𝑎𝑎𝐵𝐵,𝐹𝐹 = max(|𝑎𝑎𝐹𝐹 |, 𝑎𝑎𝐵𝐵,𝑚𝑚𝑎𝑎𝑥𝑥). The reaction time 𝑡𝑡𝑅𝑅 can be 

modeled as a time-shifted Gamma distribution as defined in [2]. 

 

To ensure that safety indicator metrics like ADSS cover a wide range of driving scenarios, it is 

crucial to assess their coverage by considering various possible driving scenarios. One effective 

approach is to use matrices that focus on speed and acceleration or deceleration combinations of 

both vehicles (in the context of two vehicles following each other). 

 

The following matrices (Table 2 and Table 3) provide an example of such an assessment: 

 𝑣𝑣𝐿𝐿 < 0 𝑣𝑣𝐿𝐿 = 0 𝑣𝑣𝐿𝐿 > 0   𝑎𝑎𝐿𝐿 < 0 𝑎𝑎𝐿𝐿 = 0 𝑎𝑎𝐿𝐿 > 0 

𝑣𝑣𝐹𝐹 < 0 0 0 0 𝑎𝑎𝐹𝐹 < 0 1 0 0 

𝑣𝑣𝐹𝐹 = 0 0 0 0 𝑎𝑎𝐹𝐹 = 0 1 0 0 

𝑣𝑣𝐹𝐹 > 0 0 1 1 𝑎𝑎𝐹𝐹 > 0 0 0 0 

 Table 2 𝑣𝑣 Matrix (Safety-relevant) Table 3 𝑎𝑎 Matrix (Safety-relevant) 

 
In these matrices, the rows and columns define the value ranges of speeds and accelerations of 

both vehicles. A cell value of 0 represents a non-safety-critical driving scenario, while a cell 

value of 1 represents a safety-critical driving scenario. It is worth noting that the matrices 

alongside cell values correspond to both potential rear-end collisions and are associated with DSS 

and ADSS. In summary, there are four combinations of speeds and accelerations with a cell value 

of 1. A good coverage for a safety indicator metric, such as ADSS, should include exactly those 

four combinations. For ADSS, it covers the following driving scenarios (potential rear-end 

collisions): 

 

• Vehicle in front moves forward or comes to a standstill while the vehicle behind moves 

forward. 
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In these matrices, the rows and columns define the value ranges 
of speeds and accelerations of both vehicles. A cell value of 0 
represents a non-safety-critical driving scenario, while a cell 
value of 1 represents a safety-critical driving scenario. It is worth 
noting that the matrices alongside cell values correspond to both 
potential rear-end collisions and are associated with DSS and 
ADSS. In summary, there are four combinations of speeds and 
accelerations with a cell value of 1. A good coverage for a safety 
indicator metric, such as ADSS, should include exactly those four 
combinations. For ADSS, it covers the following driving scenarios 
(potential rear-end collisions):

• Vehicle in front moves forward or comes to a standstill while the 
vehicle behind moves forward.
• Vehicle in front brakes while the vehicle behind either also brakes 
or continues to drive at constant speed.
• Theoretical combinations in which the following vehicle 
accelerates are not considered. This assumption holds when the 
driver of the following vehicle accelerates only to increase speed 
(not to create a potential safety-critical driving scenario with a 
vehicle in front).

These considerations ensure that ADSS focuses on safety-critical 
driving scenarios.

5. Comparison of Safety Indicator Metrics
When selecting a suitable safety indicator metric for a specific use 
case, it is important to compare different metrics against each other. 

To facilitate this comparison, corresponding evaluation criteria are 
defined and categorized in Table 4 [10,19,20].

• Complexity (C): The complexity of a safety indicator metric 
refers to its implementation and time complexity. It depends 
on factors such as the number of data points and influences the 
runtime and efficiency of the algorithm used.
• Applicability (A): Applicability assesses how easily a safety 
indicator metric can be applied. It considers the level of effort 
required for implementation.
• Transparency (T): Transparency measures the clarity and 
availability of information about the safety indicator metric in 
literature. It indicates whether sufficient well-founded and detailed 
information is available.
• Robustness (R): Robustness indicates how well a safety indicator 
metric can handle different driving scenarios and variations in 
driving data, such as changes in kinematic values over time.
• Parametrizability (P): Parametrizability evaluates whether the 
safety indicator metric includes parameters and how easily they 
can be set.
• Interpretability (I): Interpretability assesses how easily the 
results of the safety indicator metric can be interpreted. Metrics 
with standardized or limited ranges of values have higher 
interpretability, while others may require expert knowledge or 
empirical values for interpretation.
• Effectiveness (E): Effectiveness represents the overall validation 
and quality representation of the safety indicator metric, taking 
into account all the other evaluation criteria.
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Complexity + Safety indicator metric has low time complexity and run time.
o Safety indicator metric has moderate time complexity and run time.
- Safety indicator metric has high time complexity and run time.

