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Abstract
The goal of this paper is helping to apply ARDL models using the R software. We will cover its benefits, show how to use the 
packages and will make interesting recommendations for estimating models ARDL using R.

This paper presents the dynamac package for the statistical language R, demonstrating its main functionalities in a step by 
step guide.
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1. Introduction
Pesaran et al. (2001) introduced the bounds test for cointegration 
based on the previous work of Pesaran and Shin (1999) using 
the ARDL model as a platform for the test. Since then, the 
ARDL framework and the bounds test are used constantly by 
practitioners who seem to adopt every new advancement of 
the initial framework. A recent example combining various 
techniques, is Wu et al. (2022) who applied bootstrap ARDL with 
a Fourier function. This paper provides a smooth introduction to 
the dynamac package in R and its main features and capabilities.

Regarding proprietary software like EViews, although they are 
generally considered more user-friendly, they lack flexibility 
compared to programming languages such as R. Additionally, 
these software platforms are often slow to adopt the latest 
advancements in research and can be prohibitively expensive 
for many users.

On the other hand, open-source software does not provide 
any guarantees regarding the quality of results, and it is the 
responsibility of the user to verify the code. The problem lies 
in the fact that not everyone is an expert in the field, making it 
challenging to technically validate the code’s implementation. 
Many practitioners simply seek reliable software they can trust.

Dynamac is a suite of programs in R designed to assist users in 
modeling and visualizing the effects of autoregressive distributed 
lag models, as well as testing for cointegration. The core 

program is dynardl, a flexible program designed to dynamically 
simulate and plot a variety of types of autoregressive distributed 
lag models, including error-correction models.

The research paper is organized as follows: We provide Auto 
Regressive Distributed Lag models in Section 2. Section 3 
presents Cointegration test. In section 4, we apply the model. 
And finally, we conclude in section 5.

2. Auto Regressive Distributed Lag models
Auto Regressive Distributed Lag models (ARDL), are dynamic 
models which involve variables lagged over time unlike static 
models. These models have the particularity of considering 
temporal dynamics (adjustment time, expectations, etc.) in 
the explanation of a variable (time series), thus improving the 
forecasts and effectiveness of policies (decisions, actions, etc.), 
unlike the simple (nondynamic) model whose instantaneous 
explanation (immediate effect or not spread over time) only 
restores part of the variation in the variable to explain.

In ARDL models we find, among the explanatory variables (Xt 
), the lagged dependent variable (Yt-p) and the past values of the 
independent variable (Xt-q). They have the following general 
form::

In its general (explicit) form, an ARDL model is written as 
follows:
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Yt = a0 + a1Yt−1 + · · ·+ apYt−p + b0Xt ++ · · ·+ bqXt−q + εt

Yt = a0 +

p∑
i=1

Yt−i +

q∑
j=0

Xt−j + εt

With ε ∼ (0, σ) error term.
b0 translates the short-term effect of Xt on Yt.
If we consider the following long-term or equilibrium relationship Yt = k + φXt + u , We
can calculate the long-run effect of Xt on Yt as follows:

φ =

∑
bj

1−
∑

ai

As with any dynamic model, we will use the information criteria (AIC, SIC and HQ)
to determine the optimal shift (p* or q*); an optimal shift is one whose estimated model
offers the minimum value of one of the stated criteria. These criteria are: that of Akaike
(AIC), that of Schwarz (SIC) and that of Hannan and Quinn (HQ). Their Akaike values
(AIC) are calculated as follows:

AIC (h) = Ln

(
SCRh

n

)
+

2h

n
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with SCRh = Sums of Squares of Residuals for the model with 
h delays 
n = Number of observations
Ln = Natural logarithm

These ARDL models generally suffer from error autocorrelation 
problems, with the presence of the lagged endogenous variable 
as explanatory and from multi-collinearity, which complicates 
the estimation of the parameters by Ordinary Least Squares/
OLS. Here, he has to resort to techniques robust estimation 
(SUR method, etc.) to overcome these problems. Also, we note 
that the variables considered in these models must be stationary 
to avoid spurious regressions. The ARDL model makes it 
possible to estimate short-term dynamics and long-term effects 

for cointegrated series or even integrated at different orders.

3. Cointegration Test
When we have several integrated variables of different orders 
(I(0), I(1)), we can use the cointegration test of Pesaran et al. 
(2001) called “bounds test to cointegration”, initially developed 
by Pesaran and Shin (1999).

