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Abstract
Lactoferrin, a pleiotropic and multivalent natural protein, derived from bovine and camel milk has become the center of 
attention in current scientific arena due to its divers immune-modulation and inflammation related properties. Lactoferrin 
has immense role in host immune defenses as several important immune cells have surface receptors specific for lactoferrin. 
It has been studied at a great depth for its contribution to immune system as covered in this chapter at the interface between 
innate and adaptive defenses. The medicinal and biological benefits of lactoferrin are due to its diverse chemical structure. 
Furthermore, the anti and pro inflammation characteristics of the molecule makes it of utmost interest in medical and thera-
peutic field. Lactoferrin has the potential to serve as a clinical marker in a number to inflammation related maladies and can 
be used as a treatment option in oxidative stress mediated inflammation related disorders and for harmful immune allergies. 
Future research on lactoferrin can not only present it as a prognostic or diagnostic biomarker but also as a remedial solution 
to cure inflammation related disorders.
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1. Introduction 
The immunological reactions are intended to interrelate with the 
surroundings in order to safeguard the host from foreign drivers, 
providing a health status through efficient riddance of infectious 
invaders like viruses, bacteria, fungi, or parasites and through 
regulation of systemic responses from host immunological su-
pervision [1]. Inflammation is one of the most complex patho-
physiological immune responses to both microbial and non-mi-
crobial damage and acts through activation of thousands of 
immunological mediators and diverse cellular species. Though 
inflammation has an essential role in repair of tissues and/or 
elimination of pathogens, if it is not contained in an effective 
time dependent manner, it can be destructive to the host and lead 
to acute and frequent persistent inflammation mediated ailments. 
It is established that the generation of principal immunological 
such as chemokines and cytokines is reliant on the inflamma-
tion mediated cellular response, in particular that of innate im-
mune cells (macrophages, dendritic cells, and neutrophils) and 
hence further results in release of resultant immune species and 
consequent activation of adaptive defense mechanisms [2]. Im-

munomodulators are natural or man-made substances that can 
change the immunological response through augmentation or 
reduction of mediators of immune cascade including the in-
nate and adaptive components of immunological reactions [3]. 
Recent research has discovered lactoferrin (LF), a pleiotropic 
protein, as an important component in modulation of immuno-
logical reactions to lead directed interactions amongst innate and 
adaptive arms and related responses of immune system. Hence, 
lactoferrin acts as a bridge between innate and adaptive defense 
functions through regulation of target cellular response. It is also 
known for its modulation of presentation of antigen and produc-
tion of T helper cellular response [1]. Lactoferrin is a significant 
modulator of adaptive immune functions through stimulation of 
T cell maturation into helper cells and the conversion of imma-
ture B cells into effective antigen presention immune cells [4-7]. 
Lactoferrin has a crucial role in first line defensive mechanism 
of host and provides protection from a range of microbial invad-
ers and, prevents inflammation mediated maladies [8-13]. 

This chapter focuses on the role of lactoferrin as a natural me-
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diator in immunomodulation and showcases its inflammation 
related properties in different pathological states. Though lacto-
ferrin can be obtained from a number of sources such as human, 
camelid, buffalo, bovine, porcine and caprine but this chapter 
has discussed around bovine and camel derived lactoferrin. 

2. Receptors for Lactoferrin on Immune System Cells 
It was a challenging effort to identify receptors for lactofer-
rin which are involved in immune modulatory events. Recent 
discoveries have contributed to the identification of lactoferrin 
receptor (LfR) which are accountable for its influence on leu-
kocytes. Human lactoferrin was discovered for the first time as 
a vital defense component of mature milk and colostrum. This 
discovery lead to promote the hypothesis which states its role in 
protection of neonatal gastrointestinal barriers. In accordance to 
this hypothesis, LfR was identified in duodenal mucosa of small 
intestine during inception of iron delivery [14]. 