Applicability + Safety indicator metric is relatively easy to implement, or a reference implementation is 
available.

o Safety indicator metric can only be implemented to a limited extent and no reference 
implementation is available.

- Safety indicator metric is fundamentally difficult to implement and no reference implementation 
is available.

Transparency + Safety indicator metric is fully transparently described and understandable.
o Safety indicator metric is moderately transparently described.
- Safety indicator metric requires in-depth mathematical knowledge, or its description is 

incomplete.
Robustness + Safety indicator metric is robust against different driving scenarios and data. Assumptions of the 

safety indicator metric can be easily maintained.
o Safety indicator metric is moderately robust against different driving scenarios and data. 

Assumptions of the safety indicator metric can be moderately maintained.
- Safety indicator metric is not robust against different driving scenarios and data. Assumptions of 

the safety indicator metric can be difficult to maintain.
Parametrizability + Safety indicator metric doesn’t include parameters or includes only a few easily adjustable 

parameters.
o Safety indicator metric includes several parameters, not all of them are easily adjustable.
- Safety indicator metric includes several or many parameters, and all or most of them are not 

easily adjustable.
Interpretability + The result of the safety indicator metric is easy to interpret.

o The result of the safety indicator metric is moderately interpretable.
- The result of the safety indicator metric is difficult to interpret.

 Table 4: Classification of Individual Evaluation Criteria

• The sign "+" represents a positive characteristic, indicating that the safety indicator metric performs well in that particular evaluation 
criterion.

• The sign "o" represents a neutral characteristic, indicating that the safety indicator metric has a moderate performance in that 
criterion.

• The sign "-" represents a negative characteristic, indicating that the safety indicator metric does not perform well in that specific 
criterion.

• Using this interpretation, the safety indicator metrics can be compared based on the evaluation criteria as shown in Figure 6.



J Sen Net Data Comm, 2023      Volume 3 | Issue 1 | 34

15 

 o Safety indicator metric includes several parameters, not all of them 

are easily adjustable. 

 - Safety indicator metric includes several or many parameters, and 

all or most of them are not easily adjustable. 

Interpretability + The result of the safety indicator metric is easy to interpret. 

 o The result of the safety indicator metric is moderately interpretable. 

 - The result of the safety indicator metric is difficult to interpret. 

 Table 4 Classification of Individual Evaluation Criteria 

• The sign "+" represents a positive characteristic, indicating that the safety indicator metric 

performs well in that particular evaluation criterion. 

• The sign "o" represents a neutral characteristic, indicating that the safety indicator metric 

has a moderate performance in that criterion. 

• The sign "-" represents a negative characteristic, indicating that the safety indicator metric 

does not perform well in that specific criterion. 

Using this interpretation, the safety indicator metrics can be compared based on the evaluation 

criteria as shown in Figure 6. 

 
 Fig. 6 Comparison of Safety Indicators According to Evaluation Criterion 

 
Based on the additional information, the comparison in Table 6 can be described further: 

• ADSS stands out as the most suitable safety indicator metric, as it fulfills all the expected 

requirements and has positive characteristics across all evaluation criteria. 
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Based on the additional information, the comparison in Table 6 can 
be described further:
• ADSS stands out as the most suitable safety indicator metric, 
as it fulfills all the expected requirements and has positive 
characteristics across all evaluation criteria.
• ATTC, MTTC, TTS, and THW exhibit a moderate level of 
robustness against different driving scenarios and data. However, 
these metrics are constrained by assumptions that may not be 
maintained in real-world applications [10].
• ATTC is ranked higher than MTTC because it also considers 
linear changes in accelerations for both vehicles, providing a more 
comprehensive analysis [10].
• MTTC is ranked higher than THW because it takes into account 
the dynamics of the leading vehicle and is dependent on the relative 
acceleration between the two vehicles [10].
• TTS utilizes parameters that are difficult to specify. Additionally, 
TTS is based on TTC and is therefore subject to the limitations of 
TTC itself [10].

6. Validation
Validating the effectiveness of the ADSS is essential to assess its 
feasibility. Therefore, a pipeline has been developed, comprising 
an input unit, a processing unit, and an output unit. The following 
sections provide a detailed description of each unit.