The model which serves as a basis for the test of cointegration 
by staggered lags (test of Pesaran et al. (2001)) is the following 
cointegrated ARDL specification (it takes the form of an error 
correction model or a VECM), when we study the dynamics 
between two series xt and yt.
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∆yt = γ1yt−1 + γ2xt−1 +

p∑
i=1

αi∆yt−i +

q−1∑
j=0

βj∆xt−j + π0 + πt + et

This specification presents the ARDL model which can be written as follows:

∆yt = π0 + πt +

p∑
i=1

αi∆yt−i +

q−1∑
j=0

βj∆xt−j + λεt−1 + et

Whereù λ is the error correction term, adjustment coefficient or restoring force.
we conclude à the existence of a cointegration relation between xt and yt if and only if
0 ≺

∣∣∣�λ
∣∣∣ ≺ 1 and rejection H0 : λ = 0.

There are two à steps to follow to apply the Pesaran cointegration test, namely: the de-
termination of the eoptimal calibration above all (AIC, SIC) and uses the Fisher test to
verify the hypotheses:
H0 : α1 = α2 = 0 existence of a cointegration relation
H1 : α1 �= α2 �= 0 absence of a cointegration relation

The test procedure is such that we must compare the Fisher values obtained with the
critical values (bounds) simulated for several cases and different thresholds by Pesaran

3

with SCRh = Sums of Squares of Residuals for the model with h delays
n = Number of observations
Ln = Natural logarithm

These ARDL models generally suffer from error autocorrelation problems, with the
presence of the lagged endogenous variable as explanatory and from multi-collinearity,
which complicates the estimation of the parameters by Ordinary Least Squares/OLS.
Here, he has to resort to techniques robust estimation (SUR method, etc.) to overcome
these problems. Also, we note that the variables considered in these models must be
stationary to avoid spurious regressions. The ARDL model makes it possible to estimate
short-term dynamics and long-term effects for cointegrated series or even integrated at
different orders.

3 Cointegration test
When we have several integrated variables of different orders (I(0), I(1)), we can use the
cointegration test of Pesaran et al. (2001) called “bounds test to cointegration”, initially
developed by Pesaran and Shin (1999).
The model which serves as a basis for the test of cointegration by staggered lags (test
of Pesaran et al. (2001)) is the following cointegrated ARDL specification (it takes the
form of an error correction model or a VECM), when we study the dynamics between two
series xt and yt .

∆yt = γ1yt−1 + γ2xt−1 +

p∑
i=1

αi∆yt−i +

q−1∑
j=0

βj∆xt−j + π0 + πt + et

This specification presents the ARDL model which can be written as follows:

∆yt = π0 + πt +

p∑
i=1

αi∆yt−i +

q−1∑
j=0

βj∆xt−j + λεt−1 + et

Whereù λ is the error correction term, adjustment coefficient or restoring force.
we conclude à the existence of a cointegration relation between xt and yt if and only if
0 ≺

∣∣∣�λ
∣∣∣ ≺ 1 and rejection H0 : λ = 0.

There are two à steps to follow to apply the Pesaran cointegration test, namely: the de-
termination of the eoptimal calibration above all (AIC, SIC) and uses the Fisher test to
verify the hypotheses:
H0 : α1 = α2 = 0 existence of a cointegration relation
H1 : α1 �= α2 �= 0 absence of a cointegration relation

The test procedure is such that we must compare the Fisher values obtained with the
critical values (bounds) simulated for several cases and different thresholds by Pesaran

3

This specification presents the ARDL model which can be written as follows:

Whereù λ is the error correction term, adjustment coefficient or 
restoring force. we conclude à the existence of a cointegration 
relation between xt and yt if and only if                       and rejection 
H0 : λ = 0.

There are two à steps to follow to apply the Pesaran cointegration 
test, namely: the determination of the eoptimal calibration above 
all (AIC, SIC) and uses the Fisher test to verify the hypotheses:
H0 : α1 = α2 = 0 existence of a cointegration relation
H1 : α1 6= α2 6= 0 absence of a cointegration relation

The test procedure is such that we must compare the Fisher 
values obtained with the critical values (bounds) simulated for 
several cases and different thresholds by Pesaran et al. We will 

note from the critical values that the upper bound takes up the 
values for which the variables are integrated of order 1 I (1)and 
the lower bound concern the variables I (0).

4. Application
We illustrate the process autoregressive distributed lag modeling, 
testing for cointegration with pssbounds, and interpretation of 
X through stochastic simulations using data originally from 
Wright (2017) on public concern about inequality in the United 
States.7 For our example, assume that public concern about 
inequality in the US, Concern (concern), is a function of the 

with SCRh = Sums of Squares of Residuals for the model with h delays
n = Number of observations
Ln = Natural logarithm

These ARDL models generally suffer from error autocorrelation problems, with the
presence of the lagged endogenous variable as explanatory and from multi-collinearity,
which complicates the estimation of the parameters by Ordinary Least Squares/OLS.
Here, he has to resort to techniques robust estimation (SUR method, etc.) to overcome
these problems. Also, we note that the variables considered in these models must be
stationary to avoid spurious regressions. The ARDL model makes it possible to estimate
short-term dynamics and long-term effects for cointegrated series or even integrated at
different orders.

