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Abstract 
Background
Malaria, which poses a threat to half of the world’s population, is one of the most serious infectious diseases. Ethiopia is 
a nation with a significant malaria burden. In Ethiopia, Plasmodium falciparum accounts for 64% of cases of malaria, 
with P. vivax causing the remaining instances (34 percent). The disease still claims the lives of countless children glob-
ally, mostly in sub-Saharan African nations, and malaria continues to be a significant public health issue in Ethiopia 
despite various advancements in malaria control measures. The potential for analyzing parasite genetics to support 
both national and international efforts to eradicate parasites is immense. To analyze regulatory components such as 
CpG islands, transcription factors (TFs), and their corresponding binding sites (TFBSs) involved in the control of gene 
expression of Plasmodium falciparum 3D7 isolate drug resistance genes.

Results
Nine drug resistance-related gene-coding sequences from the NCBI database were examined for this analysis. Only 
functional genes (protein-coding genes) were taken into consideration. Accordingly, genes affected by Plasmodium fal-
ciparum 3D7 drug resistance had 1-6 TSS, and five common candidate motifs (MPfI, MPfII, MPfIII, MPfIV, and MPfV) 
were found in the promoter prediction by neural network promoter prediction results. According to the study, CpG 
islands are poorly distributed in both the promoter and gene body regions, which may interfere with the accessibility of 
the promoter to transcription factors and, ultimately, the production of the genes.

Conclusion
This in silico analysis of genes encoding Plasmodium falciparum drug resistance-related genes may be useful for en-
hancing knowledge of the molecular data and supporting the identification of gene regulatory elements in the promoter 
regions.
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Background
Malaria is one of the most important infectious diseases that 
threatens half of the world’s population. The World Malaria 
Report in 2019 estimated that there were 228 million cases of 
malaria in 2018 that caused deaths [18]. With 272,000 deaths, 
children less than 5 were the most vulnerable group worldwide. 
In Africa, 213 million people were affected by malaria, which 
made it the most vulnerable continent in 2018 [18]. Worldwide, 
there was a significant reduction in malaria cases during 2015–
2017, but there is a major challenge to thoroughly eliminate ma-
laria in many countries by 2030 [17].

Ethiopia is among countries with a high malaria burden. Plasmo-
dium falciparum is the most common (64%) cause of malaria in 

Ethiopia, while P. vivax accounts for the remaining cases (34%) 
[19]. Plasmodium falciparum causes the most severe form of 
malaria; however, contrary to popular belief, P. vivax can also 
cause severe malaria and even death. Malaria morbidity and 
mortality have significantly decreased in Ethiopia and world-
wide in the past decade [18]. Ethiopia’s fight against malaria 
started many years ago, and transmission of this infectious dis-
ease has significantly decreased since 1959 [8].

Despite numerous advances in malaria control strategies, the dis-
ease still kills countless children worldwide, mainly in sub-Sa-
haran African countries, and malaria remains a major public 
health problem in Ethiopia [18]. The World Health Organization 
(WHO) reported no significant progress in reducing the global 
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malaria burden during the period from 2015 to 2017[18].

The red efficacy of chloroquine (CQ) has forced a change in the 
selection of anti-malaria in the management of falciparum ma-
laria. Since 2004, Ethiopia has adopted artemether-lumefantrine 
(AL) and CQ as first-line treatments for infection with P. falci-
parum and P. vivax, respectively. In cases of treatment failure 
of P. falciparum, quinine (QN) is the treatment of choice, and 
in cases of severe malaria, artemether, artesunate, or QN can be 
used [5]. Globally, artemisinin resistance in P. falciparum has 
emerged, especially in Southeast Asia, slowing therapeutic re-
sponse and increasing rates of treatment failures [15]. Similar-
ly, artemisinin resistance has been reported in Africa, although 
there is currently no evidence that it has taken hold [10].

