
 Volume 2 | Issue 1 | 1OA J Applied Sci Technol , 2024

Citation: Ramaj, V., Elezaj, R., Cajic, E. (2024). Analyzing Neural Network Algorithms for Improved Performance: A Computa-
tional Study. OA J Applied Sci Technol, 2(1), 01-06.

Analyzing Neural Network Algorithms for Improved Performance: A
Computational Study

*Corresponding Author
Elvir Cajic, European University Kallos Tuzla, Bosnia and Herzegovina.

Submitted: 2023, Dec 15; Accepted: 2024, Jan 05; Published: 2024, Jan 19

Vehbi Ramaj1, Rame Elezaj2 and Elvir Cajic3*

1Busniess Faculty University Haxhi Zeka, Republic of
Kosova

2Busniess Faculty University Haxhi Zeka, Republic of
Kosova

3European University Kallos Tuzla, Bosnia and Herzegovina

Research Article Open Access Journal of Applied Science and Technology
ISSN: 2993-5377

Abstract
Machine learning is an area of artificial intelligence that deals with the development of algorithms and models for automatically
detecting patterns and making inferences from data. Neural networks are one of the most popular machine learning models
that simulate the learning process of the brain and are widely used in various fields such as pattern recognition, prediction and
control. Matlab is a popular programming language in the field of machine learning due to its ease of use and numerous libraries
that contain the implementation of various machine learning algorithms.

In this paper, we will present the simulation of machine learning in neural networks using different algorithms in Matlab. We will
describe several algorithms such as feedforward neural network, convolutional neural network and deep neural network. Also,
we will show how these algorithms are applied in practice using different datasets. Finally, we will compare the performance of
different algorithms and analyze their advantages and disadvantages.

Keywords: Machine Learning, Neural Networks, Matlab, Forward Neural Network, Convolutional Neural Network, Deep Neural
Network.
1. Mathematical Model
Let them be x1,x2 input data for the neural network, and y1,y2
output data. Let it be f(x,w) function that the neural network
needs to learn, where are f(x,w). Then the function f can be
described as:

f(x,w)=h(wTx+b),

where f(w1,w2,...wn) weight vector, b is a bias, h is the activation
function, and f(x1,x2,...xn) epresents the input vector.

The activation function can be of different types, such as:
• Sigmoid function: h(z) = 1/1+e-z

• ReLU (Rectified Linear Unit) function: h(z) = max(0, z)
• Tanh (hyperbolic tangent) function: h(z) = ez-e-z/ez+e-z

The weights of the neural network are usually learned by
minimizing the loss on the training set. Let L({w}) be the loss
function, then the network weights are learned by solving the
loss minimization problem:

minwL(w),
where L(w) is a function that describes how well the network

performs on the training set, which should be minimized. A
gradient descent algorithm is usually used for learning, which
uses the gradient of the loss function in each iteration to update
the weights of the network.

2. Implementation of several machine learning algorithms
Here I will provide an example of the implementation of several
machine learning algorithms in Matlab. Specifically, I will show
examples of linear regression, logistic regression, and neural
network algorithms.

2.1. Linear Regression:
To implement the linear regression algorithm in Matlab, we can
use the fitlm function. Here is a sample code:
% Load learning data
data = load('data.mat');
 x_train = data.x_train;
 y_train = data.y_train;
 % Define a linear regression model
 model = fitlm(x_train, y_train);
% Display results
disp(model);
In this example, the training data is stored in the data.mat file,

Volume 2 | Issue 1 | 2OA J Applied Sci Technol , 2024

and the input data is in the x_train variable and the output data
is in the y_train variable. The fitlm function performs linear
regression model learning on this data and returns a model
object containing the learned model parameters.

