
 Volume 2 | Issue 2 | 110J Math Techniques Comput Math, 2023

Citation: Anaroua, F. I. (2023). Analysis of Flight Disruption Data to Determine Problem Areas Utilizing Database Appli-
cations. J Math Techniques Comput Math, 2(2), 110-116.

Analysis of Flight Disruption Data to Determine Problem Areas Utilizing
Database Applications

*Corresponding Author
Fadjimata Issoufou Anaroua, Embry-Riddle Aeronautical University,
Daytona Beach, FL, 32114, USA.

Submitted: 06 Feb 2023; Accepted: 13 Feb 2023; Published: 20 Feb 2023

Journal of Mathematical Techniques and Computational Mathematics

Fadjimata Issoufou Anaroua*, Jordan Sanders, Sean Jennings, Tyler Martin

Abstract
Flight delays represent a significant issue to airline profits and passenger satisfaction. Many factors can lead to a flight
being delayed and/or cancelled. To compound the issue, COVID restrictions have created a shortage of skilled, willing
labor and a disturbance in the supply chain. All aspects of air travel have been affected. For example, aircraft mainte-
nance and new plane constructions have increased lead times due to parts unavailability. Mass layoffs or early retire-
ments as a knee-jerk response to reduced travel in 2020 has exacerbated the problem. Pilot strikes protesting mandates
led to mass flight cancellations in 2021. The study will evaluate flight delays, cancellations, and incident data with the
goal of visualizing which airports, airlines, cities, or states are experiencing the highest number of flight disruptions
relative to others. In the era of new technological development, database applications are commonly used for data anal-
ysis to allow pattern recognition and large data distribution and organization. This study will mainly serve the purpose
of flight data retrieval, the compilation of data and database design and finally output data visualizations. The outcome
of the research will be presented in a user-friendly interface where the user can easily generate visualizations which can
be used to analyze flight delay information.

Review Article

Embry-Riddle Aeronautical University, Daytona
Beach, FL, 32114, USA.

ISSN: 2834-7706

Index Terms: Aviation, Data, Database, Computers, Informa-
tion, Technology, Delays, Cancellations, Visualization, Website,
Sql, Mysql, Html, Css, Python

Introduction
In 2007, the U.S government had endured 31–40-billion-dollar
downsides due to flight delays in 2017, 76\% of the flights ar-
rived on time” [1]. Air travel has led to a global interconnection
of society. The desire to maximize the amount of time an aircraft
is being flown, and therefore making a profit, drives airlines to
decrease the amount of time in between flights. This greatly in-
creases the chances of flight delays as there is a smaller time
window in between arrivals and departures [2]. Any disturbance
or cyber-attack can rapidly create global effects by causing mon-
etary and reputational harm. Today, flight delay data has never
been more relevant due to an increased focus on efficiency and
improving passenger satisfaction. Our team believes it is urgent
to address flight cancellation data and build robust systems ca-
pable of addressing and managing flight delay information on a
global scale. “An accurate estimation of flight delay is critical
for airlines because the results can be applied to increase cus-
tomer satisfaction and incomes of airline agencies.

Datasets
The group has created a system to visualize flight delay data
which can be used to recognize a pattern. Some of the data

points the group has collected include origin, origin city name,
origin state abbreviation, destination, destination city name, des-
tination state abbreviation, quarter, month, day of week, day of
month, flight date, marketing unique carrier, departure time, de-
parture delay, cancellations, and causes of delay [3, 4]. The data
was retrieved from the Bureau of Transportation Statistics and
uploaded to the database application using MySQL. MySQL
was queried in the back-end to create the data visualization. A
web interface was implemented using programming tools such
as Python and HTML5/CSS framework. The website allows us-
ers to select an airport, airline, city, or state. This input connects
to the MySQL database through Python and uses data visual-
ization techniques to show the user delay trends relative to that
input in 2021.

Literature Review
People who have traveled by plane are familiar with one of the
most inconvenient aspects of flying: delays. The plane may ar-
rive late, there may be only one line for takeoff or landing, or
severe weather may impose multiple hour delays (sometimes
resulting in flight cancellation); regardless of the reason, flight
delays are a major inconvenience for air travel passengers. As a
result, with flight data from more than 300 thousand U.S. flights
annually, we can acquire significant insights from this data to
better understand flight delays and the associated causes.

Volume 2 | Issue 2 | 111J Math Techniques Comput Math, 2023

Furthermore, because of the availability of large data sets for
visualization, functional database systems may be used to help
visualize these flight delays. This might be extremely useful for
both travelers and corporations. “In 2016, research for a post-
flight data analysis using databases implied that in conventional
systems, aircraft data was typically recorded in the form of files
on a storage medium and handled by each flight sortie separate-
ly. As a result, as the number of flight sorties grows, so does
the time spent searching for data for analysis. Instead of file-
based flight data maintained by flight sortie, they proposed da-
tabase-based data integration and management. This solution al-
lows people to simply store and manage all of the real-time data
in a database so that people may use it for visualization and in a
variety of application programs.” [5]. Recent research has found
it difficult to explain the principal reasons behind flight delays
due to multiple factors being in play at a time.

Flight schedules can be subject to change. Because airline re-
sources are closely connected, delays could quickly spiral out
of control if suitable recovery measures are not enacted. Despite
the complexities, certain patterns of flight delays are consistent
with the airline's schedule performance. The case study yielded
some interesting outcomes [6].

“Air Carrier: The cause of the cancellation or delay was due to
circumstances within the airline’s control (e.g., maintenance or
crew problems, aircraft cleaning, baggage loading, fueling, etc.)
Extreme Weather: Significant meteorological conditions (actu-
al or forecasted) that, in the judgment of the carrier, delays or
prevents the operation of a flight such as tornado, blizzard or
hurricane.

National Aerospace System (NAS): Delays and cancellations at-
tributable to NAS that refer to a broad set of conditions, such as
non-extreme weather conditions, airport operations, heavy traf-
fic volume and air traffic control.

Late-Arriving Aircraft: A previous flight with the same aircraft
arrived late, causing the present flight to depart late.

Security: Delays or cancellations caused by evacuation of a ter-
minal or concourse, re-boarding of the aircraft because of a se-
curity breach, inoperative screening equipment and/or long lines
more than 29 minutes at screening areas.” [6].