Analyzing parasite genetics has enormous potential to aid both 
efforts at elimination and international efforts toward eradica-
tion [1]. For example, the use of molecular markers of anti-
malarial drug resistance has for some time been used to guide 
efficacy studies that define treatment policies; more recently, 
the detection of parasite mutants for the histidine-rich protein 
2/3 (pfhrp2/pfhrp3) gene highlighted the need to develop rap-
id diagnostic tests (RDTs) with alternative targets of detection 
and to provide countries with guidance on the implications for 
case management [17]. Therefore, this in silico analysis aims to 
identify regulatory elements such as CpG islands, transcription 
factors (TFs), and their corresponding binding sites (TFBSs) in-
volved in the regulation of gene expression to provide baseline 
information to revise existing eradication and elimination strate-
gies and for designing target-specific drugs.

Methods
Determination of Transcription Start Sites and Promoter 
Regions
Plasmodium falciparum drug resistance affecting genes (Pfcrt 
(CQ monotherapy, AS-PY, and Amodiaquine), Pfmdr1 (CQ 
monotherapy, Melfoquine, Lumefantrine, Amodiaquine and lim-
ited efficacy of ACT), Pfdhfr (ATQ-PGL, Sulfadoxine-Phyri-
methamine), Pfdhps (Sulfadoxine-Phyrimethamine), Pfarps10, 
Pferredoxin (Ferroquine), Pfexonuclease, PfKpk-13 (AM-LF, 
AS monotherapy, AS-SP, AS-MQ, AS-PY) and Pfmdr2 (DHA-
PPQ) genes.) were obtained from the NCBI genome data bank 
(https://www.ncbi.nlm.nih.gov). In this analysis, all drug resis-
tance affecting gene-coding sequences, available in the NCBI 
database with the start codon at the beginning of the sequence, 
and only functional genes (protein coding) were deliberated. To 
determine their respective transcription, start sites (TSSs) and 
1 kb sequences upstream of the start codon were excised from 
each gene [9]. All the TSSs of each of the selected Plasmodium 
falciparum 3D7 drug resistance-affecting genes were searched 
within this region by using Neural Network Promoter Prediction 
(NNPP) version 2.2 (https://www.fruitfly.org).

Tool set with the minimum standard predictive score (between 
0 and 1) cutoff value of 0.8 [11]. This tool helps to locate the 
possible TSSs within the sequences upstream of the start codon 
where the RNA polymerases start their activity and transcription 
process. The NNPP tool can precisely recognize the position of 

a TSS for a given gene. For those regions containing more than 
one TSS, the one with the highest prediction score was consid-
ered to have a trustable and accurate prediction. Therefore, as 
previously done for SARS-CoV-2 gene promoter region deter-
mination, P. falciparum drug resistance affecting gene promoter 
sequences was defined as a 1 kb region upstream of each TSS 
[7].

Identification of Common Candidate Motifs and Transcrip-
tion Factors
To find common candidate motifs that serve as binding sites for 
transcription factors that control the expression of Plasmodium 
falciparum drug resistance-affecting genes, promoter sequenc-
es from Plasmodium falciparum drug resistance-affecting genes 
that were identified based on the aforementioned criteria were 
analyzed using the MEME (Multiple Em for Motif Elicitation) 
version 5.3.3 searches via the web server hosted by the National 
Biomedical Computation Resource [2]. MEME searches for sta-
tistically significant candidate motifs in the input sequence set. 
The MEME output is in the form of XML, text, MAST HTML, 
MAST XML, MAST text, and HTML and shows the candidate 
motifs as local multiple alignments of the input promoter se-
quences. Briefly, MEME discovers novel, un-gapped motifs 
(recurring, fixed-length patterns) in sequences submitted in it. 
A motif is an approximate sequence pattern that occurs repeated-
ly in a group of related sequences. MEME represents motifs as 
position-dependent letter-probability matrices that describe the 
probability of each possible letter at each position in the pat-
tern. MEME takes as input a group of sequences and outputs 
as many motifs as requested. MEME uses statistical modeling 
techniques to automatically choose the best width, number of 
occurrences, and description for each motif [2]. Buttons on the 
MEME HTML output allow one or all of the candidate motifs 
to be forwarded for further analysis to better characterize the 
identified candidate motifs by other web-based programs. In this 
case, the TOMTOM [6] web server was used to search for se-
quences matching the identified motif for its respective TF. The 
output of TOMTOM includes LOGOS representing the align-
ment of the candidate motif and TF with the p value and q-value 
(a measure of false discovery rate) of the match and links back to 
the parent transcription database for more detailed information 
about it [3, 4]