3 Cointegration test
When we have several integrated variables of different orders (I(0), I(1)), we can use the
cointegration test of Pesaran et al. (2001) called “bounds test to cointegration”, initially
developed by Pesaran and Shin (1999).
The model which serves as a basis for the test of cointegration by staggered lags (test
of Pesaran et al. (2001)) is the following cointegrated ARDL specification (it takes the
form of an error correction model or a VECM), when we study the dynamics between two
series xt and yt .

∆yt = γ1yt−1 + γ2xt−1 +

p∑
i=1

αi∆yt−i +

q−1∑
j=0

βj∆xt−j + π0 + πt + et

This specification presents the ARDL model which can be written as follows:

∆yt = π0 + πt +

p∑
i=1

αi∆yt−i +

q−1∑
j=0

βj∆xt−j + λεt−1 + et

Whereù λ is the error correction term, adjustment coefficient or restoring force.
we conclude à the existence of a cointegration relation between xt and yt if and only if
0 ≺

∣∣∣�λ
∣∣∣ ≺ 1 and rejection H0 : λ = 0.

There are two à steps to follow to apply the Pesaran cointegration test, namely: the de-
termination of the eoptimal calibration above all (AIC, SIC) and uses the Fisher test to
verify the hypotheses:
H0 : α1 = α2 = 0 existence of a cointegration relation
H1 : α1 �= α2 �= 0 absence of a cointegration relation

The test procedure is such that we must compare the Fisher values obtained with the
critical values (bounds) simulated for several cases and different thresholds by Pesaran

3

et al. We will note from the critical values that the upper bound takes up the values
for which the variables are integrated of order 1 I (1)and the lower bound concern the
variables I (0).
Thus: Fc � Bsup Cointegration exists
Fc ≺ Binf Cointegration does not exist
Binf ≺ Fc ≺ Bsup There is no conclusion

4 Application
We illustrate the process autoregressive distributed lag modeling, testing for cointegra-
tion with pssbounds, and interpretation of X through stochastic simulations using data
originally from Wright (2017) on public concern about inequality in the United States.7
For our example, assume that public concern about inequality in the US, Concern (con-
cern), is a function of the share of income going to the top ten percent, Income Top 10
(incshare10). We also hypothesize that the unemployment rate, Unemployment (urate),
affects concern over the short-run (i.e., is not cointegrating): Before estimating any model
using dynamac, users should first check for stationarity. A variety of unit root tests can
be performed using the urca package (Pfaff et al., 2016). These suggest that all three
series are integrated of order I(1), as they appear integrated in levels but stationary in
first-differences (D), shown in Table 1

Given that all series appear to be I(1), we proceed with estimating a model in dy-
nardl in error correction form, and then testing for cointegration between concern about
inequality and the share of income of the top 10 percent. In general, we suggest using
this strategy outlined in Philips (2018) along with alternative tests for cointegration. Our
error-correction model appears as:

∆Concernt = a0+φ1Concernt−1+∆1IncomeTop10t−1+β1∆IncomeTop10t+β2∆Unemploymentt+εt

where we assume εt ∼ N(0, σ2).

4
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Table 1: Unit Root Tests

Given that all series appear to be I(1), we proceed with estimating 
a model in dynardl in error correction form, and then testing for 
cointegration between concern about inequality and the share of 

income of the top 10 percent. In general, we suggest using this 
strategy outlined in Philips (2018) along with alternative tests 
for cointegration. Our error-correction model appears as:

dynardl is simply an engine for regression, but one that allows users to focus on theoretical specification rather than technical 
coding. All variables in the model are entered into the formula. In this sense, dynardl can be used in any ARDL context, not just 
ones in which the user is also expecting cointegration testing or dynamic simulations.We estimate our example model shown in 
Equation using dynardl as follows: data(ineq) res1 <- dynardl(concern ∼ incshare10 + urate, data = ineq, lags = list("concern" = 1, 
"incshare10" = 1), diffs = c("incshare10", "urate"),
ec = TRUE, simulate = FALSE )summary(res1)

As shown from the regression results, dynardl has included a constant, the lagged dependent variable, l.1.concern, the first difference 
of the two regressors (Income Top 10 and Unemployment), as well as the lag of Income Top 10.