Our research uses the Relational Database Management System
to give flight delay statistical information to the end user via a
website. Moreover, this website allows the user to choose an air-
line, airport, or a geographical location. The website also shows
the user a pie chart on the distribution of delays and a graph
representing the delay-based days of the week or airline.

A previous study by Wesonga, Nabugoomu, and Jehopio did
an analysis of flight delays. They used a logistics model with
twelve attributes and determined that “the number of freighter
movements and non-commercial flights per day significantly in-
fluence both arrival and departure delays” [7].

Elmasri and Navathe stated that relational database management
systems “provide flexibility to develop new queries quickly and
to reorganize the database as requirements change.” Additional-
ly, relational database management systems are “the dominant
type of database system for traditional database applications”
[8].

System Design
The image below shows the initial system design concept as well
as the programming languages that were used to implement the
system. The database is accessed when the user interacts with
the web site by choosing the type of data he or she would like to
interact with. The website was created with HTML5 and CSS.
Once the user selects, the website requests information from the
database server and then displays the data processed by the web
application. Then, the web application uses a batch process to
analyze the data from the database. Both the batch process and
the web application used Python.

Figure 1: System Design Concept

Finally, the database is accessed by the batch process to query
the data. The database system language used for this project is
SQL.

Entities & Relationships
An entity is a real-world structure or a specific data set that we
want to try to mimic in our database. They are frequently iden-
tified as the system's primary nouns. For our study, we have at-
tempted to design and establish a direct link between an entity
and multiple tables of data; as in a relational database, data for a
single entity may be kept in multiple tables. Our entity relation-
ship diagram is:

data from the database. Both the batch process and the
web application used Python.

Figure 1: System Design Concept

Finally, the database is accessed by the batch process
to query the data. The database system language used
for this project is SQL.

D. Entities & Relationships

An entity is a real-world structure or a specific data

set that we want to try to mimic in our database. They
are frequently identified as the system's primary
nouns. For our study, we have attempted to design and
establish a direct link between an entity and multiple
tables of data; as in a relational database, data for a
single entity may be kept in multiple tables. Our entity
relationship diagram is:

Figure 2: Entity Relationship Schema

As can be seen above, each the Flight and Segment
entities are related to each other in a one-to-one
relationship called Goes to/from. The Flight entity has
a primary key called Flight_id. Furthermore, the
Segment entity has a primary key of Segment_id
which is a foreign key to the Flight_id of Flight. The
primary keys of Delay and Cause also are foreign keys
to the Flight_id of Flight. The Flight entity also has a
one-to-one relationship with the Delay entity called
Has. Additionally, the Delay entity has a one-to-one
relationship with the Cause entity called Due to. The
following image shows the UML (Unified Modeling
Language) Diagram of the relational database.

Figure 3: UML Diagram

The image below displays the use case diagram which
illustrates how people interact with the system. The
end user on the left side of the diagram selects his or
her desired set of data on the delay prediction website
from the front-end of the system. On the other side, the
database management system (DBMS) interacts with
the database server on the back-end of the system (i.e.,
creating the database).

Volume 2 | Issue 2 | 112J Math Techniques Comput Math, 2023

Figure 2: Entity Relationship Schema

As can be seen above, each the Flight and Segment entities are
related to each other in a one-to-one relationship called Goes to/
from. The Flight entity has a primary key called Flight_id. Fur-
thermore, the Segment entity has a primary key of Segment_id
which is a foreign key to the Flight_id of Flight. The primary
keys of Delay and Cause also are foreign keys to the Flight_id
of Flight. The Flight entity also has a one-to-one relationship
with the Delay entity called Has. Additionally, the Delay entity
has a one-to-one relationship with the Cause entity called Due
to. The following image shows the UML (Unified Modeling
Language) Diagram of the relational database.

Figure 3: UML Diagram

The image below displays the use case diagram which illustrates
how people interact with the system. The end user on the left
side of the diagram selects his or her desired set of data on the
delay prediction website from the front-end of the system. On
the other side, the database management system (DBMS) inter-
acts with the database server on the back-end of the system (i.e.,
creating the database).

Figure 4: Use Case Diagram

The end user’s desired set of data is analyzed to determine the
specific 2021 delay information which is displayed to him or
her. Once the data set has been selected, the DBMS accesses
information stored in the database server to complete the task.

Other considerations
Once a pattern has been established, the website will present its
findings to the user. This web interface provides the user with
data visualizations of 2021's delays, allowing the user to make
their own predictions about whether a flight is worth taking. For
example, a user could insert an airport and see that Fridays had a
large average delay compared to the other days of the week. The
user could then decide that it might be better to fly out the day
before or the day after.

Database Design
Database design, at its most basic level, entails defining entities
to represent various types of data and designing relationships
between those entities. By "entities," we mean how the data sets
are related to each other. The tables below illustrate this proj-
ect's four entities: Flights, Segments, Delays, and Causes. Inside
each entity, there are attributes and primary keys which were
discussed in more detail in the Entities Relationship section

Figure 5: Database Design

data from the database. Both the batch process and the
web application used Python.

Figure 1: System Design Concept

Finally, the database is accessed by the batch process
to query the data. The database system language used
for this project is SQL.

D. Entities & Relationships

An entity is a real-world structure or a specific data

set that we want to try to mimic in our database. They
are frequently identified as the system's primary
nouns. For our study, we have attempted to design and
establish a direct link between an entity and multiple
tables of data; as in a relational database, data for a
single entity may be kept in multiple tables. Our entity
relationship diagram is:

Figure 2: Entity Relationship Schema

As can be seen above, each the Flight and Segment
entities are related to each other in a one-to-one
relationship called Goes to/from. The Flight entity has
a primary key called Flight_id. Furthermore, the
Segment entity has a primary key of Segment_id
which is a foreign key to the Flight_id of Flight. The
primary keys of Delay and Cause also are foreign keys
to the Flight_id of Flight. The Flight entity also has a
one-to-one relationship with the Delay entity called
Has. Additionally, the Delay entity has a one-to-one
relationship with the Cause entity called Due to. The
following image shows the UML (Unified Modeling
Language) Diagram of the relational database.

