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Abstract
Acid-base equilibria are considered as model chemical processes in solutions in this work, the quantitative characteristic 
of which is the thermodynamic dissociation constant. It plays a major part in a wide range of applications and research 
areas and being the key parameter in assessing the physical, chemical properties of a compound. In the spectrophotometric 
determination of thermodynamic equilibrium constants in solutions, one of the determined parameters is the analytical 
wavelength, i.e. the wavelength used for conducting the measurements that are subsequently analyzed. How this value 
is determined will determine the error in the measured concentrations. International literature doesn’t seem to offer 
a universally recognized approach to choosing the analytical wavelength. Each researcher seems to base his or her 
choice on his/er own experience, base views, and classical procedures. The article presents a critical review of published 
approaches to determining the wavelength using traditional spectrophotometric titration and a new method of concentration 
spectrophotometry. The authors of this work draw attention to the fact that it is necessary to pay attention not only to the 
development of new approaches to the processing of experimental data, it’s imperative to improve the method as such. Since, 
as an analysis of the published sources has shown, for almost a whole century the principles of choosing the analytical 
wavelength remained the same while the equipment, as well as the methods of calculating thermodynamic dissociation 
constants, kept improving. In this regard, new method of concentration UV/visible spectrophotometry seems to show promise, 
for, apart from providing reliable wavelength data, this method has a number of other advantages that make it widely usable 
in various media, including the organic ones.
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1. Introduction
Currently, many articles have been published on the 
spectrophotometric method of analysis with a wide range of 
applications, ranging from the analysis of simple molecules to 
various equilibrium chemical processes occurring in solutions.

Using the Bouguer-Lambert-Beer law and the law of additivity 
of optical densities, it is possible to determine the concentrations 
of any components in solutions. However, when light-absorbing 
particles (ions, undissociated molecules) in solutions interact 
with each other and form equilibria, it is not possible to use the 
Bouguer-Lambert-Beer law in a simple form. Consequently, 
the problem arises of choosing the analytical wavelength and 
interpreting the obtained spectrophotometric data.

In this work, protolytic equilibria are considered as model 
chemical processes in solutions. A quantitative characteristic 
of acid-base equilibria is the thermodynamic dissociation 

constant (pKa
T). It plays a major part in a number of analytical 

processes, e. g. chromatographic retention and pharmaceutical 
properties of organic acids and bases, acid-base titration, 
solvent extraction and complexing, structuring and interaction 
of the dissolved compound and the solvent [1-3]. Dissociation 
constant is also used for determining stereochemical and 
conformational structures, the directions of nucleophile and 
electrophile attack, stability of intermediate compounds, in the 
correlational analysis involving the Hammett and Taft equations 
etc. Besides, thermodynamic dissociation constant is one of 
the vital parameters in drug developing. It can be used for the 
prognostication of the pharmacodynamic and pharmacokinetic 
properties of compounds: absorption, distribution, metabolism, 
elimination and toxicity, the so-called ADMET [4,5]. The pKa

T 
value is instrumental for understanding the transport of medical 
substances into the cells and through membranes. 

One of the key steps in determining the thermodynamic 
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dissociation constant is the choice of analytical wavelength. 
Modern literature presents a few methods for solving the 
problem of choosing the optimal wavelength, which have 
their own advantages and disadvantages. To date, no unified 
approach to the choice of analytical wavelength has been 
developed. Each researcher seems to base his or her choice on 
his/er own experience, classical procedures etc. This review 
summarizes the existing methods of choosing the wavelength 
for spectrophotometric determination of thermodynamic 
dissociation constants. In addition to the known methods 
using the traditional method of spectrophotometric titration, 
a new method of concentration UV/Vis spectrophotometry, 
which has not yet been widely used, is being considered. The 
method allows you to unambiguously determine the analytical 
wavelength without the need to measure the pH of the medium, 
without using buffer solutions, as well as concentrated solutions 
of strong acids and bases to determine extreme prototrophic 
forms. 