A. Input Unit
To effectively demonstrate the capabilities of ADSS, it was crucial 
to establish a decision criterion for selecting an appropriate 
driving scenario as a baseline. The chosen driving scenario should 
possess a relatively high frequency in real-world practice and be 
easily modeled. Based on these criteria, the decision was made to 
simulate a follow-up drive, where two vehicles drive in a straight 
line with one vehicle following the other. The specifics of this 
driving scenario are described in more detail below. Figure 7 
illustrates the arrangement of the follow-up drive.
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 Figure 7: Validation: Follow-Up Drive

The driving scenario involves two vehicles moving in the 
longitudinal direction, where Vehicle 2 follows Vehicle 1 (follow-
up drive). Both vehicles execute braking maneuvers at specific 
times. In this scenario, the primary kinematic variables under 
consideration are the position (𝑥), speed (𝑣), acceleration (𝑎), and 
time (𝑡). While the jerk (𝑗 = 𝑎¤) theoretically holds significance, 
the focus of this analysis lies in the overall macroscopic motion 
of the vehicles rather than microscopic details. Hence, measures 
such as jerk damping are considered as implemented, enabling the 

neglect of jerk-related considerations.

A mathematical model, built upon the insights are presented in 
publication [2], was utilized to generate synthetic data in the form 
of time series. This data was employed to simulate the movement 
of the vehicles within the driving scenario. The modeling process 
entailed configuring several parameters and initial conditions.

The initial distance between the vehicles was defined as 𝑑 0 = 𝑥0,𝐿  
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− 𝑥0,𝐹  − 𝑙𝑉 = 15.4 meters, where 𝑙𝑉 = 4.6 meters [21] corresponds 
to the length of the vehicle. This initial distance accounts for the 
spatial separation between the leading vehicle (Vehicle 1) and 
the following vehicle (Vehicle 2) at the beginning of the driving 
scenario.

To incorporate variations in the vehicles’ movements, publication 
[2] introduces different initial speeds (𝑣0), initial accelerations 
(𝑎0), and reaction times (𝑡 𝑅). Probability distributions are utilized 
to model these variations, with uniform distributions specifically 
employed for both initial speeds and initial accelerations, whereas 
the reaction times (𝑡 𝑅) are modeled using a gamma distribution. 
The following initial speeds are assigned to the vehicles:

17 

The driving scenario involves two vehicles moving in the longitudinal direction, where Vehicle 2 

follows Vehicle 1 (follow-up drive). Both vehicles execute braking maneuvers at specific times. 

In this scenario, the primary kinematic variables under consideration are the position (𝑥𝑥), speed 

(𝑣𝑣), acceleration (𝑎𝑎), and time (𝑡𝑡). While the jerk (𝑗𝑗 = 𝑎𝑎¤) theoretically holds significance, the 

focus of this analysis lies in the overall macroscopic motion of the vehicles rather than 

microscopic details. Hence, measures such as jerk damping are considered as implemented, 

enabling the neglect of jerk-related considerations. 

 

A mathematical model, built upon the insights are presented in publication [2], was utilized to 

generate synthetic data in the form of time series. This data was employed to simulate the 

movement of the vehicles within the driving scenario. The modeling process entailed configuring 

several parameters and initial conditions. 

 

The initial distance between the vehicles was defined as 𝑑𝑑0 = 𝑥𝑥0,𝐿𝐿 − 𝑥𝑥0,𝐹𝐹 − 𝑙𝑙𝑉𝑉 = 15.4 meters, 

where 𝑙𝑙𝑉𝑉 = 4.6 meters [21] corresponds to the length of the vehicle. This initial distance accounts 

for the spatial separation between the leading vehicle (Vehicle 1) and the following vehicle 

(Vehicle 2) at the beginning of the driving scenario. 

 

To incorporate variations in the vehicles’ movements, publication [2] introduces different initial 

speeds (𝑣𝑣0), initial accelerations (𝑎𝑎0), and reaction times (𝑡𝑡𝑅𝑅). Probability distributions are utilized 

to model these variations, with uniform distributions specifically employed for both initial speeds 

and initial accelerations, whereas the reaction times (𝑡𝑡𝑅𝑅) are modeled using a gamma distribution. 

The following initial speeds are assigned to the vehicles: 

 𝑚𝑚 𝑚𝑚 

 𝑣𝑣0,𝐿𝐿 = 𝑣𝑣0,𝑚𝑚,𝐿𝐿 + 𝑣𝑣0,𝑣𝑣𝑎𝑎𝑟𝑟,𝐿𝐿 = 22.22+ 𝑣𝑣0,𝑣𝑣𝑎𝑎𝑟𝑟,𝐿𝐿 ∈ {−1, −0.95, . . . , 0.95, 1} (14) 

𝑠𝑠 

𝑚𝑚 

 𝑣𝑣0,𝐹𝐹 = 𝑣𝑣0,𝑚𝑚,𝐹𝐹 + 𝑣𝑣0,𝑣𝑣𝑎𝑎𝑟𝑟,𝐹𝐹 = 25 + 𝑣𝑣0,𝑣𝑣𝑎𝑎𝑟𝑟,𝐹𝐹 ∈ {−1, −0.95, . . . , 0.95, 1}(15) 

 𝑠𝑠 𝑠𝑠 

 
 

Vehicle 2 maintains an average speed of 90 km/h, which is 10 km/h faster than the average speed of Vehicle 1, set at 80 km/h. This 
selection of speeds aims to create a higher occurrence of safety-critical driving scenarios. The initial accelerations for both vehicles are 
defined as follows:
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B. Processing Unit 

The processing unit consists of two main components: the calculation of the ADSS value and the 

classification of the safety relevance of the driving scenario based on the ADSS value. 

