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Abstract
This paper describes the author’s assessment on his risk probability percentage of having atherosclerosis, cardiovascular 
disease (CVD), and stroke. During the 7-quarters of the COVID-19 period from 2/5/2020 to 11/4/2021, he utilized his earlier 
7-quarters data from 5/5/2018 to 2/4/2020 or the “pre-COVID period” and higher-order perturbation theory. The purpose 
of this study is to predict the present and future period’s CVD/stroke risks based on the previous period’s CVD/stroke risks 
via an effective approximation method of perturbation theory. 
 
In summary, this approximation method of perturbation equation from quantum mechanics offers high prediction accuracies 
on the present and future period’s (the “COVID period”) risks using the past pre-COVID period’s dataset and waveform as 
baseline calculations. The three orders of perturbation equations have provided the following high prediction accuracies 
in comparison against the COVID period’s calculated risks which includes the past 5-quarters of calculated risks and the 
future 2-quarters speculated risks of the COVID period.

First order perturbation:  95.4%
Second order perturbation: 96.2%
Third order perturbation: 96.6%
 
The author developed an APP software for his iPhone that is 
based on the model he created and used since 2018 via an Excel 
spreadsheet. This APP can assist patients with chronic diseases 
to help them understand their own perspective of having a CVD 
or stroke. 
 
COVID-19 is much worse than the original virus SARS that oc-
curred in 2003, in terms of its spreading speed, fatality rate, and 
emotional impact on the world population. People belonging to 
the “vulnerable” groups include the elderly with existing chronic 

diseases and a history of complications along with others suffer-
ing psychological disorders, which require additional attention 
to their health conditions and lifestyle management during the 
quarantine period. During this harsh and isolated time period, 
the author achieved better overall health conditions, including 
lower risk probability of having atherosclerotic conditions, 
CVD, and stroke. The knowledge and experience he acquired 
over the past 11 years of medical research and his developed 
Metabolism Index (MI) model, diabetes prediction tools, and 
risk models of diabetes complications assist him in many ways. 
This quarantined lifestyle has forced him to remove all non-es-
sential tasks in his life. As a result, he has turned the COVID-19 
crisis into his health advantage! At this stage of his life, there is 
nothing more important than his health and longevity.
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Introduction 
This paper describes the author’s assessment on his risk proba-
bility percentage of having atherosclerosis, cardiovascular dis-
ease (CVD), and stroke. During the 7-quarters of the COVID-19 
period from 2/5/2020 to 11/4/2021, he utilized his earlier 7-quar-
ters data from 5/5/2018 to 2/4/2020 or the “pre-COVID period” 
and higher-order perturbation theory. The purpose of this study 
is to predict the present and future period’s CVD/stroke risks 
based on the previous period’s CVD/stroke risks via an effective 
approximation method of perturbation theory. 

Methods
MPM Background
To learn more about his developed GH-Method: math-physical 
medicine (MPM) methodology, readers can read the following 
three papers selected from the published 400+ medical papers. 
 
The first paper, No. 386 (Reference 1) describes his MPM meth-
odology in a general conceptual format. The second paper, No. 
387 (Reference 2) outlines the history of his personalized dia-
betes research, various application tools, and the differences be-
tween biochemical medicine (BCM) approach versus the MPM 
approach. The third paper, No. 397 (Reference 3) depicts a gen-
eral flow diagram containing ~10 key MPM research methods 
and different tools. 
 
Patient’s Background
The author spent ~30,000 hours over the past 11 years, from 
2010 through 2021, to conduct his medical research on metabol-
ic disorders induced chronic diseases and their various compli-
cations, specifically focusing on metabolism.
 