1.1 Spectrophotometric Titration Method: Choosing the 
Wavelength
Traditional spectrophotometric titration is one of the popular 
methods of determining the thermodynamic dissociation 
constants [6-8]. As the primary empirical data, it uses the 
dependences of absorbance (A) (ionization ratio logarithm) 

on pH, obtained through registering the spectra of the test 
compound with the same concentration in a number of buffer 
solutions with various pH values at constant ionic force. For 
spectrophotometric titration, the analytical wavelength is chosen, 
as a rule, to correspond to the maximum difference between 
the absorbance of the solutions or of the molar absorption 
coefficients of the extreme prototropic forms with the changing 
of the pH of the solution [9-15]. In other words, the dissociated 
and non-dissociated forms are obtained by registering the 
spectra of the test compound at the same concentration, using 
the solutions of strong acids or bases. Apart from complicating 
the process of preparation and conducting of the experiment, 
this approach limits the usability of the method, since it’s very 
hard to obtain the extreme forms for the compounds with poor 
resolution spectra. 

It is sometimes impossible to choose just one wavelength where 
the changes of the absorbance and molar absorption coefficients 
of the protonated and non-protonated forms are at their highest. 
Then the researchers choose several wavelengths to conduct 
the measurements [16]. Thus, in the measurements for various 
estrogen derivatives were conducted at several wavelengths 
[17]. E. g., pKa

T for  17α-estradiol was calculated at the following 
wavelengths:  240 nm, 248 nm, 295 nm, 300 nm (Fig. 1). 

 
 

 

 

Figure 1. UV spectra for 17α-estradiol at the concentration of 1.5 10-5 mol/l and cuvette length of 5 cm 

(― pH = 12.3; ···· pH = 3.6) [Wiley Online Library. 1977, vol. 66, no. 5, pp. 624-627]. 

 

The chosen wavelengths might be so far apart due to the absorption maxima in the spectra of the 

prototropic forms of estrogens, registered in the strong acid or base solutions, and to their subsequent  

averaging for specific groups of estrogen derivatives. It’s noteworthy that the values of estrogen’s pKa
T 

obtained at these lengths are in agreement with each other (Table 1).  

 

 240 nm 248 nm 295 nm 300 nm 

pH A pKa
T

 A pKa
T A pKa

T A pKa
T 

12.3 0.670 - 0.423 - 0.200 - 0.192 - 

3.6 0.0047 - 0.015 - 0.007 - 0.0 - 

10.37 0.342 10.42 0.218 10.38 0.096 10.44 0.089 10.43 

10.51 0.360 10.51 0.227 10.48 0.102 10.52 0.098 10.49 

10.38 0.326 10.47 0.200 10.46 0.095 10.46 0.090 10.44 

10.65 0.421 10.47 0.265 10.45 0.120 10.50 0.115 10.47 

10.30 0.298 10.47 0.180 10.47 0.086 10.46 0.080 10.45 

pKa
T = 10.46±0.03  
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The chosen wavelengths might be so far apart due to the 
absorption maxima in the spectra of the prototropic forms of 
estrogens, registered in the strong acid or base solutions, and 
to their subsequent  averaging for specific groups of estrogen 

derivatives. It’s noteworthy that the values of estrogen’s pKa
T 

obtained at these lengths are in agreement with each other (Table 
1).
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Apart from the abovementioned “classical” approaches to 
choosing the wavelength, there’re some less trivial ones. Thus, 
the method of choosing the analytical wavelength presented in 

relies on the form of the test compound [18]. The neutral and the 
dianion forms of resorcin display the maximum absorption at 
273.8 and 290.0 nm respectively (Fig. 2).
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Figure 2. Absorption spectra of resorcinol at various pH values. The arrows indicate chosen wavelengths 

[Spectrochimica Acta Part A. 2005, vol. 61, pp. 93–102]. 

 

 

The authors choose the analytical wavelength of 293.5 nm, the one where the absorption of dianion is at 

its maximum, while the absorption of the neutral resorcin is close to zero. In this range, resorcin 

monoanion displays the intermediate absorption between the two other types. Another chosen wavelength 

is 268.3 nm, where the neutral and monoanion forms are absorbed, while the absorption of dianion tends 

to the minimum. The obtained thermodynamic constants for resorcinol at the two different wavelengths 

are in agreement with each other (Table 2). 
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λ (nm) pKa1
T pKa2

T 

268.3 9.196 ± 0.005 10.904 ± 0.011 

293.5 9.211 ± 0.011 10.901 ± 0.011 

 

 

In the spectra of 2, 4-dinitrophenol reach the maximum absorption at 360 nm and 400 nm in the mixtures 

of 1-propanol-water with the ratios of 5, 10, 20, 30 и 40 and mas. %. The spectra of potassium sulphate of 
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A. 2005, vol. 61, pp. 93–102].