Figure 3: UML Diagram

The image below displays the use case diagram which
illustrates how people interact with the system. The
end user on the left side of the diagram selects his or
her desired set of data on the delay prediction website
from the front-end of the system. On the other side, the
database management system (DBMS) interacts with
the database server on the back-end of the system (i.e.,
creating the database).

data from the database. Both the batch process and the
web application used Python.

Figure 1: System Design Concept

Finally, the database is accessed by the batch process
to query the data. The database system language used
for this project is SQL.

D. Entities & Relationships

An entity is a real-world structure or a specific data

set that we want to try to mimic in our database. They
are frequently identified as the system's primary
nouns. For our study, we have attempted to design and
establish a direct link between an entity and multiple
tables of data; as in a relational database, data for a
single entity may be kept in multiple tables. Our entity
relationship diagram is:

Figure 2: Entity Relationship Schema

As can be seen above, each the Flight and Segment
entities are related to each other in a one-to-one
relationship called Goes to/from. The Flight entity has
a primary key called Flight_id. Furthermore, the
Segment entity has a primary key of Segment_id
which is a foreign key to the Flight_id of Flight. The
primary keys of Delay and Cause also are foreign keys
to the Flight_id of Flight. The Flight entity also has a
one-to-one relationship with the Delay entity called
Has. Additionally, the Delay entity has a one-to-one
relationship with the Cause entity called Due to. The
following image shows the UML (Unified Modeling
Language) Diagram of the relational database.

Figure 3: UML Diagram

The image below displays the use case diagram which
illustrates how people interact with the system. The
end user on the left side of the diagram selects his or
her desired set of data on the delay prediction website
from the front-end of the system. On the other side, the
database management system (DBMS) interacts with
the database server on the back-end of the system (i.e.,
creating the database).

Figure 4: Use Case Diagram

The end user’s desired set of data is analyzed to
determine the specific 2021 delay information which
is displayed to him or her. Once the data set has been
selected, the DBMS accesses information stored in the
database server to complete the task.

E. Other considerations

 Once a pattern has been established, the website
will present its findings to the user. This web interface
provides the user with data visualizations of 2021's
delays, allowing the user to make their own
predictions about whether a flight is worth taking. For
example, a user could insert an airport and see that
Fridays had a large average delay compared to the
other days of the week. The user could then decide that
it might be better to fly out the day before or the day
after.

F. Database Design

 Database design, at its most basic level, entails
defining entities to represent various types of data and
designing relationships between those entities. By
"entities," we mean how the data sets are related to
each other. The tables below illustrate this project's
four entities: Flights, Segments, Delays, and Causes.
Inside each entity, there are attributes and primary
keys which were discussed in more detail in the
Entities Relationship section.

Figure 5: Database Design

II. Results and Discussions

The relational database management system
(RDBMS) was created via MySQL Workbench for the
offline version of the program. The RDBMS consists
of four tables: flight, cause, delay, and segment. These
table structures can be seen in the Database Design
section of this paper. The primary key of the flight
table is flight_id. The other three tables have primary
keys which are foreign keys to the flight table.
Therefore, the flight table has the original unique id for
each flight and each other table’s id refers to the one
created in the flight table. The code used to create this
can be seen below.

Figure 6: Coding Practice

Figure 4: Use Case Diagram

The end user’s desired set of data is analyzed to
determine the specific 2021 delay information which
is displayed to him or her. Once the data set has been
selected, the DBMS accesses information stored in the
database server to complete the task.

E. Other considerations

 Once a pattern has been established, the website
will present its findings to the user. This web interface
provides the user with data visualizations of 2021's
delays, allowing the user to make their own
predictions about whether a flight is worth taking. For
example, a user could insert an airport and see that
Fridays had a large average delay compared to the
other days of the week. The user could then decide that
it might be better to fly out the day before or the day
after.

F. Database Design

 Database design, at its most basic level, entails
defining entities to represent various types of data and
designing relationships between those entities. By
"entities," we mean how the data sets are related to
each other. The tables below illustrate this project's
four entities: Flights, Segments, Delays, and Causes.
Inside each entity, there are attributes and primary
keys which were discussed in more detail in the
Entities Relationship section.

Figure 5: Database Design

II. Results and Discussions

The relational database management system
(RDBMS) was created via MySQL Workbench for the
offline version of the program. The RDBMS consists
of four tables: flight, cause, delay, and segment. These
table structures can be seen in the Database Design
section of this paper. The primary key of the flight
table is flight_id. The other three tables have primary
keys which are foreign keys to the flight table.
Therefore, the flight table has the original unique id for
each flight and each other table’s id refers to the one
created in the flight table. The code used to create this
can be seen below.

Figure 6: Coding Practice

Volume 2 | Issue 2 | 113J Math Techniques Comput Math, 2023

Results and Discussions
The relational database management system (RDBMS) was cre-
ated via MySQL Workbench for the offline version of the pro-
gram. The RDBMS consists of four tables: flight, cause, delay,
and segment. These table structures can be seen in the Database
Design section of this paper. The primary key of the flight table
is flight_id. The other three tables have primary keys which are
foreign keys to the flight table. Therefore, the flight table has the
original unique id for each flight and each other table’s id refers
to the one created in the flight table. The code used to create this
can be seen below.

Figure 6: Coding Practice

To load the data into these tables, the “import records from an
external file” option was used. The csv files corresponding to
each table were loaded using this option. The process of upload-
ing the flight table data can be seen below

Figure 7: Process for uploading data

A website was created using HTML. It asked the user to search
for an airport, city, state, or airline. The website then displayed
data visualizations about delays associated with that particular
airport, city, state, or airline. A static image of the website can
be seen below

Figure 8: Website overview (Python Flask)

To connect the HTML website to the MYSQL RDBMS, the flask
and flask_sqlalchemy Python libraries were used.

Testing Process
To test the queries needed and the data analysis to be shown to
the user, some SQL queries were used. For example, delay by
flight carriers. The delay_time column in the delay table is an
integer value with a zero-value indicating no delay. Using this,
we can calculate the average time of delay in minutes by aver-
aging all values that are greater than zero with a SQL statement
such as: SELECT avg(delay\.DEP_DELAY) FROM (delay
INNER JOIN flight ON delay\.DELAY_ID = flight\.FLIGHT_
ID) WHERE
flight\.MKT_UNIQUE_CARRIER = 'WN' AND delay\.DEP_
DELAY > 0}.