In the beginning, from 2010 to 2013, he self-studied internal 
medicine and food nutrition. He specifically focused on six 
chronic diseases i.e., obesity, diabetes, hypertension, hyperlipid-
emia, CVD & stroke, and chronic kidney disease (CKD) which 
he has suffered since 1995. In 2014, he allotted the entire year 
to develop a complex mathematical metabolism model which 
includes 4 body output categories (weight, glucose, blood pres-
sure, and lipids) and 6 body input categories (food, water, ex-
ercise, sleep, stress, and daily life routine regularity). There are 
around 500 detailed elements included in these 10 basic catego-
ries. By the end of 2014, he has finally developed a mathematical 
metabolism index (MI) model embedded in a specially designed 
application software “eclaireMD” on iPhone for his daily use 
in order to improve and maintain his overall health conditions. 
 
During the metabolism model development process, he has 
defined two new variables MI and general health status unit 

(GHSU), where GHSU is the 90-days moving average value of 
MI that is similar to the relationship between HbA1C (A1C) and 
90-days moving average glucoses. The analysis results of this 
dynamic and complex model can be expressed through 2 health 
variables, MI and GHSU, in order to describe a person’s health 
status and also identify shortcomings in any specific health area 
at any moment in time. 
 
In the following two-year period, 2015 and 2016, he dedicated 
his time to research four prediction models related to his dia-
betes measurements i.e., weight, postprandial plasma glucose 
(PPG), fasting plasma glucose (FPG), and A1C. 
 
As a result, from using his own developed metabolism model 
and 4 prediction tools, his weight reduced from 220 lbs. (100 kg, 
BMI 32.5) to 168 lbs. (77 kg, BMI 24.8), waistline from 44 inch-
es (112 cm) to 33 inches (84 cm), average finger glucose from 
280 mg/dL to 101 mg/dL, and HbA1C from 10% to 6.2%. One 
of his remarkable accomplishments is that he no longer takes 
any diabetes medications beginning on 12/8/2015.
 
In 2017, he achieved better performance scores on lifestyle man-
agement, multiple medical conditions through selected biomark-
ers, and lower MI values due to his simple and enjoyable medi-
cal research work and its associated simple lifestyle which have 
no travel, no presentations, and decreased social interactions.
 
During 2018 and 2019, he traveled to 50+ international cities 
to attend 65+ medical conferences and made ~120 oral presen-
tations. This hectic schedule inflicted damage to both of his di-
abetes control and his overall metabolism score, through eating 
out frequently along with exercise disruption, and irregular life 
routines through travel and increased work schedule. 
 
The author eluded the 2003 SARS threat in China and Taiwan. 
In early January of 2020, when the strange “Wuhan pneumonia” 
rumors suddenly appeared on Eastern Asian news networks, he 
immediately recognized the danger associated with this new-
ly found virus. The spread of this disease depends mainly on 
the physical contact among people. Therefore, he initiated his 
“self-quarantine” in the United States on 1/19/2020, about two 
months earlier than the majority of Europeans and Americans 
who became aware of its potential damage and severity. As of to-
day, 6/11/2020, he has been self-quarantined for almost 6 quar-
ters or 17 months. This COVID-19 quarantine life pattern with 
home cooked meals and persistent walking exercise of 7 miles 
or 11 kms each day have made his conditions of diabetes con-
trol (from his glucose and A1C results) and overall metabolism 
(from his GHSU and MI results) reach to the “best-performed” 
situation over the past 25 years. 
 
Data Collection
Since 1/1/2012, the author measured his glucose values using 
the finger-piercing method: once for FPG and three times for 
PPG each day. On 5/5/2018, he applied the Libre Freestyle con-
tinuous glucose monitoring (CGM) sensor device on his up-
per arm and checked glucose measurements every 15 minutes, 
a total of ~96 times each day. After the first bite of meal, he 
measured his PPG level every 15 minutes for a total of 3-hours 
(180 minutes). He collected nearly 2 million data with carefully 
selected math-physical analysis tools, such as the GH-Method: 
math-physical medicine, to help discover many hidden informa-
tion about his body and internal organs. This also provided many 
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useful tips to improve his health maintenance. As he mentioned 
in his previously published medical papers, glucose is the pri-
mary criminal, blood pressure and lipids are the accomplices, 
while body weight is the fundamental factor. Combining all of 
these related biomedical risk factors together, they will eventual-
ly damage almost all internal organs through the blood circulato-
ry system and their connected nervous, lymphatic, and immune 
systems. These are the root cause of many complications, such 
as atherosclerosis, CVD, stroke, chronic kidney disease (CKD), 
diabetic retinopathy, neuropathy, foot ulcer, bladder infection, 
constipation, and more. 
 