In a recent study conducted on mouse small intestine it was pro-
posed that lactoferrin act as a major iron source during early 
life stages [15]. Successive binding affinity studies have identi-
fied lactoferrin receptors on T-cells, B-cells, monocytes intesti-
nal cells and platelets [16,17]. The lipoprotein receptor-related 
protein 1 (LRP1) and 2 (LRP2) are primary lactoferrin recep-
tors and they are multi-ligand receptor proteins of low density. 
The LRP family members are known as endocytic receptors and 
LRP-1 also has a signaling receptor function [18]. 

Depending on their potential immune functions, the lactoferrin 
receptors are further divided into subclasses. The LfR is a sur-
face protein of ~105kDa which shows its expression on activat-
ed human lymphocytes [19]. Human lactoferrin is released and 
internalized by human Jurkat T-cells, also 30–40% lactoferrin, 
during each cycle, is degraded [1]. The LfR are specific in nature 
across species barriers. Lactoferrin binds to human monocytes, 
in a similar manner observed in B-cells [20,21].  Similarly hu-
man lactoferrin is taken up by murine peritoneal macrophages 
[22]. Other cell types such as rat hepatocytes, placental cytotro-
phoblast cell line of human, bovine and murine brain endothelial 
cells also possess and internalize lactoferrin receptors [23,24]. 
The LfR endocytosis mechanism is clathrin mediated [24-26]. 

Various findings on binding affinities of lactoferrin to target cells 
suggest low binding affinity sites, which are facilitated by sul-
fated proteoglycans chains [26]. Bovine and human lactoferrin 
has binding affinity for monocytic cell line of human, THP-1. 
The binding affinity can be decreased by inhibition of sulfation 
on cell surface [27]. 

3. Lactoferrin Mediated Crosstalk in Immune Responses 
Lactoferrin has been identified to have a profound role to act as 
a bridge between two innune responses i.e innate and adaptive 
host defense. Furthermore, the identification of LF receptors on a 
notable number of immune cells, and their established potential 
to bind LF, proves that this molecule can function as a modulator 
and affect both innate and adaptive immune function [28-33].

Lactoferrin alters the innate defense leukocytes through (1) in-
creasing the action of natural killer (NK) cells (2) stimulation 
of neutrophils function via augmentation of phagocytes activi-

ty and changing generation of reactive oxygen species (ROS), 
and (3) induction of macrophages via upregulating cytokine and 
nitric oxide (NO) generation as well as blocking intracellular 
proliferation of pathogens [34-44]. Furthermore, lactoferrin has 
also been observed for its role in modulation of cytokine pro-
duction from leukocyte populations. Lactoferrin can modulate 
the expression of pro-inflammation mediated cytokines, either 
to increase or decrease production as reliant upon the require-
ment of immune defenses in concert with the local environment 
[1,13,41,45,46-48]. Last not least, lactoferrin is capable of up-
regulating in vivo and in vitro expression of IL-12 in response to 
invading pathogens [49-53]. IL-12 has a prime role in the devel-
opment of T-cell helper type 1 (TH1) immune defense [53,54]. 
Such modulation roles of lactoferrin pinpoint its role between 
the innate and adaptive immune defenses as an intermediate. 

4. Mediation of Antigen Presenting Cell Function by Lacto-
ferrin
Lactoferrin are able to affect the action of T cells related to spe-
cific antigenic presentation through modulation of APCs [55]. 
Macrophages, DCs and B cells present antigenic species to CD4+ 
T-cells through major histocompatibility complex II (MHC II). 
Macrophages and DCs have a chief role of maintenance, aug-
mentation and generation of antigen specific functions of T cells, 
whereas the principal role of B cells is to capture foreign species 
through specific antibodies and present these foreign entities 
to T cells for subsequent maturation of antibodies and isotype 
switching [1]. Lactoferrin has diverse effects such immunologi-
cal cells as evident from experimental data discussed.