The group had the idea to create an internet accessible version
of the website that would pull data from an SQL database hosted
online on a web server. The web server was to interface with the
user via PHPMyAdmin which is a program that was installed
onto the server via Softaculous. PHPMyAdmin was chosen for
the web server to make running SQL queries on the database
more user-friendly through an intuitive interface. The csv files
where be converted to SQL statements and queries to be entered
in via the Poudel52_flightdata “SQL” tab of PHPMyAdmin.
Ultimately the web server was not used for the final version of
the project.

To test graphing and plotting techniques with the data, a Jupyter
Notebook file was created. This file used the Matplotlib.pyplot
library to implement the graphs. The Pandas library was also uti-
lized to manipulate the data into the necessary slices to create the
desired graphs. The data was sliced by Airport using an input to
test one of the user inputs options on the website. After the user
inputted the Airport Code, Pandas sliced the data in the different
tables by that Airport Code. It was then further reduced by cre-
ating seven slices for each day of the week. The average delays
for each of those days were plotted in a bar graph via Matplotlib.
Pyplot as shown below.

Figure 4: Use Case Diagram

The end user’s desired set of data is analyzed to
determine the specific 2021 delay information which
is displayed to him or her. Once the data set has been
selected, the DBMS accesses information stored in the
database server to complete the task.

E. Other considerations

 Once a pattern has been established, the website
will present its findings to the user. This web interface
provides the user with data visualizations of 2021's
delays, allowing the user to make their own
predictions about whether a flight is worth taking. For
example, a user could insert an airport and see that
Fridays had a large average delay compared to the
other days of the week. The user could then decide that
it might be better to fly out the day before or the day
after.

F. Database Design

 Database design, at its most basic level, entails
defining entities to represent various types of data and
designing relationships between those entities. By
"entities," we mean how the data sets are related to
each other. The tables below illustrate this project's
four entities: Flights, Segments, Delays, and Causes.
Inside each entity, there are attributes and primary
keys which were discussed in more detail in the
Entities Relationship section.

Figure 5: Database Design

II. Results and Discussions

The relational database management system
(RDBMS) was created via MySQL Workbench for the
offline version of the program. The RDBMS consists
of four tables: flight, cause, delay, and segment. These
table structures can be seen in the Database Design
section of this paper. The primary key of the flight
table is flight_id. The other three tables have primary
keys which are foreign keys to the flight table.
Therefore, the flight table has the original unique id for
each flight and each other table’s id refers to the one
created in the flight table. The code used to create this
can be seen below.

Figure 6: Coding Practice

To load the data into these tables, the “import records
from an external file” option was used. The csv files
corresponding to each table were loaded using this
option. The process of uploading the flight table data
can be seen below.

Figure 7: Process for uploading data

A website was created using HTML. It asked the user
to search for an airport, city, state, or airline. The
website then displayed data visualizations about
delays associated with that particular airport, city,
state, or airline. A static image of the website can be
seen below.

Figure 8: Website overview (Python Flask)

To connect the HTML website to the MYSQL
RDBMS, the flask and flask_sqlalchemy Python
libraries were used.

A. Testing Process

 To test the queries needed and the data analysis to
be shown to the user, some SQL queries were used.
For example, delay by flight carriers. The delay_time
column in the delay table is an integer value with a
zero-value indicating no delay. Using this, we can
calculate the average time of delay in minutes by
averaging all values that are greater than zero with a
SQL statement such as: SELECT
avg(delay\.DEP_DELAY) FROM (delay INNER JOIN
flight ON delay\.DELAY_ID =
flight\.FLIGHT_ID) WHERE
flight\.MKT_UNIQUE_CARRIER = 'WN' AND
delay\.DEP_DELAY > 0}.

The group had the idea to create an internet accessible
version of the website that would pull data from an
SQL database hosted online on a web server. The web
server was to interface with the user via
PHPMyAdmin which is a program that was installed
onto the server via Softaculous. PHPMyAdmin was
chosen for the web server to make running SQL
queries on the database more user-friendly through an
intuitive interface. The csv files were be converted to
SQL statements and queries to be entered in via the
Poudel52_flightdata “SQL” tab of PHPMyAdmin.
Ultimately the web server was not used for the final
version of the project.
To test graphing and plotting techniques with the data,
a Jupyter Notebook file was created. This file used the
Matplotlib.pyplot library to implement the graphs. The
Pandas library was also utilized to manipulate the data
into the necessary slices to create the desired graphs.
The data was sliced by Airport using an input to test
one of the user inputs options on the website. After the
user inputted the Airport Code, Pandas sliced the data
in the different tables by that Airport Code. It was then
further reduced by creating seven slices for each day
of the week. The average delays for each of those days
were plotted in a bar graph via Matplotlib.Pyplot as
shown below.

Figure 9: Average Delay bar chart (no delay)

To load the data into these tables, the “import records
from an external file” option was used. The csv files
corresponding to each table were loaded using this
option. The process of uploading the flight table data
can be seen below.

Figure 7: Process for uploading data

A website was created using HTML. It asked the user
to search for an airport, city, state, or airline. The
website then displayed data visualizations about
delays associated with that particular airport, city,
state, or airline. A static image of the website can be
seen below.

Figure 8: Website overview (Python Flask)

To connect the HTML website to the MYSQL
RDBMS, the flask and flask_sqlalchemy Python
libraries were used.

A. Testing Process

 To test the queries needed and the data analysis to
be shown to the user, some SQL queries were used.
For example, delay by flight carriers. The delay_time
column in the delay table is an integer value with a
zero-value indicating no delay. Using this, we can
calculate the average time of delay in minutes by
averaging all values that are greater than zero with a
SQL statement such as: SELECT
avg(delay\.DEP_DELAY) FROM (delay INNER JOIN
flight ON delay\.DELAY_ID =
flight\.FLIGHT_ID) WHERE
flight\.MKT_UNIQUE_CARRIER = 'WN' AND
delay\.DEP_DELAY > 0}.