The authors choose the analytical wavelength of 293.5 nm, the 
one where the absorption of dianion is at its maximum, while 
the absorption of the neutral resorcin is close to zero. In this 
range, resorcin monoanion displays the intermediate absorption 
between the two other types. Another chosen wavelength is 268.3 

nm, where the neutral and monoanion forms are absorbed, while 
the absorption of dianion tends to the minimum. The obtained 
thermodynamic constants for resorcinol at the two different 
wavelengths are in agreement with each other (Table 2).

Table 2. Experimental values of resorcinol thermodynamic constants determined by UV/Vis spectrophotometry 
[Spectrochimica Acta Part A. 2005, vol. 61, pp. 93–102].

In the spectra of 2, 4-dinitrophenol reach the maximum 
absorption at 360 nm and 400 nm in the mixtures of 1-propanol-
water with the ratios of 5, 10, 20, 30 и 40 and mas. %. The 
spectra of potassium sulphate of 2, 4-dinitrophenol reach their 
maximums at the same wavelengths [19]. In the presence of a 

non-absorbing acid (HNO3), the peak tends to shift to the short-
wave range. Based on the measurements of spectra, the decision 
was taken to calculate pKa

T at these wavelengths (Table 3). The 
proximity of dissociation constant values determined at various 
wavelengths seems fairly reliable.
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absorbing acid (HNO3), the peak tends to shift to the short-wave range. Based on the measurements of 

spectra, the decision was taken to calculate pKa
T at these wavelengths (Table 3). The proximity of 

dissociation constant values determined at various wavelengths seems fairly reliable.  

 

 

W, % 1-propanol pKa
T

 (360 nm) pKa
T (400 nm) 

0 4.09  4.09 

5 3.81 3.82 

10 3.74 3.73 

20 3.66 3.64 

30 3.85 3.87 

40 3.89 3.91 

 

Table 3. Thermodynamic Dissociation Constant Values for 2,4-dinitrophenol in the mixture of 1-

propanol-water at 360 nm and 400 nm [Der Pharma Chemica. 2012, vol. 4, no 4, pp. 1375-1384]. 

 

These approaches show that the choice of the wavelength is not a major problem. Yet, the process of 

determining pKa
T at several wavelengths simultaneously is more cumbersome and less environmental 

friendly, for the solutions of strong acids and alkali have to be used. Besides, the traditional method of 

spectrophotometric titration has another shortcoming, the abovementioned cases of the compounds with 

poor spectral resolution.  

 

Unlike the classical spectrophotometric approaches to determining the thermodynamic dissociation 

constants, the multivalve spectrophotometry method (WApH) uses more extensive spectral information 

[20]. As suggested in since calculations are performed at the entire test range of wavelengths, the results 

tend to be more reliable than those rendered by the traditional spectrophotometric methods, where one or 

several wavelengths are used for the analysis [21-23]. Moreover, WApH method can be used for 

calculating pKa
T of the compounds with insignificant changes of absorption spectra with the changing of 

pH [24].  Besides, this method allows to determine micro constants through several titrations at different 

ratios of water solution and organic solution, and they don’t require the assumptions that have to be 

introduces in the one-wavelength measurements.  

 

The authors of suggests that the multiwave spectrophotometric method of absorption spectroscopy with 

the submerged probe (D-PAS) and other related methods have certain limitations [25]. Thus, the spectral 

shift that depends on pH can become invisible if the distance between the chromophore and the ionization 

center exceeds three sigma bonds. Moreover, the maximum absorption of the test compound can be 

located at the wavelength of <230 nm, and thus the optical data can be affected by the background noise. 
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These approaches show that the choice of the wavelength is 
not a major problem. Yet, the process of determining pKa

T at 
several wavelengths simultaneously is more cumbersome and 
less environmental friendly, for the solutions of strong acids 
and alkali have to be used. Besides, the traditional method 
of spectrophotometric titration has another shortcoming, the 
abovementioned cases of the compounds with poor spectral 
resolution. 