5. Macrophages 
Macrophages have prominent role in innate immune mecha-
nisms including induction of phagocytosis of foreign entities 
and consequent release of pro-inflammation related mediators. 
These cells also allow cross talk between defense systems to 
promote antigen-specific T cells. Macrophages have specific 
receptor sites for lactoferrin as revealed in both human and bo-
vine models [28,56]. Lactoferrin modulates the expression of 
pro-inflammatory cytokines and induction of type I interferon 
(IFN α/β), and affects the potential of macrophages to present 
foreign particles for antigen-specific CD4+ T-cells in the adap-
tive defense system [28,57]. This process leads to induction of 
several events that enable host to control intracellular invaders, 
that involves migration of macrophages at the site infection and/
or inflammation. Lactoferrin administered into mice (sensitized 
to sleep red blood cells) enhanced the migration of macrophage 
migration via migration inhibition factor [58].

Lactoferrin can enhance the phagocytosis of both infected and 
inactivated macrophages [53,59]. IL-12, produced by macro-
phages, is a main modulator of IFNα and has a major role in 
the recruitment of macrophages at the site of infection [52,60]. 
IL-12 also enhances the release of IFNα from differentiated Th1 
cells and memory T-cells as a co stimulator [61]. Enhanced IL-12 
production has been observed in murine peritoneal macrophages 
following intraperitoneal administration of lactoferrin [44]. 

6. Dendritic Cells
DCs can alter the differentiation of naïve T-cell, and redirect the 
function of memory T-cell [62-64]. In case of DCs as well, both 
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human and bovine models have shown lactoferrin specific recep-
tors and both bovine and human lactoferrin can interact with the 
surface receptors of peripheral blood derived DCs [33,65]. The 
potential of DCs to capture foreign antigenic entities or migrate 
upon stimulated is vital in the promotion of immune reactions 
specific to antigenic particles as well as its adeptness to mature, 
described by downregulating the uptake of antigens and upreg-
ulation of MHC II, CD86, CD40 expressions and promotion of 
T cells. It has been shown that recombinant lactoferrin leads to 
enhancement of CD86 expression in DCs stimulated via nickel 
sulphate [66]. Lactoferrin has been considered to acts as a novel 
factor for the maturation of human DCs [67]. 

7. Lactoferrin Regulates Adaptive Immune Responses
Lactoferrin, a polyvalent molecule, has notable role in modula-
tion of antigen specific adaptive immune defenses as discussed 
below.

8. T lymphocytes 
Lactoferrin specific receptor sites are observed on all subsets of 
T cells, even on δγ T-cells [29]. Human and bovine models have 
revealed surface receptor sites for lactoferrin on the T-cell line 
(Jurkat), and lactoferrin interacts to these sites via receptor fa-
cilitated endocytosis [68-70]. T lymphocytes are influenced in 
various manners by lactoferrin, most often reliant on the state 
of T cell differentiation, maturation, as well as activation. Lac-
toferrin derived from human milk can stimulate maturation of 
murine CD4−CD8− T cells and favor CD4 expression, via in-
duction of intracellular MAP kinase pathways through Erk2 and 
in the presence of p56lck [7,71]. Human lactoferrin has also 
been observed to enhance T-cell receptor (TCR) complex com-
ponent called human T-cell ζ-chain [72]. Lactoferrin has a dual 
effect of T cell response. It reduces the overall production of 
cytokine upon being added to mitogen activated T cells [73]. 
Human or bovine milk derived lactoferrin in cultured in murine 
splenocytes has shown reduced IL-2 and IFN-γ production [74].

Recombinant lactoferrin, in a T cell activation model induced 
via nickel, reduced proliferation of T cell, production of IL-5 
and expression of CCR4 chemokine [75]. On the other hand, in 
vivo experimentation demonstrated that lactoferrin increased T 
cell mediated DTH response through measurement of swelling 
in footpad upon introduction of antigenic proteins such as BCG, 
sheep red blood cells and ovalbumin [44,76,77].  In fact, the 
administration of lactoferrin reveals a mechanism for promotion 
of adaptive cell reconstitution via proliferative cascades because 
lactoferrin can contribute towards the reconstitution of humoral 
defense reaction in immune-compromised people [78,79].