The group had the idea to create an internet accessible
version of the website that would pull data from an
SQL database hosted online on a web server. The web
server was to interface with the user via
PHPMyAdmin which is a program that was installed
onto the server via Softaculous. PHPMyAdmin was
chosen for the web server to make running SQL
queries on the database more user-friendly through an
intuitive interface. The csv files were be converted to
SQL statements and queries to be entered in via the
Poudel52_flightdata “SQL” tab of PHPMyAdmin.
Ultimately the web server was not used for the final
version of the project.
To test graphing and plotting techniques with the data,
a Jupyter Notebook file was created. This file used the
Matplotlib.pyplot library to implement the graphs. The
Pandas library was also utilized to manipulate the data
into the necessary slices to create the desired graphs.
The data was sliced by Airport using an input to test
one of the user inputs options on the website. After the
user inputted the Airport Code, Pandas sliced the data
in the different tables by that Airport Code. It was then
further reduced by creating seven slices for each day
of the week. The average delays for each of those days
were plotted in a bar graph via Matplotlib.Pyplot as
shown below.

Figure 9: Average Delay bar chart (no delay)

Volume 2 | Issue 2 | 114J Math Techniques Comput Math, 2023

Figure 9: Average Delay bar chart (no delay)

This data was further sliced to only include instances that had a
delay. Another bar graph was created to show the average delay
of a flight at the user selected airport for each day of the week
when there was a delay. An example of this graph is shown be-
low for when the inputted airport is 'JFK'.

Figure 10: Average delay bar chart (with delay)

Furthermore, the Cause data set or table was sliced to only in-
clude instances from the inputted airport. Then, the total minutes
delayed by all causes was found. The total minutes for each in-
dividual cause were calculated. Using the total minutes overall
and the individual totals, percentages of each cause were found.
This was then plotted via Matplotlib.Pyplot using the same input
value of 'JFK'.

Figure 11: Pie Chart for causes of delay

At one point our group hosted our website, https://flightde-
lays.poudel.tech/ using a web hosting service called HostGa-
tor https://www.hostgator.com/ which is no longer in service.
Files, such as index.html, were modified through cPanel. cPanel
(https://cpanel.net/) is software installed under the server's oper-
ating system that provides a graphical user interface for interact-
ing with a web server and modifying its files as an alternative to
FTP (file transfer protocol).

A connection between MySQL and Python was created. This
connection queried the flightDelay database and was utilized to
plot the MySQL queries. The resulting charts displayed the av-
erages and percentages of delays by choice of city, state, airlines,
and airport within website search field.

The mysql. connector module was used to establish the Python
connection to the MySQL database locally. Matplotlib, Pandas
and NumPy were used in conjunction with mysql. connector to
plot results of various delays and averages of delays within our
data set in a form of python bar and pie chart.

The MySQL Database connection to Python allowed us to query
average departure delays, percentages of delays by cause, and
overall data set delays from our flightDelay database.

The selected queries were run through MySQL, and the result
achieved allowed for displaying and graphically displaying var-
ious delays and problem areas within airports, airlines, cities, or
states. This data set is comprised of ten (10) major airlines op-
erating in the US from the BTS website. We included over 300
cities ranging from smaller to big cities with a higher amount
of traffic, thus the chance of delay occurrence may be differ-
ent dependent upon the location. Depending on the city, state,
or specific airport, an overarching delay pattern was not deter-
mined for this study. Various results may appear with gaps, cer-
tainly due to the type of delay, the number of carriers' scheduled
flights, and availability of data within the set. For the delay types
from the overall data set, it was noticed that most delays were
caused by carrier/airlines, NAS delay, and late_aircraft_delay.
Furthermore, there were very few or no cancellations in most
airports. Security_delay and weather delay data appear to be
non-significant. These delays have less chance of occurrence as
they are often unpredictable which makes them less likely to
cause huge delays within airports, cities, or states.

Some examples of queries and results are shown below.

To load the data into these tables, the “import records
from an external file” option was used. The csv files
corresponding to each table were loaded using this
option. The process of uploading the flight table data
can be seen below.

Figure 7: Process for uploading data

A website was created using HTML. It asked the user
to search for an airport, city, state, or airline. The
website then displayed data visualizations about
delays associated with that particular airport, city,
state, or airline. A static image of the website can be
seen below.

Figure 8: Website overview (Python Flask)

To connect the HTML website to the MYSQL
RDBMS, the flask and flask_sqlalchemy Python
libraries were used.

A. Testing Process

 To test the queries needed and the data analysis to
be shown to the user, some SQL queries were used.
For example, delay by flight carriers. The delay_time
column in the delay table is an integer value with a
zero-value indicating no delay. Using this, we can
calculate the average time of delay in minutes by
averaging all values that are greater than zero with a
SQL statement such as: SELECT
avg(delay\.DEP_DELAY) FROM (delay INNER JOIN
flight ON delay\.DELAY_ID =
flight\.FLIGHT_ID) WHERE
flight\.MKT_UNIQUE_CARRIER = 'WN' AND
delay\.DEP_DELAY > 0}.

The group had the idea to create an internet accessible
version of the website that would pull data from an
SQL database hosted online on a web server. The web
server was to interface with the user via
PHPMyAdmin which is a program that was installed
onto the server via Softaculous. PHPMyAdmin was
chosen for the web server to make running SQL
queries on the database more user-friendly through an
intuitive interface. The csv files were be converted to
SQL statements and queries to be entered in via the
Poudel52_flightdata “SQL” tab of PHPMyAdmin.
Ultimately the web server was not used for the final
version of the project.
To test graphing and plotting techniques with the data,
a Jupyter Notebook file was created. This file used the
Matplotlib.pyplot library to implement the graphs. The
Pandas library was also utilized to manipulate the data
into the necessary slices to create the desired graphs.
The data was sliced by Airport using an input to test
one of the user inputs options on the website. After the
user inputted the Airport Code, Pandas sliced the data
in the different tables by that Airport Code. It was then
further reduced by creating seven slices for each day
of the week. The average delays for each of those days
were plotted in a bar graph via Matplotlib.Pyplot as
shown below.

Figure 9: Average Delay bar chart (no delay) This data was further sliced to only include instances

that had a delay. Another bar graph was created to
show the average delay of a flight at the user selected
airport for each day of the week when there was a
delay. An example of this graph is shown below for
when the inputted airport is 'JFK'.