Search for CpG islands 
Takai and Jones’ rigorous search parameters, which include 
length 500 bp, ObsCpG/ExpCpG 0.65, and GC content 55%, will 
be applied [13]. The CpG island searcher program (CpGi130), 
which may be available at the website http://dbcat.cgm.ntu.edu.
tw, was used to search for specific areas that were CpG-rich. 
Second, the MspI cutting sites of the restriction enzyme CLC 
bio’s Aarhus, Denmark, were searched using the CLC Genomics 
Workbench (fragment sizes between 40 and 220 bps). Search-
ing for MspI cutting sites is relevant for the identification of 
CGIs because CpG islands are isolated from short fragments af-
ter MspI digestion, which identifies CCGG sites. Studies using 
whole-genome CpG island libraries created for various species 
revealed that CpG islands are not randomly distributed but are 
clustered in particular regions.
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Results
Identification of Transcription Start Sites (TSSs)
The nine (9) Plasmodium falciparum 3D7 drug resistance gene 
transcription start sites (TSSs) are listed below. The outcome 
of the promoter prediction by the neural network showed that 
genes affected by Plasmodium falciparum 3D7 drug resistance 
contain 1-6 TSS. As a result, 4/9 of the detected TSSs were less 
than -500 compared to the ATG start codon, or 44.44 percent of 
them. The sequences that were less than -500 distances from the 

start codon had prediction scores of 0.90, 0.93, 0.97, and 0.98. 
With projected score values of 0.84, 0.95, 0.96, 0.97, and 0.98, 
the remaining 55.55 percent of discovered TSSs were larger than 
-500. In Table 1, the relative positions of each TSS about the 
start codon are listed. The TSS for Exonuclease (-43) was the 
closest, followed by Pfdhfr (-186), while the outlying TSS was 
observed for PfArps-10 (-3381) upstream of the start codons of 
their respective genes.

Table 1:  Number and Predictive Score Value For Plasmodium Falciparum Drug Resistance Affecting TSS Genes

 Name/Gene ID Corresponding promot-
er region name

Number of TSS iden-
tified

Predictive score at 
cutoff value of 0.8

Location of the best 
TSS from start codon

Pfcrt/2655199 Pfcrt 3 0.82,0.80,0.80,0.90 -203
Pfmdr1/813045 Pfmdr1 1 0.98 -760
Pfdhfr/9221804 Pfdhfr 2 0.84,0.93 -186
Pfdhps/2655294 Pfdhps 3 0.81,0.98,0.84 -331
Pfarps10/812163 Pfarps10 3 0.86,0.96,0.85 -3381
Pferredoxin/3885862 Pferredoxin 6 0.90, 0.95, 0.84, 0.97, 

0.86, 0.90
-641

Pfexonuclease/811867 Pfexonuclease 5 0.97, 0.89, 0.92, 0.82, 
0.92

-43

Pfmdr2/812037 Pfmdr2 4 0.92, 0.91, 0.83, 0.95 -517
PfKp-13/814205 PfKp-13 2 0.84,0.84 -994

Common Candidate Motifs and Associated Transcription 
Factors in the Promoter Regions of Plasmodium Falciparum 
Drug Resistance Affecting Genes
The goal of the in-silico research was to find the top candidate 
motifs for each of the nine genes regulating Plasmodium fal-
ciparum 3D7 drug resistance. As a result, the five frequently 
occurring candidate motifs MPfI, MPfII, MPfIII, MPfIV, and 
MPfV were found. Only 44.44 percent of the promoter sequenc-
es of the genes regulating Plasmodium falciparum 3D7 drug re-
sistance were shared by the five potential motifs that were found. 
Every gene that is affected by Plasmodium falciparum 3D7 drug 
resistance, as shown in Table 2, however, shares the remaining 
four potential motifs. For Plasmodium falciparum 3D7 drug re-
sistance-affected genes, the analysis was conducted using min-
imum and maximum motif widths of 6 and 50 residues, respec-
tively. The maximum and minimum numbers of motifs were 45 

and 11, respectively, which were utilized to identify likely pro-
moter regulatory elements (motifs). Motifs that were prevalent 
in the majority of the promoter regions of the Plasmodium fal-
ciparum drug resistance-affecting genes were chosen to identify 
functionally significant motifs. Accordingly, MpfIV has been 
discovered as the common promoter motif for all (100%) genes 
that serve as binding sites for transcription factors involved in 
the expression regulation of these genes with the lowest E-value 
of 2.2e-002. The sequence logo for MpfIV generated by MEME 
is presented in Fig. 1 below. The relative positions of candidate 
motifs in the promoter region relative to TSSs are indicated in 
Fig. 2 below. The nucleotide positions are indicated at the bot-
tom of the graph from+1 (beginning of TSSs) to the upstream 
1000 bp in the promoter region for Plasmodium falciparum 3D7 
drug resistance genes.