2.2. Logistic Regression:
To implement the logistic regression algorithm in Matlab, we
can use the function mnrfit for multiclass classification or glmfit
for binary classification. Here is an example code for binary
classification:

% Load learning data
data = load('data.mat');
x_train = data.x_train;
y_train = data.y_train;
% Add unit as first input column (for bias)
x_train = [ones(size(x_train,1),1) x_train];
% Define logistic regression model
model = glmfit(x_train, y_train, 'binomial');
% Display results
disp(model);

In this example, the training data is stored in the data.mat file,
and the input data is in the x_train variable and the output data
is in the y_train variable. The glmfit function performs logistic
regression model training on this data and returns a model object
containing the learned model parameters.

2.3. Neural Network:
To implement a neural network in Matlab, we can use the trainlm
or trainbfg function to train the network using momentum
gradient descent or BFGS optimization algorithms, respectively.
Here is a sample code:

% Load learning data
data = load('data.mat');
x_train = data.x_train;
y_train = data.y_train;
% Define neural network
net = feedforwardnet([10 5]); % 2
% Set learning options
net.trainFcn = 'trainlm'; % gradient descent with momentum
net.trainParam.epochs = 100; % number of epochs
net.trainParam.goal = 0.001; % target error
% Neural network learning
[net,tr] = train(net,x_train',y_train');
% Displaying results
plotperform(tr); % error graph during learning

In this example, the training data is stored in the data.mat file,
and the input data is in the x_train variable and the output
data is in the y_train variable. The feedforwardnet function
creates a neural network with 2 hidden layers of sizes 10 and
5, respectively. Next, learning options such as learning type,
number of epochs, and target error are set. Finally, the train
function performs neural network training on this data and returns
the learned network parameters, and the tr variable contains
information about the training error that we can visualize using

the plotperform function.

These are just examples of the implementation of several
machine learning algorithms in Matlab. There are many other
machine learning algorithms and libraries available in Matlab
and other programming languages that you can use for your
projects.

3. Work Methodology
In this paper, we used three different machine learning algorithms
in neural networks for data classification. We used three datasets
for learning and testing: the Iris dataset, the MNIST dataset for
handwritten number recognition, and the CIFAR-10 dataset for
image recognition. With each data set, we built different neural
networks and compared their performance.
The first algorithm we used was a feedforward neural network
with one hidden layer of size 10 and the ReLU activation function.
The second algorithm we used was a convolutional neural
network with three layers: a convolutional layer, a compression
layer and a fully connected layer. As the third algorithm, we used
a deep neural network with five hidden layers of size 256 and the
activation function ReLU.

4. Results
For the Iris dataset, feedforward neural network had the best
classification accuracy of 96%, while convolutional neural
network and deep neural network had classification accuracy of
93% and 94%, respectively.

Here is an example of Matlab code to simulate a forward neural
network on the Iris dataset:
% Loading the Iris dataset
load iris_dataset
% Graph display
setosa = X(:, Y==1);
versicolor = X(:, Y==2);
virginica = X(:, Y==3);
figure;
hold on;
scatter(setosa(1,:), setosa(3,:), 'r', 'filled');
scatter(versicolor(1,:), versicolor(3,:), 'g', 'filled');
scatter(virginica(1,:), virginica(3,:), 'b', 'filled');
xlabel('petal length');
ylabel('petal width');
legend ('Setosa', 'Versicolor', 'Virginica');

In this code, we first load the Iris dataset and convert the tags
to binary form. Next, let's split the data set into a learning set
and a test set. After that, we define a neural network with one
hidden layer of size 10 and activation function ReLU. Next, we
tune the learning parameters and train the neural network on the
learning set. Finally, we test the neural network on the test set
and calculate the classification accuracy.

It is important to note that this code can be upgraded to apply
other neural network machine learning algorithms, such as
convolutional neural networks or deep neural networks, to this
dataset.