In addition to data collection of his medical conditions, he ac-
cumulated the lifestyle detailed data regarding exercise, water 
intake, sleep, stress, food & meals, and daily life routines. The 
starting dates for these 6 lifestyle categories range between 
1/1/2012 and 6/1/2015. 
 
In total, over the past ~10 years, he has collected ~2 million data 
on his body & organs, including medical diseases, health condi-
tions, and various lifestyle details. 
 
Lifestyle, Metabolism, Immunity, Diseases, and Death
As indicated in one of his published papers, “Linkage among 
metabolism, immune system, and various diseases using 
GH-Method: math-physical medicine”, the most effective pro-
tection against COVID-19 is our immune system. The immune 
system is closely related to overall metabolism. We can safely 
say that metabolism and immunity are two sides of the same 
coin; when combined together, they contribute ~90% of the to-
tal annual death cases in US. In order to strengthen our overall 
metabolism, we must manage our daily lifestyle to build a strong 
and firm foundation of metabolism and immunity to protect our 
health and prolong life. 
 
In short, lifestyle is similar to the product quality and production 
capacity of an arsenal based on the overall educational, techno-
logical, and industrial power of a nation, whereas metabolism is 
similar to the effectiveness and destruction power of the weap-
ons available to soldiers which are produced by an arsenal. Im-
munity is similar to the overall military strength of the armed 
forces (assembly of strong soldiers with powerful weapons), 
while diseases (chronic diseases and complications, dementia, 
cancer, and infectious diseases) are similar to an enemy’s inva-
sion force. Lastly, the outcome of death is similar to the study 
of casualty of war, which is the study of probability and rate of 
casualty, including injury and death. 
 
Risk Model of CVD or Stroke
The framework of his mathematical risk probability model of 
having atherosclerotic conditions, CVD, and stroke consists of 
four parts with brief descriptions:
 
(A) Genetics (~10-15% influences) includes age, race, and 
health/medical history of family members.

(B) Personal background (~10-15% influences) includes person-
al bad habits (cigarette smoking, alcohol intake, and illicit drug 
use), obesity (weight and waistline due to overeating and bad 
life habits), and personal medical history. Weight problems and 
bad habits are difficult to change over a short period of time. 
They are types of “semi-permanent” issues, while genetics are 
“permanent” issues that are difficult to change or be controlled 

by patients. 

(C) Medical condition (~35-40% influences) includes artery 
blockage (glucose and lipids) or artery rupture (glucose and 
blood pressure) resulting from hyperlipidemia, hypertension, di-
abetes and other metabolic disorders.

(D) Lifestyle management details (~35-40% influences) include 
proper exercise, water intake, sleep (hours, wake up time, and 
sleep quality), stress (more than 40 different kind of stressors, 
including more than 20 different psychological conditions), 
food and meals (quantity such as portion size for weight control, 
carbs/sugar intake amount for glucose control, along with food 
quality for nutritional balance and proper diet), and regularity of 
daily life routines for geriatrics and longevity concerns.
 
Based on the above-mentioned four parts and collected big data, 
he established certain assumptions and different weighting fac-
tors, existing conditions, practice guidelines, and mathematical 
models from 11 years of reading many biomedical books and 
more than 1,000 medical journal papers, along with his own 
findings from his medical research work, to calculate 7 different 
risk probability percentages for the following 7 categories, A, B, 
C, D, A+B+C, A+B+D, and A+B+C+D. 
 