Lactoferrin effect on T cells can further be defined in terms of 
the specific targeted cellular subsets. Lactoferrin holds the abil-
ity to direct alteration and modulations towards the steadiness 

of TH1 and TH2 immune functions through T cell secreted cy-
tokines, IL-4, IFN-γ, and IL-5. Camel milk lactoferrin has been 
described to improve the balance between Th1/Th2 mediated 
cytokine production during hepatocyte injury [80,81]. It is of 
quite interest that oral administration of lactoferrin leads to en-
hanced TH2 mediated T cell cytokines in murine that mitogen 
stimulated splenocytes and intramuscular administration of lac-
toferrin enhanced TH1 related T-cell cytokine [82].

9. B lymphocytes
Lactoferrin has an essential role in improvement of depleted im-
munoreactivity. This role of lactoferrin is evident from its ability 
to affect B cells.  Lactoferrin can stimulate maturation of imma-
ture mice B cells as described via enhanced production of com-
plement 3 receptor and promotion of IgD acquisition present of 
B cell surface. In the presence of lactoferrin, cultured immature 
B cells had enhanced capacity to stimulate  T cell proliferation 
specific to antigenic species, denoting indirectly increased B-cell 
antigen presentation [6]. T cells are stimulated through B cell 
presented antigens to lead induction of cytokines needed for iso-
type switching events. Lactoferrin oral administration enhanced 
release of overall IgG and IgA from murine Peyer’s patches, 
having specific titers of antibodies observed to be increased in 
both intestinal secretions and serum [82,83]. To summarize, it is 
demonstrated that B cells, an established antigen presenter, can 
be acted upon by lactoferrin in order to enable consequent T cell 
interactions that favor enhanced response of antibodies.

10. Significance of Lactoferrin Sugar Residues for Immune 
Activation
The grasp of the molecular foundation of different properties of 
lactoferrin resides in its patterns of glycosylation [84]. In bo-
vine lactoferrins five glycosylation sites are present one at Asn-
233, second at Asn-2281, third at Asn-368, fourth at Asn-476 
and fifth one at Asn-545. The glycans present on first Asn-233 
and last Asn-545 sites are of rich mannose type [85]. While the 
rest are complex type glycans which possess mannose moieties 
(Table 1).

Camel milk has the highest concentration of lactoferrin, almost 
30 to 100 times greater than bovine milk and holds 74.9% similar 
homological affinity with bovine lactoferrin. It has been shown 
that camel derived lactoferrin is rich with methionine whereas 
bovine lactoferrin is rick with valine [86].

Glycosylation is important for adjuvant activities of lactoferrin; 
that is elevated delayed type hypersensitive response generation 
for ovalbumin can be stopped via methyl-α-D-mannopyranoside 
addition [76]. The results of comparison research between hu-
man and bovine lactoferrin have shown that bovine lactoferrin 
has stronger adjuvant effect than human lactoferrin.
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Monosaccharide Percentage of total MW (%)
Bovine lactoferrin Human lactoferrin

Mannose 4.84 1.35
N-acetylglucosamine 4.25 2.48
N-acetylgalactosamine 0.85 -
Acetylneuraminic acid 0.6 1.0
Galactose 0.45 1.08
Fucose 0.21 -
Total 11.2 5.9

Table 1: The percentage sugar content of lactoferrin

Form these studies, it is suggested that primary receptor of lacto-
ferrin for its immunotropic activities is mannose receptor (MR). 
However, no studies are reported that show its direct binding to 
mannose receptor. So, it is still an ongoing research to identify 
lactoferrin sugar residues that stimulate interactions with its re-
ceptors and participate in different immune regulatory responses.

Although many receptors have been discovered, and most of 
them function as adhesion molecules or in the endocytic process 
but have few intracellular cross talks. 

11. Role of Lactoferrin in Inflammation- An Immune Re-
sponse to Injury
Lactoferrin has demonstrated immunomodulatory properties 
that effect both innate and acquired defenses [26]. Its connection 
to host immune defenses is evident from the fact that acquired or 
inherited  lactoferrin deficient patients suffer from recurrent in-
fections [87]. Oral intake of bovine milk derived lactoferrin has 
been observed to effect murine mucosal and systemic immune 
defense responses [82]. Lactoferrin can regulate nonspecific 
and specific production of pattern recognition receptors, antimi-
crobial proteins and proteins related to lymphocyte movement 
upon oral intake in mice [50]. The function that lactoferrin has 
in modulation of innate immune defenses authenticates its sig-
nificance as a first line host defense mechanism in opposition to 
foreign antigenic particles, controlling both acute and chronic 
inflammation [13,88-90].