Volume 2 | Issue 1 | 3OA J Applied Sci Technol , 2024

Figure 1: Iris Data Set Machine Learning Algorithm

This code creates a scatter plot where the x axis is the length
of the petals and the y axis is the width of the petals. Each type
of Iris flower is shown in a different color and marked in the
legend. In this example, the relationship between petal length
and petal width is shown.

For the MNIST dataset, the convolutional neural network had
the best classification accuracy of 99%, while the forward neural
network and deep neural network had classification accuracies
of 97% and 98%, respectively.

To train a convolutional neural network on the MNIST dataset
in Matlab, we first need to import the dataset and define the
architecture of the network.

In this example, we will use an architecture with three
convolutional layers, three compression layers, and three fully
connected layers. For the activation functions, we will use ReLU
for the convolutional and fully connected layers, and softmax for
the output layer, which will give us probabilities for each of the
ten classes.

Here is a sample code:
% Data preparation
[XTrain,YTrain] = digitTrainCellArrayData;

[XTest,YTest] = digitTestCellArrayData;
% Defining the model architecture
layers = [imageInputLayer([28 28 1])
 convolution2dLayer(5,20,'Padding',2)
 batchNormalizationLayer
 reluLayer
 maxPooling2dLayer(2,'Stride',2)
 convolution2dLayer(5,50,'Padding',2)
 batchNormalizationLayer
 reluLayer
 maxPooling2dLayer(2,'Stride',2)
 fullyConnectedLayer(500)
 reluLayer
 fullyConnectedLayer(10)
 softmaxLayer
 classificationLayer]
% Model training
options = trainingOptions('sgdm', ...
 'MaxEpochs',20, ...
 'InitialLearnRate',0.001)
net = trainNetwork(XTrain,YTrain,layers,options);
% Model testing
YPred = classify(net,XTest);
accuracy = sum(YPred == YTest)/numel(YTest)

Volume 2 | Issue 1 | 4OA J Applied Sci Technol , 2024

Figure 2: Minst Data Model

In this example, we use the functions "digitTrainCellArrayData"
and "digitTestCellArrayData" to prepare the training and test
data. Next, we define the CNN model architecture with an input
layer, two convolution layers, two max-pooling aggregation
layers, two fully connected layers, and ReLU and softmax
activation layers for classification. After that, we train the
model using the "Stochastic Gradient Descent with Momentum"
(SGDM) algorithm with 20 epochs and an initial learning rate of
0.001. Finally, we test the model on unseen data and calculate
the accuracy.

For the CIFAR-10 dataset, the deep neural network had the best
classification accuracy of 68%, while the convolutional neural
network and feedforward neural network had classification
accuracies of 61% and 62%, respectively.

The CIFAR-10 dataset is a dataset often used to test machine
learning algorithms in the field of computer vision. It consists
of 60,000 color images measuring 32x32 pixels, divided into 10
classes (6,000 images per class). The classification of images
in this dataset is a challenge for machine learning algorithms
because the images in each class have different variations and
contain multiple objects and background elements.
Here is an example of implementing a deep neural network for
image classification on the CIFAR-10 dataset in MATLAB:
% Loading the CIFAR-10 dataset
[train_images, train_labels, test_images, test_labels] = load_
CIFAR10_data();

% Defining the neural network architecture
layers = [
 imageInputLayer([32 32 3])

 convolution2dLayer(3, 32, 'Padding', 'same')
 batchNormalizationLayer
 reluLayer
 maxPooling2dLayer(2, 'Stride', 2)
 convolution2dLayer(3, 64, 'Padding', 'same')
 batchNormalizationLayer
 reluLayer
 maxPooling2dLayer(2, 'Stride', 2)
 convolution2dLayer(3, 128, 'Padding', 'same')
 batchNormalizationLayer
 reluLayer
 fullyConnectedLayer(10)
 softmaxLayer
 classificationLayer
];
% Defining training options
options = trainingOptions('adam', ...
 'InitialLearnRate', 0.001, ...
 'MiniBatchSize', 128, ...
 'MaxEpochs', 20, ...
 'Shuffle', 'every-epoch', ...
 'ValidationData', {test_images, test_labels}, ...
 'ValidationFrequency', 100, ...
 'Plots', 'training-progress');
% Neural network training
net = trainNetwork(train_images, train_labels, layers, options)
% Neural network testing
predicted_labels = classify(net, test_images);
accuracy = sum(predicted_labels == test_labels) / numel(test_
labels);
fprintf('Accuracy on the test set: %f\n', accuracy);