Unlike the classical spectrophotometric approaches to 
determining the thermodynamic dissociation constants, 
the multivalve spectrophotometry method (WApH) uses 
more extensive spectral information [20]. As suggested in 
since calculations are performed at the entire test range of 
wavelengths, the results tend to be more reliable than those 
rendered by the traditional spectrophotometric methods, where 
one or several wavelengths are used for the analysis [21-23]. 
Moreover, WApH method can be used for calculating pKa

T of 
the compounds with insignificant changes of absorption spectra 
with the changing of pH [24].  Besides, this method allows to 
determine micro constants through several titrations at different 
ratios of water solution and organic solution, and they don’t 
require the assumptions that have to be introduces in the one-
wavelength measurements. 

The authors of suggests that the multiwave spectrophotometric 
method of absorption spectroscopy with the submerged probe 
(D-PAS) and other related methods have certain limitations [25]. 
Thus, the spectral shift that depends on pH can become invisible 
if the distance between the chromophore and the ionization center 
exceeds three sigma bonds. Moreover, the maximum absorption 
of the test compound can be located at the wavelength of <230 
nm, and thus the optical data can be affected by the background 
noise.
 
Other case studies where the method of derivative 
spectrophotometry is used successfully for determining 
the thermodynamic dissociation constants for a number 
of compounds are also of interest [26,27]. Same as in the 
potentiometric titration, where the first or the second-order 
derivative from the titration curve helps to precisely locate the 
endpoint, the derivative graphs in spectrophotometric titration 
are often more informative than the initial absorption spectra. 
Thus, the graph of the first-order derivative (dA/dλ of λ) differs 
from the initial curve and can be used for precise fixation of the 
maximum absorption wavelength (Fig. 3) [28].
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Figure 3. Absorption spectrum and First-Order Derivative Graph for 2.5 mg% phenol in 0.1 mol/l sodium 

hydroxide solution (-) and in 0.1 N hydrochloric acid solution (---) [Journal of Clinical Pharmacy and 

Therapeutics. 1992, vol. 17, pp. 233-239]. 

 

The peak of the curve on the graph is the sought for value of the wavelength. Even though the derivative 

spectrophotometry method is by no means new, it seems to have a potential because of the breakthroughs 

in computer science, since it is now possible to make the necessary calculations almost instantaneously 

[29-31]. As a rule, first-order derivative spectrophotometry is used for the compounds that have one or 

two pKa
T values only, with the two being far apart; this is a major limitation of the method. Unlike the 

multiwave spectrophotometry, this method presents certain difficulties in determining the dissociation 

constant values for the compounds that have similar absorption spectra of the extreme prototropic forms. 
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Figure 3. Absorption spectrum and First-Order Derivative Graph for 2.5 mg% phenol in 0.1 mol/l sodium hydroxide solution (-) and 
in 0.1 N hydrochloric acid solution (---) [Journal of Clinical Pharmacy and Therapeutics. 1992, vol. 17, pp. 233-239].

The peak of the curve on the graph is the sought for value of 
the wavelength. Even though the derivative spectrophotometry 
method is by no means new, it seems to have a potential because 
of the breakthroughs in computer science, since it is now possible 

to make the necessary calculations almost instantaneously [29-
31]. As a rule, first-order derivative spectrophotometry is used 
for the compounds that have one or two pKa

T values only, with 
the two being far apart; this is a major limitation of the method. 
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Unlike the multiwave spectrophotometry, this method presents 
certain difficulties in determining the dissociation constant 
values for the compounds that have similar absorption spectra of 
the extreme prototropic forms.

1.2 Concentration Spectrophotometry Method: Choosing 
the Wavelength
The method of concentration spectrophotometry that we 
introduced over 10 years ago seems to be a feasible alternative 
to the existing methods of choosing the wavelength. In 
the beginning of our series of works on determining the 
thermodynamic dissociation constants, we followed in the 
footsteps of most researchers and opted for the traditional 
choice of the analytical wavelength, i. e. our measurements and 
calculations were conducted at the wavelength that corresponds 
to the maximum of the absorption spectrum of the test 
compound. Still, our approach to measuring and determining 
the thermodynamic dissociation constants was different from 
the methods suggested elsewhere. While most of the existing 
spectrophotometric methods or determining pKa