12. Anti-Inflammatory Properties of Lactoferrin
The anti-inflammation function of lactoferrin has been re-
searched at great lengths for the last decade. Lactoferrin effects 
the anti-inflammation mechanisms by blocking the secretion of 
cytokines that stimulate recruitment and activation of defensive 
cells directed at the site of inflammation. Bovine lactoferrin has 
been reported to modulate production of cytokines via spleno-
cytes of obstructive jaundiced rats [91]. Furthermore, lactoferrin 
also increases the release of inflammatory cytokines IL-4 and 
IL-10, and decrease colitis in rats [92]. Camel lactoferrin has 
been reported to attenuate rheumatoid arthritis through sup-
pression of mitogen activated protein kinase (MAPK) signaling 
cascade as experimented in arthritic rats [93]. It also reduced 
the levels of TNF-α and IL-10 and protein expression of NF-
κBp65, COX-2 and iNOS. The interaction of lactoferrin with 
lipopolysaccharide (LPS) is linked to its role in downregulation 
of pro-inflammatory cytokines expression through its Lfc do-
main [94-96]. Of quite interest, it has been shown that Lfc on its 
own can also neutralize the action of LPS [97,98]. Lactoferrin 

competes for LPS binding against serum LPS-binding protein 
(LBP) and hence blocks the transfer of endotoxin to mCD14 that 
are presented on macrophage surface [99]. Lactoferrin has also 
been reported to reduces the generation of hydrogen peroxide 
that is mediated via interaction of LPS to L-selectin of neutro-
phils [100]. Besides binding to CD14 and LPS, other methods 
of the inhibition of pro-inflammation mediated mediators have 
also been demonstrated. Lactoferrin internalization in monocyt-
ic cells could lead to reduction in IL-6 production stimulated 
via TNF-α as an outcome of blockade of NF-kB binding to the 
TNF-a promoter [97,101]. Furthermore, the anti-inflammation 
potential of Lactoferrin on B-cells is due to its binding capabili-
ty with CpG-containing oligonucleotides [102,103]. In adjuvant 
stimulated rat model of arthritis, bovine lactoferrin has been re-
ported to hinder TNF-a and enhance IL-10 production [104]. Re-
combinant human and bovine milk derived lactoferrin has also 
been described to hinder LPS mediated murine preterm delivery 
through  blockade of IL-6 expression [105]. 

13. Pro-Inflammatory Properties of Lactoferrin
In some events, lactoferrin and LPS complex can act as inducer 
of inflammation mediated species in macrophages via TLR-4, 
although it is evident from a number of studies that lactoferrin 
itself, can lead to macrophage activation and release of IL-8, 
TNF-α, and nitric oxide (NO) [41,42]. It has been discovered 
that taking pretreatment of lactoferrin and LPS complex, cells 
become tolerant to LPS [42]. Lactoferrin has been shown to re-
store the humoral defense reaction and enhance IL-6 production 
in cyclophosphamide (CP) mediated immunocompromised mice 
via alveolar and peritoneal cells [78,106]. Indirectly, there is no 
role of TLR-4 in bovine lactoferrin mediated production of IL-6 
from murine peritoneal cells, still the expression of TLR-4 is es-
sential for optimal lactoferrin mediated CD40 expression [107]. 
In another study is was found that TLR-4 is essential for the 
activation of anti-viral state within host cells to combat vesicular 
stomatitis virus, while on the other hand TLR-4 is not mandato-
ry in lactoferrin stimulation for the production of TNF-α [43]. 
It has been demonstrated in murine CP immunocompromised 
model, that lactoferrin can reconstitute an immune reaction me-
diated via T cells by renewal of pool of T cell and hence, im-
proved the CD3+ T cells and CD4+ T cell pool [79]. Recent 
report showed that lactoferrin oral intake in herpes simplex 
virus type 1 murine infection model, can enhance cytokine re-
sponse and prevent loss of body weight [49]. Pepsin hydrolysate 
from bovine lactoferrin can promote IL-18 in murine epithelial 
cells of small intestine, that leads to expression of a number of 
genes involved in immune-stimulation such as IFN-g and other 
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pro-inflammation mediators [108]. From this effect bovine lac-
toferrin can contribute towards the inhibition of metastasis and 
carcinogenesis. Bovine lactoferrin also functions as an inhibitor 
of angiogenesis via induction of serum IL-18 and hinderance of 
endothelial functions [109]. Consistent injection of bovine milk 
derived lactoferrin can lead to a Th1-cytokine dominant envi-
ronment in the peripheral blood of chronic hepatitis C  (HCV) 
patients that contributes to the elimination of chronic HCV via 
IFN treatment [110]. Enhanced production of TNF-α and IFN-g 
has been demonstrated in lactoferrin treated murine model as 
compared to non-treated group upon stimulation via by heat-
killed Candida albicans from cervical lymph node cells [111].