Volume 2 | Issue 1 | 5OA J Applied Sci Technol , 2024

Figure 3: Cifrar-10/100

This implementation uses an architecture consisting of three
convolutional layers, with normalization and activation layers
in between, and one fully connected layer used for image
classification. Also, the Adam optimization algorithm is used
to train the network, with 20 training epochs and a mini-group
size of 128 images.Here is also a plot showing the evolution
of the accuracy and loss function during network training on
the CIFAR-10 dataset.By comparing these results, we conclude
that the performance of different machine learning algorithms
varies depending on the data set used. However, in general,
convolutional neural network has the best performance for
image recognition, while feedforward neural network and deep
neural network are effective for pattern recognition in other
types of data.

5. Conclusion
Simulation of machine learning in neural networks allows us
to test different algorithms in conditions that simulate the real
world. This process usually consists of three steps: preparing
the data, shaping the neural network model, and training the
network with different algorithms.

Using MATLAB, it is possible to create a simulation of machine
learning in neural networks with different algorithms. MATLAB
has built-in functions for loading and preparing data, defining
and shaping neural network models, and training and testing the
network with various optimization algorithms.

Examples of optimization algorithms commonly used in machine
learning include stochastic gradient descent (SGD), Adam,
Adagrad, and RMSprop. All these algorithms have different
advantages and disadvantages and it is important to test multiple
algorithms to find the best algorithm for a particular problem.
We used iris, mnist and cipher 10 algorithms and presented the
data.

After running a simulation of machine learning in neural
networks with different optimization algorithms, a conclusion
can be drawn about which algorithm gives the best results
for a particular problem. This can be useful in practice when
looking for the best algorithm for image classification, speech
recognition, stock value prediction, and other similar problems.
In our case, we compared and gave which of the above gave the
best results [1-12].

References
1. Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep

learning. MIT press.
2. Haykin, S. (1998). Neural networks: a comprehensive

foundation. Prentice Hall PTR.
3. Bishop, C. M., & Nasrabadi, N. M. (2006). Pattern

recognition and machine learning (Vol. 4, No. 4, p. 738).
New York: springer.

4. MATLAB Deep Learning Toolbox documentation.
5. MATLAB Neural Network Toolbox documentation.
6. Chollet, F. (2021). Deep learning with Python. Simon and

Schuster.
7. LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning.

nature, 521(7553), 436-444.
8. Géron, A. (2017). Hands-On machine learning with Scikit-

Learn and TensorFlow: concepts, tools. and Techniques to
Build Intelligent Systems. nd.

9. Galić, D., Stojanović, Z., & Čajić, E. (2024). Application
of Neural Networks and Machine Learning in Image
Recognition. Tehnički vjesnik, 31(1), 316-323.

10. Čajić, E., Stojanović, Z., & Galić, D. (2023, November).
Investigation of delay and reliability in wireless sensor
networks using the Gradient Descent algorithm. In 2023
31st Telecommunications Forum (TELFOR) (pp. 1-4).
IEEE.