While changes in Income Top 10 affect changes in Concern in the short-run, changes in Unemployment do not have a statistically 
significant effect in the short-run. The lag of Income Top 10 is negative and statistically significant.

dynardl is simply an engine for regression, but one that allows users to focus on the-
oretical specification rather than technical coding. All variables in the model are entered
into the formula. In this sense, dynardl can be used in any ARDL context, not just ones in
which the user is also expecting cointegration testing or dynamic simulations.We estimate
our example model shown in Equation using dynardl as follows:
data(ineq)
res1 <- dynardl(concern ∼ incshare10 + urate, data = ineq,
lags = list("concern" = 1, "incshare10" = 1),
diffs = c("incshare10", "urate"),
ec = TRUE, simulate = FALSE )
summary(res1)

As shown from the regression results, dynardl has included a constant, the lagged
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As shown from the regression results, dynardl has included 
a constant, the lagged dependent variable, l.1.concern, the 
first difference of the two regressors (Income Top 10 and 
Unemployment), as well as the lag of Income Top 10.

While changes in Income Top 10 affect changes in Concern in the 
short-run, changes in Unemployment do not have a statistically 
significant effect in the short-run. The lag of Income Top 10 is 
negative and statistically significant.

Moreover, the parameter on the lagged dependent variable is 
negative, between 0 and -1, and statistically significant, giving 
us cursory evidence of a cointegrating process taking place; we 
use a statistical test for this below.

An essential component of ARDL modeling is ensuring that 

the residuals from any ARDL estimation are white noise. One 
symptom of residual autocorrelation in the presence of a lagged 
dependent variable (where f1 6= 0) is that OLS will result in 
biased and inconsistent estimates. Autocorrelation is especially 
pernicious when using the ARDLbounds cointegration test, 
since the test relies on the assumption of, serially uncorrelated 
errors for the validity of the bound’s tests.

To assist users in model selection and residual testing, we offer 
dynardl.auto.correlated. This function takes the residuals from 
an ARDL model estimated by dynardl and conducts two tests 
for autocorrelation the Shaprio-Wilk test for normality and the 
Breusch-Godfrey test for higher-order serial correlation as well 
as calculates the fit statistics for the Akaike information criterion 
(AIC), Bayesian information criterion (BIC), and log-likelihood.

Table 2:

dependent variable, l.1.concern, the first difference of the two regressors (Income Top 10
and Unemployment), as well as the lag of Income Top 10.
While changes in Income Top 10 affect changes in Concern in the short-run, changes in
Unemployment do not have a statistically significant effect in the short-run. The lag of
Income Top 10 is negative and statistically significant.
Moreover, the parameter on the lagged dependent variable is negative, between 0 and -1,
and statistically significant, giving us cursory evidence of a cointegrating process taking
place; we use a statistical test for this below.

An essential component of ARDL modeling is ensuring that the residuals from any
ARDL estimation are white noise. One symptom of residual autocorrelation in the pres-
ence of a lagged dependent variable (where f1 6= 0) is that OLS will result in biased and
inconsistent estimates. Autocorrelation is especially pernicious when using the ARDL-
bounds cointegration test, since the test relies on the assumption of, serially uncorrelated
errors for the validity of the bounds tests.
To assist users in model selection and residual testing, we offer dynardl.auto.correlated.
This function takes the residuals from an ARDL model estimated by dynardl and conducts
two tests for autocorrelation the Shaprio-Wilk test for normality and the Breusch-Godfrey
test for higher-order serial correlation as well as calculates the fit statistics for the Akaike
information criterion (AIC), Bayesian information criterion (BIC), and log-likelihood.
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Table 3:

In our example, since the value of the F-statistic exceeds the 
critical value at the upper I(1) bound of the test at the 1% 
level, we may conclude that Income Top 10 and Concern about 
inequality are in a cointegrating relationship. As an auxiliary 
test, pssbounds displays a one-sided test on the t-statistic on the 
lagged dependent variable.

Since the t-statistic of -3.684 falls below the 5% critical value 
I(1) threshold, this lends further support for cointegration. Taken 
together, these findings indicate that there is a cointegrating 
relationship between concern about inequality and the income 
share of the top 10 percent, and that Equation 6 is appropriately 
specified.
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5. Conclusions
This paper serves as a comprehensive step-by-step guide, 
showcasing the core functionalities of the dynamac package, 
a versatile tool developed in the R language. In addition to 
explaining the package capabilities, we provide simple examples 
that end-users can readily adopt and tailor to suit their unique 
research requirements.

Throughout the illustrative examples, we highlight the user-
friendly dynamac package, which enables effortless estimation 
of even the most intricate models. The package flexibility 
becomes evident as it easily accommodates the calculation of 
complex designs, making it a valuable asset for researchers 
seeking reliable and robust results [2-10].
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