He developed a specific module in his eclaireMD APP software 
to automatically assess and calculate the numerical process of 
risk probability of having a CVD or stroke for patients with 
chronic diseases. The input data used in this article are the re-
sults from the customized software. 
 
Higher-order Interpolation Perturbation Theory
The author applies the higher-order interpolation perturbation 
method to obtain his three “perturbed PPG” waveforms based on 
one perturbation factor of his calculated GHSU value (90-days 
average of MI) that is also the “Slope in Perturbation Equation”. 
He uses the calculated CVD risks in Pre-COVID period as his 
reference baseline. 
 
The following polynomial function is used as a generic pertur-
bation equation:
 
A = f(x)
= A0 + (A1*x) + (A2*(x**2)) + (A3*(x**3)) + ... + (An*(x**n))
 
Where A is the perturbed CVD risk, Ai is the calculated risk for 
certain time segment, and x is the “perturbation factor” based 
on different GHSU values.
 
For this particular study, he chooses his Ai where i=1 to 3. 
Therefore, the perturbation theory equation from above can be 
simplified to the following form:
 
A = f(x)
= A0 + (A1*x) + (A2*(x**2)) +(A3*(x**3))
 
Or, the third-order interpolation perturbation equation can then 
be expressed in the following general format:
 
A i = A1 + (A2-A1) *(slope 1) +
(A2-A1) *(slope 2) + (A2-A1) *(slope*3)
 
More specifically, the following formats of the three perturbation 
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equations are utilized in the calculations for this study:
 
A of first order
= A1+(A2-A1)*(slope 1)
 
A of second order
= A1+(A2-A1) *(slope 2)
 
A of third order
= A1+(A2-A1) *(slop 3)
 
Where:
A1 = original risk A at time 1
A2 = advanced risk A at time 2
(A2-A1) = (Risk A at Time 2 - Risk A at Time 1)
 
It should be noted that the first parameter of A1 must be modified 
by an “initial conversion factor” to match his starting CVD risk 
level of the targeted period that is the COVID period. 
 
The perturbation factor of Slope is an arbitrarily selected pa-
rameter that controls the size of the perturbation. The author has 
chosen a function of GHSU, as his perturbation factor or slope, 
which is further defined as follows:
 
In this particular study, the author selects the GHSU value 
(90-days moving average MI) as his “perturbation factor”. 
The high-bound GHSU is 0.6216 (62.16%) and the low-bound 
GHSU is 0.4969 (49.69%). The midpoint value between the 
high-bound and low-bound is 0.5593 (55.93%). Therefore, he 
adopts his selected value of GHSU at 0.555 (55.5%). 

Furthermore, he uses 7-quarters from 5/5/2018 to 2/4/2020 as 
his pre-COVID period, where the CVD risk data serve as the 
baseline of calculations for his predicted CVD risk values of 
the COVID period from 2/5/2019 to 11/4/2021. It should be 
noted that there are two future quarters (~5 months) data from 
6/11/2021 to 11/4/2021 that belong to the future timeframe. 
Therefore, in order to make a result comparison, the author uti-
lizes his experience-based guesstimating 50% of the CVD risk 
value for the last two future quarters. 
 
The equations for 3 slopes are:
Slope 1
= (Selected GHSU - Low-bound GHSU) / (High-bound GHSU 
- Low-bound GHSU)
 
Slope 2
= (Slope 1 * Slope 1)
or (Slope**2)
 
Slope 3
= (Slope 1 * Slope 1 * Slope 1)
or (Slope**3)
 
Therefore, in this particular study, the three slope values are cal-
culated as follows:
 
Slope 1 from Carbs = 0.47
Slope 2 from Carbs = 0.22
Slope 3 from Carbs = 0.10
 
 

Results 
Figure 1 has two parts. The upper diagram shows the relation-
ships among Lifestyle, Metabolism, Immunity, Diseases, and 
Death. The lower diagram shows his annual risks of having a 
CVD/Stroke based on metabolism index or GHSU. 