Table 2: Identified Common Candidate Motifs in Plasmodium Falciparum Drug Resistance Affecting Gene Promoter Re-
gions

SN Name E-value Sites N (%) PCEOMs Width
   MpfI 9.1e-008 9 9(100) 45
2 MpfII 3.2e-001 9 9(100) 11
3 MpfIII 4.0e-001 9 9(100) 29
4 MpfIV 2.2e-002 9 9(100) 26
5 MpfV 2.1e+001 4 4(44.4) 21

N (%) PCEOMs: Number (%) of promoters containing each one of the motifs
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Figure 1: Sequence Logo for the Identified Common Motif Mpfiv Gene for Plasmodium Falciparum 3d7 Drug Resistance Affect-
ing Genes

Figure 2: The Relative Positions of Motifs in Different Plasmodium Falciparum 3d7 Drug Resistance Affecting Gene Sequences 
Relative to TSSs

MEME represents motifs as position-dependent letter-probabil-
ity matrices that describe the probability of each possible letter 
at each position in the pattern. MEME takes as input a group of 
sequences and outputs as many motifs as requested. MEME uses 
statistical modeling techniques to automatically choose the best 
width, number of occurrences, and description for each motif 
[2].

TOMTOM is a motif comparison algorithm that ranks the tar-
get motifs in a database based on the estimated statistical sig-
nificance of the query-to-target match. TOMTOM, on the other 
hand, provides LOGOS, which represents the alignment of two 
motifs, a numeric score for the match between two motifs, and 
statistical significance [12]. Only 12 (30%) of the 40 motifs dis-
covered in Plasmodium falciparum 3D7 promoters of drug resis-
tance genes were found on the negative strands, whereas the oth-
er 70% were on the positive strand. Other motifs from publicly 
available databases, such as UniProt (https://www.UniProt.org) 
and uniPROBE (https://brain.bwh.harvard.edu/uniprobe), were 

compared to the lowest E-value motif (MpfIV). As a result, the 
data banks revealed that the pattern MpfIV corresponded to four 
(4) known transcription factors, as indicated in table 3 below.

Analysis of CpG islands (CGIs) in Plasmodium falciparum 
Drug Resistance Affecting Genes and Promoter Regions
In this study, two algorithms were used to analyze nine Plasmo-
dium falciparum drug resistance genes influencing the promot-
er and body regions. First, Takai and Jones’ method was used 
to search for CpG islands in both the promoter and gene body 
regions, but no such islands were located. Similarly, in silico 
digestion of Plasmodium falciparum 3D7 drug resistance in-
fluencing genes employing restriction enzyme MspI by CLC 
genomics workbench 3 software found no CpG islands in ei-
ther promoter or gene body regions. This finding reveals a low 
frequency of CpG islands in both the gene body and promoter 
regions, which might influence gene promoter access to tran-
scription factors and thus gene expression [13].
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 Table 3: The Lists of Candidate Transcription Factors That Could Bind To Motif PfMIV

Candidate transcription factors Statistical significance Source Data Base Overlap
p value E-value q-value

UP00029/TATA-box-binding protein 9.32e-05 1.68e-01 2.07e-01 Homo sapiens UniPROBE 16
FOXB1/FOXB1_DBD_2 8.26e-04 1.49e+0 7.89e-01 Homo sapiens UniProt 18
UP00150_1 (Irx6_2623.2) 2.92e-03 5.28e+0 1.00e+0 Mus musculus UniPROBE 17
UP00094_2 (Zfp128_secondary) 5.40e-03 9.76e+0 1.00e+0 Mus musculus UniPROBE 14