Figure 10: Average delay bar chart (with delay)

Furthermore, the Cause data set or table was sliced to
only include instances from the inputted airport. Then,
the total minutes delayed by all causes was found. The
total minutes for each individual cause were
calculated. Using the total minutes overall and the
individual totals, percentages of each cause were
found. This was then plotted via Matplotlib.Pyplot
using the same input value of 'JFK'.

Figure 11: Pie Chart for causes of delay

 At one point our group hosted our website,
https://flightdelays.poudel.tech/ using a web hosting
service called HostGator https://www.hostgator.com/
which is no longer in service. Files, such as
index.html, were modified through cPanel. cPanel
(https://cpanel.net/) is software installed under the

server's operating system that provides a graphical
user interface for interacting with a web server and
modifying its files as an alternative to FTP (file
transfer protocol).

A connection between MySQL and Python was
created. This connection queried the flightDelay
database and was utilized to plot the MySQL queries.
The resulting charts displayed the averages and
percentages of delays by choice of city, state, airlines,
and airport within website search field.

The mysql.connector module was used to establish

the Python connection to the MySQL database locally.
Matplotlib, Pandas and NumPy were used in
conjunction with mysql.connector to plot results of
various delays and averages of delays within our data
set in a form of python bar and pie chart.

The MySQL Database connection to Python

allowed us to query average departure delays,
percentages of delays by cause, and overall data set
delays from our flightDelay database.

The selected queries were run through MySQL,

and the result achieved allowed for displaying and
graphically displaying various delays and problem
areas within airports, airlines, cities, or states. This
data set is comprised of ten (10) major airlines
operating in the US from the BTS website. We
included over 300 cities ranging from smaller to big
cities with a higher amount of traffic, thus the chance
of delay occurrence may be different dependent upon
the location. Depending on the city, state, or specific
airport, an overarching delay pattern was not
determined for this study. Various results may appear
with gaps, certainly due to the type of delay, the
number of carriers' scheduled flights, and availability
of data within the set. For the delay types from the
overall data set, it was noticed that most delays were
caused by carrier/airlines, NAS delay, and
late_aircraft_delay. Furthermore, there were very
few or no cancellations in most airports.
Security_delay and weather delay data appear to be
non-significant. These delays have less chance of
occurrence as they are often unpredictable which
makes them less likely to cause huge delays within
airports, cities, or states.

Some examples of queries and results are shown
below.

This data was further sliced to only include instances
that had a delay. Another bar graph was created to
show the average delay of a flight at the user selected
airport for each day of the week when there was a
delay. An example of this graph is shown below for
when the inputted airport is 'JFK'.

Figure 10: Average delay bar chart (with delay)

Furthermore, the Cause data set or table was sliced to
only include instances from the inputted airport. Then,
the total minutes delayed by all causes was found. The
total minutes for each individual cause were
calculated. Using the total minutes overall and the
individual totals, percentages of each cause were
found. This was then plotted via Matplotlib.Pyplot
using the same input value of 'JFK'.

Figure 11: Pie Chart for causes of delay

 At one point our group hosted our website,
https://flightdelays.poudel.tech/ using a web hosting
service called HostGator https://www.hostgator.com/
which is no longer in service. Files, such as
index.html, were modified through cPanel. cPanel
(https://cpanel.net/) is software installed under the

server's operating system that provides a graphical
user interface for interacting with a web server and
modifying its files as an alternative to FTP (file
transfer protocol).

A connection between MySQL and Python was
created. This connection queried the flightDelay
database and was utilized to plot the MySQL queries.
The resulting charts displayed the averages and
percentages of delays by choice of city, state, airlines,
and airport within website search field.

The mysql.connector module was used to establish

the Python connection to the MySQL database locally.
Matplotlib, Pandas and NumPy were used in
conjunction with mysql.connector to plot results of
various delays and averages of delays within our data
set in a form of python bar and pie chart.

The MySQL Database connection to Python

allowed us to query average departure delays,
percentages of delays by cause, and overall data set
delays from our flightDelay database.

The selected queries were run through MySQL,

and the result achieved allowed for displaying and
graphically displaying various delays and problem
areas within airports, airlines, cities, or states. This
data set is comprised of ten (10) major airlines
operating in the US from the BTS website. We
included over 300 cities ranging from smaller to big
cities with a higher amount of traffic, thus the chance
of delay occurrence may be different dependent upon
the location. Depending on the city, state, or specific
airport, an overarching delay pattern was not
determined for this study. Various results may appear
with gaps, certainly due to the type of delay, the
number of carriers' scheduled flights, and availability
of data within the set. For the delay types from the
overall data set, it was noticed that most delays were
caused by carrier/airlines, NAS delay, and
late_aircraft_delay. Furthermore, there were very
few or no cancellations in most airports.
Security_delay and weather delay data appear to be
non-significant. These delays have less chance of
occurrence as they are often unpredictable which
makes them less likely to cause huge delays within
airports, cities, or states.

Some examples of queries and results are shown
below.

Volume 2 | Issue 2 | 115J Math Techniques Comput Math, 2023

Figure 12: Coding for querying the database

B. Final Product

The final version of the web interface had the
following visualizations. When the user entered an
airport code, the chance of delay by airline at the
airport was displayed as a pie chart. Additionally, a bar
graph of the average minutes of delay by the day of the
week was shown for that particular airport. The
following image shows the results for MCO (Orlando
International Airport).

Figure 13: MCO (Orlando) delays result

If the user inserted a city, then the chance of the airline
delay within the city was displayed as a pie chart and
the average delay in minutes for each airline in the city
was shown. An example of this is shown below using
Orlando as the city.

Figure 14: Average delay for Orlando city

For state inputs, the website outputs a radar chart for
the airline chances of delays. Furthermore, it displays
a line chart of delays for the specified state. If the
specified state was Florida, the web interface would
output:

Figure 15: Average delay for Florida state

Figure 12: Coding for querying the database

Final Product
The final version of the web interface had the following visu-
alizations. When the user entered an airport code, the chance
of delay by airline at the airport was displayed as a pie chart.
Additionally, a bar graph of the average minutes of delay by the
day of the week was shown for that particular airport. The fol-
lowing image shows the results for MCO (Orlando International
Airport).

Figure 13: MCO (Orlando) delays result

If the user inserted a city, then the chance of the airline delay
within the city was displayed as a pie chart and the average delay
in minutes for each airline in the city was shown. An example of
this is shown below using Orlando as the city.