T are based on 
the dependence of absorbance on the acidity of the pH medium 
the proposed method uses the dependence of the absorbance 
on the concentration of the test compound for the primary 
experimental data [32-34]. The method of concentration UV/vis 
spectrophotometry can also be used for determining the reliable 

values of thermodynamic dissociation constants of the solutions 
with similar absorption spectra of the prototropic forms, thus 
meeting a major challenge in spectrophotometric pH-titration. 
This approach has been tested on the solutions of various 
structures and strengths, such as weak one-base acids: benzoic, 
phenoxyacetic, acetic, propionic, picric, phenol; monoacid 
bases: aniline, triethylamine; weak mono- and polyelectrolytes; 
heterocyclic thiols: (5-(4-nitrophenyl)-1H-tetrazole, 5-phenyl-
1H-tetrazole, 5-(methylthio)-1H-tetrazole, 5-(4-chlorobenzyl)-
1H-tetrazole, 5-(phenoxymethyl)-1H-tetrazole); 8-amino-4-
hydroxyphtalazine-1(2H)-one and 2,4-diaminoisoindoline-1,3-dione; 
as well as on the compounds that were measured in isopropyl 
alcohol: picric acid, benzoic acid, 3,5-dinitrobenzoic acid, 
4-nitrobenzoic acid, phenol, 4-nitrophenol, 3-nitrophenol [35-
39]. Besides, algorithms for calculating the thermodynamic 
dissociation constants of acids, bases and ampholytes in water 
solutions and organic solutions have also been developed [40].

To improve the method even further, we have developed a new 
approach to determining the wavelength. We believe that the 
analytical wavelength should be established at the maximum 
difference of the molar absorption coefficients of the test 
compound at two different concentrations: the initial (Сmax) and 
the final (Сmin), i. e. ∆ε = (εmax – εmin) and λопт≡∆εmax, as shown 
below, using 4-nitrophenol as the sample (Fig. 4).

concentration of the test compound for the primary experimental data [32-34]. The method of 

concentration UV/vis spectrophotometry can also be used for determining the reliable values of 

thermodynamic dissociation constants of the solutions with similar absorption spectra of the prototropic 

forms, thus meeting a major challenge in spectrophotometric pH-titration. This approach has been tested 

on the solutions of various structures and strengths, such as weak one-base acids: benzoic, phenoxyacetic, 

acetic, propionic, picric, phenol; monoacid bases: aniline, triethylamine; weak mono- and 

polyelectrolytes; heterocyclic thiols: (5-(4-nitrophenyl)-1H-tetrazole, 5-phenyl-1H-tetrazole, 5-

(methylthio)-1H-tetrazole, 5-(4-chlorobenzyl)-1H-tetrazole, 5-(phenoxymethyl)-1H-tetrazole); 8-amino-

4-hydroxyphtalazine-1(2H)-one and 2,4-diaminoisoindoline-1,3-dione; as well as on the compounds that 

were measured in isopropyl alcohol: picric acid, benzoic acid, 3,5-dinitrobenzoic acid, 4-nitrobenzoic 

acid, phenol, 4-nitrophenol, 3-nitrophenol [35-39]. Besides, algorithms for calculating the thermodynamic 

dissociation constants of acids, bases and ampholytes in water solutions and organic solutions have also 

been developed [40]. 

 

To improve the method even further, we have developed a new approach to determining the wavelength. 

We believe that the analytical wavelength should be established at the maximum difference of the molar 

absorption coefficients of the test compound at two different concentrations: the initial (Сmax) and the 

final (Сmin), i. e. ∆ε = (εmax – εmin) and λопт≡∆εmax, as shown below, using 4-nitrophenol as the sample (Fig. 

4). 

 

 
 

 

Figure 4. Choosing the optimal wavelength λopt through the difference between the molar absorption 

coefficients for 4-nitrophenol at the concentrations of Cmax = 2.0·10-3 mol/l and Cmin = 3.3·10-4 mol/l with 

added NaOH (Сb = 2.0·10-4 mol/l) in isopropyl alcohol [Russian Journal of Physical Chemistry A. 2021, 

vol. 95, pp. 826–1830]. 