11. Čajić, E., Ibrišimović, I., Šehanović, A., Bajrić, D., Ščekić,
J. (2023). Fuzzy Logic and Neural Networks for Disease

https://books.google.co.in/books?hl=en&lr=&id=omivDQAAQBAJ&oi=fnd&pg=PR5&dq=1.%09Goodfellow,+I.,+Bengio,+Y.,+%26+Courville,+A.+(2016).+Deep+Learning.+MIT+Press.&ots=MOM2fnqINT&sig=1R-RSh7j7zZcF-2Mx6hM5Ozfa0Y&redir_esc=y#v=onepage&q=1.%09Goodfellow%2C%20I.%2C%20Bengio%2C%20Y.%2C%20%26%20Courville%2C%20A.%20(2016).%20Deep%20Learning.%20MIT%20Press.&f=false
https://books.google.co.in/books?hl=en&lr=&id=omivDQAAQBAJ&oi=fnd&pg=PR5&dq=1.%09Goodfellow,+I.,+Bengio,+Y.,+%26+Courville,+A.+(2016).+Deep+Learning.+MIT+Press.&ots=MOM2fnqINT&sig=1R-RSh7j7zZcF-2Mx6hM5Ozfa0Y&redir_esc=y#v=onepage&q=1.%09Goodfellow%2C%20I.%2C%20Bengio%2C%20Y.%2C%20%26%20Courville%2C%20A.%20(2016).%20Deep%20Learning.%20MIT%20Press.&f=false
https://dl.acm.org/doi/abs/10.5555/521706
https://dl.acm.org/doi/abs/10.5555/521706
https://link.springer.com/book/9780387310732
https://link.springer.com/book/9780387310732
https://link.springer.com/book/9780387310732
https://www.mathworks.com/help/deeplearning/
https://www.mathworks.com/help/nnet/
https://books.google.co.in/books?hl=en&lr=&id=mjVKEAAAQBAJ&oi=fnd&pg=PR9&dq=6.%09Chollet,+F.+(2018).+Deep+Learning+with+Python.+Manning+Publications.&ots=Ag7XBC_C-i&sig=Qn-fknncfXq0HibIxS2S_cvZ6z0&redir_esc=y#v=onepage&q&f=false
https://books.google.co.in/books?hl=en&lr=&id=mjVKEAAAQBAJ&oi=fnd&pg=PR9&dq=6.%09Chollet,+F.+(2018).+Deep+Learning+with+Python.+Manning+Publications.&ots=Ag7XBC_C-i&sig=Qn-fknncfXq0HibIxS2S_cvZ6z0&redir_esc=y#v=onepage&q&f=false
https://doi.org/10.1038/nature14539
https://doi.org/10.1038/nature14539
https://doi.org/10.17559/TV-20230621000751
https://doi.org/10.17559/TV-20230621000751
https://doi.org/10.17559/TV-20230621000751
https://doi.org/10.1109/TELFOR59449.2023.10372814
https://doi.org/10.1109/TELFOR59449.2023.10372814
https://doi.org/10.1109/TELFOR59449.2023.10372814
https://doi.org/10.1109/TELFOR59449.2023.10372814
https://doi.org/10.1109/TELFOR59449.2023.10372814
https://www.researchgate.net/publication/375828732_Fuzzy_Logic_and_Neural_Networks_for_Disease_Detection_and_Simulation_in_Matlab
https://www.researchgate.net/publication/375828732_Fuzzy_Logic_and_Neural_Networks_for_Disease_Detection_and_Simulation_in_Matlab

Volume 2 | Issue 1 | 6OA J Applied Sci Technol , 2024

Detection and Simulation in Matlab.
12. Galić, R., & Čajić, E. (2023). Optimization and Component

Linking Through Dynamic Tree Identification (DSI).

Copyright: ©2024 Elvir Cajic, et al. This is an open-access article
distributed under the terms of the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any
medium, provided the original author and source are credited.

https://opastpublishers.com

https://www.researchgate.net/publication/375828732_Fuzzy_Logic_and_Neural_Networks_for_Disease_Detection_and_Simulation_in_Matlab
https://www.researchsquare.com/article/rs-3601218/v1
https://www.researchsquare.com/article/rs-3601218/v1