Figure 14: Average delay for Orlando city

For state inputs, the website outputs a radar chart for the airline
chances of delays. Furthermore, it displays a line chart of delays
for the specified state. If the specified state was Florida, the web
interface would output:

Figure 12: Coding for querying the database

B. Final Product

The final version of the web interface had the
following visualizations. When the user entered an
airport code, the chance of delay by airline at the
airport was displayed as a pie chart. Additionally, a bar
graph of the average minutes of delay by the day of the
week was shown for that particular airport. The
following image shows the results for MCO (Orlando
International Airport).

Figure 13: MCO (Orlando) delays result

If the user inserted a city, then the chance of the airline
delay within the city was displayed as a pie chart and
the average delay in minutes for each airline in the city
was shown. An example of this is shown below using
Orlando as the city.

Figure 14: Average delay for Orlando city

For state inputs, the website outputs a radar chart for
the airline chances of delays. Furthermore, it displays
a line chart of delays for the specified state. If the
specified state was Florida, the web interface would
output:

Figure 15: Average delay for Florida state

Figure 12: Coding for querying the database

B. Final Product

The final version of the web interface had the
following visualizations. When the user entered an
airport code, the chance of delay by airline at the
airport was displayed as a pie chart. Additionally, a bar
graph of the average minutes of delay by the day of the
week was shown for that particular airport. The
following image shows the results for MCO (Orlando
International Airport).

Figure 13: MCO (Orlando) delays result

If the user inserted a city, then the chance of the airline
delay within the city was displayed as a pie chart and
the average delay in minutes for each airline in the city
was shown. An example of this is shown below using
Orlando as the city.

Figure 14: Average delay for Orlando city

For state inputs, the website outputs a radar chart for
the airline chances of delays. Furthermore, it displays
a line chart of delays for the specified state. If the
specified state was Florida, the web interface would
output:

Figure 15: Average delay for Florida state

Volume 2 | Issue 2 | 116J Math Techniques Comput Math, 2023

Figure 15: Average delay for Florida state

Lastly, the airline input results in two data visualizations: causes
of departure delays as a line chart and chance of delays as a
pie chart. An example of the airline input is shown below using
Southwest (WN) as an example.

Figure 16: Delay prediction for Airlines

Conclusion
There are few modern-day inconveniences less anticipated than
being stranded at the airport. Being able to make predictions and
prudent choices based on historical flight delay information can
save a significant amount of time, trouble, and tears. The group
has created a system that directly interfaces with historical flight
delay data in a database to visualize flight delay trends. An acces-
sible, easy-to-understand graphical display of flight delay pat-
terns from the past year could save travelers an untold amount of
headache, stress, and trouble. Possible future applications of this
concept could be delineated in the form of a phone app, an applet
as part of an airline's website (for high-performing airlines), an
informational service as part of a booking website, or simply a
private independent resource for travelers and interested parties.
Accessible information in a digestible format can be a powerful
decision-making tool for a wide-reaching audience [9-12].

Future Work
This study could be furthered if more data is implemented into
the DBMS. If there is more than just one year's worth of data,
then certain machine learning algorithms could be applied. For
example, logistics regression could be implemented to predict
the likelihood of delay at a specified time and date. This would
require attributes like time of day, time of week, month, and
more. Another potential machine learning algorithm that could
be implemented would be a form of regression (potentially linear
or Gaussian-process regression) to predict the delay in minutes
of a flight, which would require similar attributes. For any ma-

chine learning algorithm, more research would need to be done.
It is important to note that the aviation industry is very volatile,
meaning the slightest change in the economy or the general soci-
etal concern for safety can greatly affect the airline industry. For
example, in 2001 and 2002, many people were scared to fly due
to the events of 9/11. In 2008 and 2009, people preferred not to
travel by plane due to the tight budget from the 2008 Financial
Crisis. Lastly, the SARS-2-CoV-2 (COVID-19) pandemic great-
ly affected the air travel during 2020 and 2021. This means that
machine learning for this application may not be as accurate due
to the special circumstances surrounding the data set. Due to this
fact (along with the current amount of data), this group decided
it would be more beneficial to give the users the means to decide
on their own what impact last year's delays would make on their
flight choices today.

References
1. Yazdi, M. F., Kamel, S. R., Chabok, S. J. M., & Kheirabadi,

M. (2020). Flight delay prediction based on deep learning
and Levenberg-Marquart algorithm. Journal of Big Data, 7,
1-28.

2. Rebollo, J. J., & Balakrishnan, H. (2014). Characterization
and prediction of air traffic delays. Transportation research
part C: Emerging technologies, 44, 231-241.

3. Bureau of Transportation Statistics (2021). Air Carriers:
T-100 Domestic Segment (U.S. Carriers)} (51276413)
[Data set]. Bureau of Transportation Statistics.

4. Bureau of Transportation Statistics (2021). On-Time: Mar-
keting Carrier On-Time Performance (Beginning January
2018)} (51276413) [Data set]. Bureau of Transportation
Statistics.

5. Shim, J. I., & Jo, G. S. Flight Data Visualization and Post-
test Flight Data Analysis System by Using Database.

6. Anderson, A. B. A., Kumar, A. S., & Christopher, A. A.
(2019). Analysis of flight delays in aviation system using
different classification algorithms and feature selection
methods. The Aeronautical Journal, 123(1267), 1415-1436.

7. Wesonga, R., Nabugoomu, F., & Jehopio, P. (2012). Pa-
rameterized framework for the analysis of probabilities of
aircraft delay at an airport. Journal of Air Transport Man-
agement, 23, 1-4.

8. Elmasri, R., Navathe, S. B., Elmasri, R., & Navathe, S. B.
(2000). Fundamentals of Database Systems</Title. Addi-
son-Wesley</publisher.

9. AhmadBeygi, S., Cohn, A., Guan, Y., & Belobaba, P.
(2008). Analysis of the potential for delay propagation in
passenger airline networks. Journal of air transport manage-
ment, 14(5), 221-236.

10. Flightconnections. (2022). "all flights worldwide on a
map!" (n.d.).

11. Wang, Y., Cao, Y., Zhu, C., Wu, F., Hu, M., Duong, V., ... &
Stanley, H. E. (2020). Universal patterns in passenger flight
departure delays. Scientific reports, 10(1), 6890.