Figure 1: Relationships among Lifestyle, Metabolism, Immu-
nity, Diseases, and Death (upper diagram) with annual CVD/
Stroke risks based on metabolism index

Figures 2 displays a summarized data table for the 14 quar-
ters from 5/5/2018 to 11/4/2021 by using GHSU (MI) risk 
(A+B+C+D). It contains input data of calculated CVD risks of 
the pre-COVID period (7 quarters) and COVID period (7 quar-
ters) with initial condition (i.e., conversion percentage of 97%) 
and 3 perturbation factors (0.47, 0.22, and 0.10). 
 

Figure 2: Input data of calculated CVD risks of both pre-COVID 
period (7 quarters) and COVID period (7 quarters) with initial 
condition (i.e., conversion %) and 3 perturbation factors

Figure 3 contains the final result diagrams. The upper diagram 
illustrates two risk curves of the two reference periods: pre-
COVID with higher risk data (black color curve) and COVID 
with lower risk data (dark blue color curve). All of the three 
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perturbed risk curves, including the first order curve in orange 
has 95.4% accuracy, the second order curve in dark brown has 
96.2% accuracy, the third order curve in green has 96.6% accu-
racy, are located between the upper bound of the pre-COVID 
curve and the lower bound of the COVID curve. This quiet, 
calm, routine quarantined lifestyle during the COVID period 
has actually helped him achieve a better score with lower CVD/
Stroke risk of 50.8%.

Figure 3: CVD/Stroke risks of predicted COVID period using 
pre-COVID period’s data and perturbation equations to achieve 
high prediction accuracies

This figure has also demonstrated the power of perturbation the-
ory applications of using a previous data record with a careful-
ly selected “perturbation factor” to predict a present, future, or 
combined dataset with high accuracy. As a matter of fact, the 
higher order of perturbation equation yields a higher prediction 
accuracy. 
 
Conclusions
In summary, this approximation method of perturbation equa-
tion from quantum mechanics offers high prediction accuracies 
on the present and future period’s (the “COVID period”) risks 
using the past pre-COVID period’s dataset and waveform as 
baseline calculations. The three orders of perturbation equa-
tions have provided the following high prediction accuracies in 
comparison against the COVID period’s calculated risks which 
includes the past 5-quarters of calculated risks and the future 
2-quarters speculated risks of the COVID period.
 
First order perturbation:  95.4%
Second order perturbation: 96.2%
Third order perturbation: 96.6%
 
The author developed an APP software for his iPhone that is 
based on the model he created and used since 2018 via an Excel 
spreadsheet. This APP can assist patients with chronic diseases 
to help them understand their own perspective of having a CVD 
or stroke. 
 

COVID-19 is much worse than the original virus SARS that oc-
curred in 2003, in terms of its spreading speed, fatality rate, and 
emotional impact on the world population. People belonging to 
the “vulnerable” groups include the elderly with existing chronic 
diseases and a history of complications along with others suffer-
ing psychological disorders, which require additional attention 
to their health conditions and lifestyle management during the 
quarantine period. During this harsh and isolated time period, 
the author achieved better overall health conditions, including 
lower risk probability of having atherosclerotic conditions, 
CVD, and stroke. The knowledge and experience he acquired 
over the past 11 years of medical research and his developed 
Metabolism Index (MI) model, diabetes prediction tools, and 
risk models of diabetes complications assist him in many ways. 
This quarantined lifestyle has forced him to remove all non-es-
sential tasks in his life. As a result, he has turned the COVID-19 
crisis into his health advantage! At this stage of his life, there is 
nothing more important than his health and longevity. 
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