 

Figure 4. Choosing the optimal wavelength λopt through the difference between the molar absorption coefficients for 4-nitrophenol 
at the concentrations of Cmax = 2.0·10-3 mol/l and Cmin = 3.3·10-4 mol/l with added NaOH (Сb = 2.0·10-4 mol/l) in isopropyl alcohol 
[Russian Journal of Physical Chemistry A. 2021, vol. 95, pp. 826–1830].

The absorbance at these concentrations is ca. 2.0 and 0.2 units. 
If the graph of ∆ε on λ dependence features several tantamount 
wavelengths, the one that is located in the longwave range 
should preferably be used. 

Apart from 4-nitrophenol, the method of choosing the optimal 
wavelength has been tested on the following compounds: picric 

acid, benzoic acid, 3,5-dinitrobenzoic acid; 4-nitrobenzoic acid; 
phenol, 3-nitrophenol. All the measurements were conducted 
using the method of concentration UV/vis spectrophotometry 
in isopropyl alcohol. For all the compounds, the calculated 
thermodynamic dissociation constant values are well in 
agreement with the published data (Table 4). 
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following compounds: picric acid, benzoic acid, 3,5-dinitrobenzoic acid; 4-nitrobenzoic acid; phenol, 3-

nitrophenol. All the measurements were conducted using the method of concentration UV/vis 

spectrophotometry in isopropyl alcohol. For all the compounds, the calculated thermodynamic 

dissociation constant values are well in agreement with the published data (Table 4).  

 

 

Acid pKa (pub.) pKa
T λ,  

nm 

Ci, 

mol·dm-3 

Picric acid 3.74 [41] 

4.02 [42] 

4.08 [43] 

3.30±0.01 362 1.5·10-3÷4.3·10-4 

Benzenoid acid 10.2 [44] 

11.75 [45] 

10.53±0.05 280 3.2·10-3÷2.3·10-4 

3,5-dinitrobenzenoid acid  8.31 [41] 9.03±0.05 250 1.2·10-3÷2.1·10-4 

4-nitrobenzenoid acid  9.6 [41] 10.62±0.04 285 1.6·10-3÷1.2·10-4 

Phenol 

 

15.41 

calc[46] 

15.83±0.07 241 5.5·10-3÷1.6·10-4 

4-nitrophenol 11.19 [41] 

12.45 [42] 

12.13±0.01 412 2.0·10-3÷3.3·10-4 

3-nitrophenol 

 

12.65 [8] 

13.92 [12] 

11.81±0.08 298 1.4·10-3÷2.3·10-4 

 

 

Table 4. Thermodynamic acid dissociation constants pKa
T in isopropyl alcohol obtained by the 

concentration UV/vis spectrophotometry method, versus published data [Russian Journal of Physical 

Chemistry A. 2021, vol. 95, pp. 1826–1830]. 

 

The suggested method is user-friendly, universal (since it works for the compounds with low spectral 

resolution), and the measurements can be conducted without using concentrated solutions of acids or 

bases to obtain dissociated and non-dissociated forms of the compounds; besides, no complicated 

calculations have to be involved. 

 

4. Conclusion 

Table 4. Thermodynamic acid dissociation constants pKa
T in isopropyl alcohol obtained by the concentration UV/vis 

spectrophotometry method, versus published data [Russian Journal of Physical Chemistry A. 2021, vol. 95, pp. 1826–1830].

The suggested method is user-friendly, universal (since it 
works for the compounds with low spectral resolution), and the 
measurements can be conducted without using concentrated 
solutions of acids or bases to obtain dissociated and non-
dissociated forms of the compounds; besides, no complicated 
calculations have to be involved.

4. Conclusion
The analysis of the published sources shows that for almost a 
century the principles of choosing the analytical wavelength have 
remained the same, while the equipment, as well as the methods 
of calculating dissociation constants, kept improving, the reason 
being that the experimental basics of spectrophotometric titration 
have hardly changed at all. The faulty choice of wavelength and 
buffer solutions, inaccuracies in determining pH, challenges of 
sustaining the same ionic force and introducing the respective 
corrections add up and contribute to the inaccuracy of 
determining thermodynamic dissociation constants [41-45]. That 
is why, apart from developing new approaches to processing 
experimental data, it’s imperative to improve the method as 
such. Concentration spectrophotometry seems to show promise, 
for, apart from providing reliable wavelength data, this method 
has a number of other advantages that make it widely usable in 
various media, including the organic ones. 
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