12. Hassan, L. K., Santos, B. F., & Vink, J. (2021). Airline dis-
ruption management: A literature review and practical chal-
lenges. Computers & Operations Research, 127, 105137.

Figure 12: Coding for querying the database

B. Final Product

The final version of the web interface had the
following visualizations. When the user entered an
airport code, the chance of delay by airline at the
airport was displayed as a pie chart. Additionally, a bar
graph of the average minutes of delay by the day of the
week was shown for that particular airport. The
following image shows the results for MCO (Orlando
International Airport).

Figure 13: MCO (Orlando) delays result

If the user inserted a city, then the chance of the airline
delay within the city was displayed as a pie chart and
the average delay in minutes for each airline in the city
was shown. An example of this is shown below using
Orlando as the city.

Figure 14: Average delay for Orlando city

For state inputs, the website outputs a radar chart for
the airline chances of delays. Furthermore, it displays
a line chart of delays for the specified state. If the
specified state was Florida, the web interface would
output:

Figure 15: Average delay for Florida state

Lastly, the airline input results in two data
visualizations: causes of departure delays as a line
chart and chance of delays as a pie chart. An example
of the airline input is shown below using Southwest
(WN) as an example.

Figure 16: Delay prediction for Airlines

III. Conclusion

There are few modern-day inconveniences less
anticipated than being stranded at the airport. Being
able to make predictions and prudent choices based on
historical flight delay information can save a
significant amount of time, trouble, and tears. The
group has created a system that directly interfaces with
historical flight delay data in a database to visualize
flight delay trends. An accessible, easy-to-understand
graphical display of flight delay patterns from the past
year could save travelers an untold amount of
headache, stress, and trouble. Possible future
applications of this concept could be delineated in the
form of a phone app, an applet as part of an airline's
website (for high-performing airlines), an
informational service as part of a booking website, or
simply a private independent resource for travelers and

interested parties. Accessible information in a
digestible format can be a powerful decision-making
tool for a wide-reaching audience.

IV. Future Work

This study could be furthered if more data is
implemented into the DBMS. If there is more than just
one year's worth of data, then certain machine learning
algorithms could be applied. For example, logistics
regression could be implemented to predict the
likelihood of delay at a specified time and date. This
would require attributes like time of day, time of week,
month, and more. Another potential machine learning
algorithm that could be implemented would be a form
of regression (potentially linear or Gaussian-process
regression) to predict the delay in minutes of a flight,
which would require similar attributes. For any
machine learning algorithm, more research would
need to be done. It is important to note that the aviation
industry is very volatile, meaning the slightest change
in the economy or the general societal concern for
safety can greatly affect the airline industry. For
example, in 2001 and 2002, many people were scared
to fly due to the events of 9/11. In 2008 and 2009,
people preferred not to travel by plane due to the tight
budget from the 2008 Financial Crisis. Lastly, the
SARS-2-CoV-2 (COVID-19) pandemic greatly
affected the air travel during 2020 and 2021. This
means that machine learning for this application may
not be as accurate due to the special circumstances
surrounding the data set. Due to this fact (along with
the current amount of data), this group decided it
would be more beneficial to give the users the means
to decide on their own what impact last year's delays
would make on their flight choices today.

References

[1] Yazdi, M. F., Kamel, S. R., Chabok, S. J. M., &
Kheirabadi, M. (2020). Flight delay prediction based
on deep learning and Levenberg-Marquart algorithm.
Journal of Big Data, 7, 1-28.
https://journalofbigdata.springeropen.com/articles/10.
1186/s40537-020-00380-z.
[2] Rebollo, J. J., & Balakrishnan, H. (2014).
Characterization and prediction of air traffic delays.
Transportation research part C: Emerging
technologies, 44, 231-241.
https://www.sciencedirect.com/science/article/pii/S09
68090X14001041
[3] AhmadBeygi, S., Cohn, A., Guan, Y., & Belobaba,
P. (2008). Analysis of the potential for delay

propagation in passenger airline networks. Journal of
air transport management, 14(5), 221-236.
https://www.sciencedirect.com/science/article/pii/S09
69699708000550
[4] Flightconnections - "all flights worldwide on a
map!" (n.d.). Retrieved February 1, 2022, from
https://www.flightconnections.com/
[5] Bureau of Transportation Statistics (2021). Air
Carriers: T-100 Domestic Segment (U.S. Carriers)}
(51276413) [Data set]. Bureau of Transportation
Statistics. https://www.transtats.bts.gov/

Copyright: ©2023 Fadjimata Issoufou Anaroua. This is an open-access
article distributed under the terms of the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in
any medium, provided the original author and source are credited.

https://opastpublishers.com

https://doi.org/10.1186/s40537-020-00380-z
https://doi.org/10.1186/s40537-020-00380-z
https://doi.org/10.1186/s40537-020-00380-z
https://doi.org/10.1186/s40537-020-00380-z
https://doi.org/10.1016/j.trc.2014.04.007
https://doi.org/10.1016/j.trc.2014.04.007
https://doi.org/10.1016/j.trc.2014.04.007
https://doi.org/10.1017/aer.2019.72
https://doi.org/10.1017/aer.2019.72
https://doi.org/10.1017/aer.2019.72
https://doi.org/10.1017/aer.2019.72
https://doi.org/10.1016/j.jairtraman.2012.02.001
https://doi.org/10.1016/j.jairtraman.2012.02.001
https://doi.org/10.1016/j.jairtraman.2012.02.001
https://doi.org/10.1016/j.jairtraman.2012.02.001
https://doi.org/10.1016/j.jairtraman.2008.04.010
https://doi.org/10.1016/j.jairtraman.2008.04.010
https://doi.org/10.1016/j.jairtraman.2008.04.010
https://doi.org/10.1016/j.jairtraman.2008.04.010
https://doi.org/10.1038/s41598-020-62871-6
https://doi.org/10.1038/s41598-020-62871-6
https://doi.org/10.1038/s41598-020-62871-6
https://doi.org/10.1016/j.cor.2020.105137
https://doi.org/10.1016/j.cor.2020.105137
https://doi.org/10.1016/j.cor.2020.105137
https://www.opastpublishers.com/