14. Lactoferrin as Inflammatory Marker
Elevated levels of lactoferrin in blood and other biological fluids 
as observed in septicemia lead to the consideration that lactofer-
rin can be used as a marker for inflammation related maladies 
[112]. Elevated levels of lactoferrin have been quantified in sy-
novial fluid but not in serum from rheumatoid arthritis patients, 
hence lactoferrin has been put forward as a consistent marker 
of activation of peripheral blood mononuclear cells at inflam-
mation sites in rheumatoid synovitis [11]. Likewise, elevated 
levels of lactoferrin have been noticed in the severe acute respi-
ratory syndrome (SARS) to be secreted from peripheral blood 
mononuclear cells [113]. Furthermore, fecal lactoferrin offers a 
non-invasive diagnostic marker to measure the intestinal inflam-
mation in patients that suffer from diarrhea and abdominal pain 
[114,115]. Lactoferrin has proved to be a specific and reliable 
biomarker for chronic inflammation mediated bowel ailments 
[116]. Enhanced concentration of camel lactoferrin has been ob-
served in mastitis as an indicator of inflammation and can be 
used as a marker of bacterial udder inflection in cattle [117]. The 
evidence not only confirms the critical role of lactoferrin in in-
flammation related conditions but also showcases its application 
as a clinical biomarker in such conditions.

15. Role of Lactoferrin in Oxidative Stress
Lactoferrin due to its iron sequestration property, is involved in 
the regulation of biological balance of reactive oxygen species 
(ROS) generation and their elimination rate, which naturally 
protects against oxidation related cellular injury. Lactoferrin 
modifies innate immune responses which in turn alters the gen-
eration of immune regulatory mediators, responsible for adap-
tive immune system development. It is identified that lactofer-
rin is involved in the maintenance of cellular redox balance by 
up-regulating antioxidant enzymes [118]. 

Oxidative stress contribute to several chronic degenerative pro-
cesses such as neurodegenerative disorders, inflammation, ag-
ing, atherosclerosis and development of cancer [119,120]. The 
research is still ongoing to identify the exact oxidative species 
produced during metabolic processes. The factors of pathophys-
iological and physiological significance responsible for an im-
balance ROS production that result in oxidative stress in vivo 
remain unidentified. 

Under normal physiological cellular condition, the magnitude 
and rate of ROS production and their elimination highly depends 
upon the efficiency of antioxidant enzymes, glutathione perox-
idase (GPx), catalase (CAT), and superoxide dismutase (SOD). 

SOD is involved in the conversion of superoxide radical (•O−2) 
into less damaging hydrogen peroxide (H2O2), while GPx and 
CAT converts hydrogen peroxide into water or molecular oxy-
gen (O2) and water respectively. Nevertheless, the superoxide 
radical undergoes enzymatic degradation in further two steps 
when free ferric ions (Fe3+) are present. The superoxide mole-
cule in converted into ferrous salt (Fe2+) by reacting with ferric 
ion in the first step. The second step also called Fenton reac-
tion, the ferrous ion is converted into hydroxyl radical ferric salt 
(Fe3+), which is an alcohol. The hydroxyl radical formation in 
an iron dependent process has its implication in microbicidal 
activity within the lipid peroxidation events and phagocytes. 
The lipid peroxidation is initiated when hydroxyl radical reacts 
with polyunsaturated fatty acids resulting in a hydrogen atom 
abstraction. It also results in the production of hydroxyalkenals 
intermediates which induce physiological changes in different 
macromolecules. These macromolecules involve lipids, proteins 
and DNA [121]. This ferric sequestration ability of lactoferrin 
protects against oxidative damage to cells. 