Discussions
Scientists have been attempting to comprehend the molecular 
underpinnings of drug action and resistance ever since chloro-
quine resistance first independently appeared in Southeast Asia 
and South America, later migrating from Asia to Africa. Pre-
cisely, it is yet unknown how processes such as the selection 
of the transcription start site (TSS) or the recruitment of RNA 
polymerase II (RNA PolII) regulate the commencement of tran-
scription. We used the sequence data obtained from the NCBI 
database to identify and describe the promoter regions and reg-
ulatory elements of the Plasmodium falciparum 3D7 drug resis-
tance affecting genes. There is a slight difference in the number 
of TSSs among the genes controlling Plasmodium falciparum 
3D7 drug resistance, according to the analysis of their promoter 
regions (1-6 TSSs). The present investigation further demon-
strated that TSSs of Plasmodium falciparum 3D7 drug resistance 
impacting genes were mainly found in the upstream region of 
-43 to -3381 bp relative to the ATG.

The current inquiry for the Plasmodium falciparum 3D7 drug 
resistance influencing genes has shown how crucial it is to iden-
tify all probable binding patterns for the same TF and co-factor 
binding motif. The study also discovered many binding sites in 
the candidate motifs’ promoter regions, which may be used to 
improve binding interactions and have a variety of regulatory 
effects. By binding to cis-regulatory regions in DNA enhancers 
and promoters, these sites regulate the expression of genes. The 
promoter regions of the Plasmodium falciparum 3D7 drug re-
sistance-related genes contain the majority of the recommended 
motifs, which are located less than 700 bp from the transcription 
start point. It is commonly accepted that the promoter regions 
of genes with comparable expression patterns share similarities 
[21]. In addition, the current study revealed that motif IV, the 
best common motif, shares characteristics with families of the 
fork-head box protein B1 transcription.

Although reports have indicated that CpG islands play a signif-
icant role in gene regulation mechanisms in this study, analysis 
of CpG revealed that the promoter and gene body regions of 
Plasmodium falciparum 3D7 drug resistance genes are devoid 
of CpG islands by using both algorithms. Contrary to the result, 
CpG islands are frequently found in the promoters of numerous 
tissue-specific genes and the majority of housekeeping genes, 
suggesting that they serve crucial regulatory roles in addition to 
their potential use as gene markers [22, 23].

The current in silico study used various techniques to exam-
ine the promoter and regulatory components of drug resistance 
genes in Plasmodium falciparum 3D7. We are unsure whether 

to fully endorse the direct participation of the examined Plas-
modium falciparum 3D7 drug resistance genes and epigenetic 
regulators, although, because of diverse physiological and bio-
logical roles as well as the expression of drug resistance genes in 
tissues. Further in vitro or in vivo research is therefore required 
to confirm the results and determine the precise epigenetic con-
trols on the drug-resistant Plasmodium falciparum 3D7 genes. 
Validation is crucial for any computationally based approach, 
including in silico study approaches. However, as wet molecular 
laboratories are very expensive and sophisticated, knowledge of 
bioinformatics approaches could also help to predict gene ex-
pression profiles in different infections. This is because the cur-
rent study requires experimental confirmation for verification.

Conclusions
The result of this analysis could be critically important to un-
derstand the nature of promoter regions, the motif discovered in 
line with the transcription factor binding proteins of Plasmodi-
um falciparum 3D7 drug resistance affecting genes. CpG islands 
are also regulatory elements in the promoter regions of the ge-
nome and are useful in the detection of promoters. However, in 
this analysis, either algorithm in Plasmodium falciparum 3D7 
drug resistance-affecting genes identified no CpG islands. In 
general, this in silico analysis of genes encoding Plasmodium 
falciparum 3D7 drug resistance-affecting genes could be help-
ful to add knowledge about the molecular data and support the 
identification of gene regulatory elements in the promoter re-
gions. It could also help to predict gene expression profiles in 
Plasmodium falciparum 3D7, which in turn could be helpful to 
improve present drug efficacy and to develop new drugs with 
high target specificity. Therefore, knowledge of bioinformatics 
methods is important to identify gene regulatory regions in the 
promoter regions, and gene body regions could help to predict 
gene expression profiles in various pathogens, since wet molec-
ular laboratories are very expensive and sophisticated.
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