The ADSS value is calculated for each data point in each time series. Each time series represents 
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ADSS can be defined as follows: 

( 

 1 ∀ 𝐴𝐴𝐷𝐷𝑆𝑆𝑆𝑆 ≤ 0 ∧ (𝑎𝑎𝐿𝐿 < 0 ∧ 𝑎𝑎𝐹𝐹 < 0) 

 𝑏𝑏𝐶𝐶𝑟𝑟𝑖𝑖𝑡𝑡 = (17) 

 0 Otherwise 
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It is stated that a reaction time of 𝑡 𝑅 = 0.7 seconds corresponds to the 
expected value of the distribution function [2]. Hence, this value 
is utilized for the validation process, ensuring that the simulated 
reaction times align with the expected average reaction time [2].

In the validation process, a total of 1000 time series were 
considered, with each time series comprising 10 data points. The 
time vector, denoted as 𝑡  = [0, 0.25, . . . , 2.0, 2.25] seconds, was 
defined with a step size of Δ𝑡 = 0.25 seconds. Each individual time 
series represents a follow-up drive of both vehicles, encompassing 
all the relevant kinematic variables such as position (𝑥), speed (𝑣), 
acceleration (𝑎), and time (𝑡 ). These time series encompass the 
initial values as well as the varying values previously mentioned, 
allowing for a comprehensive analysis of the driving scenario.

B. Processing Unit
The processing unit consists of two main components: the 
calculation of the ADSS value and the classification of the safety 
relevance of the driving scenario based on the ADSS value.

The ADSS value is calculated for each data point in each time 
series. Each time series represents either a safety-critical driving 
scenario or a non-safety-critical driving scenario. A driving 
scenario is classified as safety-critical if and only if at least one 
data point in the corresponding time series yields a safety-critical 
ADSS value. The classification of safety relevance based on the 
ADSS can be defined as follows:

Hence, a driving scenario can be classified as safety-critical (𝑏𝐶 𝑟𝑖𝑡  
= 1) if both vehicles are braking at current time (𝑎𝐿  < 0 ∧ 𝑎𝐹  < 0) 
and the calculated ADSS value is less than or equal to 0 meters. 
Otherwise, the driving scenario is considered as non-safety-
critical (𝑏𝐶 𝑟𝑖𝑡  = 0) at current time. This ADSS-based evaluation 
is performed for each data point in the time series where both 

vehicles are braking.

C. Output Unit
The output unit is responsible for visualizing the time series to 
showcase the driving scenarios considered during the validation 
process. The time series are presented as a 2D representation 
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over time, highlighting the differences in position, speed, and 
acceleration between the two vehicles.
Figure 8 illustrates this visualization approach.

Figure 8 consists of two subplots stacked on top of each other. The 
upper subplot displays the distance between the two vehicles over 
time, while the lower subplot depicts the differences in speed and 
acceleration between the vehicles over time.

In general, two time series are considered, and they have been 
classified in terms of their safety relevance based on the ADSS. 
Solid lines represent a safety-critical driving scenario, while 
dashed lines represent a non-safety-critical driving scenario. The 
green area between 0.5 and 2.25 seconds visualizes the time range 

in which both vehicles are braking and classified as safety-critical 
according to ADSS. For the time series classified as non-safety-
critical, the difference in acceleration is always positive, indicating 
that both vehicles tend to move away from each other during this 
highlighted time period in green. This is further emphasized by 
the increased difference in speed between the vehicles during the 
same time period.

For the time series classified as safety-critical, the differences in 
acceleration and speed become smaller (greater negative values), 
resulting in a constant decrease in the distance between the vehicles 
(indicating an increasing potential for a rear-end collision). It 
is important to note that the reaction time is modeled using the 
expected value (0.7 seconds) of the underlying distribution.

20 

 
 Fig. 8 Validation: Criticality of Follow-Up Drive (Time Series Data) 

 

7. Conclusion 

Validating and testing autonomous cars across various driving scenarios is crucial to establish 

release criteria and ensure human acceptance. Different methods exist for categorizing driving 

scenarios as either safety-critical or non-safety-critical. In this context, the Adaptive Difference 

Space Stopping (ADSS) metric proves to be effective in providing comprehensive and reliable 

coverage, particularly for longitudinal driving scenarios involving two vehicles following each 

other. The movement of both vehicles is defined using time series data that encapsulate the 

fundamental kinematic equations of motion. 
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