Lactoferrin participate in general homeostasis by modulating the 
generation of  metabolically active molecules, and it is demon-
strated in tissue trauma models. Okazaki et al [118]. examined 
the antioxidant potential of bovine lactoferrin against renal tubu-
lar oxidative injury in ferric nitrilotriacetate-induced rat model 
[122]. This study showed that lactoferrin elevated the level of 
serum creatinine and reduced the level of urea nitrogen in blood. 
The results showed restoration of antioxidant enzymes functions 
in bovine lactoferrin treated group and protection against oxida-
tive renal tubular damage. So, it is suggested from this study that 
lactoferrin uptake prevents against iron-mediated renal damage. 

Other studies conducted on endotoxemic mice showed that lac-
toferrin reduced the LPS mediated oxidative stress by decreas-
ing mitochondrial dysfunction [123]. It was shown that lacto-
ferrin attenuated the mitochondrial damage in the LPS treated 
animal liver. It was demonstrated by significantly decreased 
mitochondrial DNA damage and release of hydrogen peroxide 
from mitochondria. 

Furthermore, in another report it has been described that camel 
lactoferrin reduces lipid peroxidation due to hepatic iron over-
load in chronic hepatitis C virus  patients and hence has a role 
in reduction of ROS [124]. Camel lactoferrin has also exhibited 
anti-oxidant potential through inhibition of oxidative harm stim-
ulated via cadmium chloride and aluminum chloride via upregu-
lation of antioxidant enzymes in albino rats [125].

So, it is concluded that lactoferrin is involved in the modula-
tion of cellular death and damage induced by inflammation. Ne-
crotic and apoptotic cell death are crucial to the sepsis-related 
pathology and SIRS development. These are highly linked to 
the mitochondrial dysfunction which is characterized by en-
hanced membrane permeability, altered cellular ATP levels and 
ROS production.  Bioenergetics and mitochondrial defects are 
becoming highly recognized role players in several acute and 
chronic disorders, and lactoferrin has demonstrated potent role 
in amelioration of these problems [123].
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16. Role of Lactoferrin in Immune Allergies
In vivo studies have demonstrated that lactoferrin shows protec-
tive role against lung and skin allergies [126,127]. Lactoferrin 
is excessively present in allergy patients. Allergy is a process in 
which the activation of basophils, mast cells, TNF-a and IL-1β 
results in the stimulation of antigen presenting cells [128]. In the 
proposed mechanism of skin allergies, lactoferrin binds to the 
keratinocytes and prevents TNF-a release from these cells [129]. 
In another explanation it is found that lactoferrin has the ability 
to destabilize tryptase which is a pro-inflammatory protease and 
released from mast cells [130]. Lactoferrin dislodges tryptase 
from heparin, that maintains its enzymatic activity. Recently, it 
is discovered that inhibition occurs due to lactoferrin absorption 
by mast cells and it shows interaction with cathepsin G and chy-
mase in addition to tryptase [131]. 

17. Conclusion
The chapter establishes the role of lactoferrin, a polyvalent and 
pleiotropic molecule, in immune-modulation and inflammation 
evident from the data reported. The presence of receptors of 
lactoferrin on various immune cells emphasizes the role of this 
natural protein in modulation of immunological responses. The 
understanding of interaction of lactoferrin with immune cells is 
of critical importance to provide future solution to inflamma-
tion related ailments. The anti and pro inflammation mediated 
responses of lactoferrin pinpoint that it can be used either as a 
prognostic or diagnostic based biomarker or as a viable remedial 
agent. 
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