
Abstract 
This paper evaluates the relationship between MUC13 with respect to pancreatic cancer. MUC13 is an oncogenic mucin and 
its association is high in Pancreatic cancer (PC) cells treated with alcohol. This means extensive alcohol history leads to the 
growth of this MUC13 toxin, hence causing pancreatic cancer. Using statistical tools, this paper has developed the association 
between MUC-13, a carcinogen and its relationship with the increase in pancreatic cancer occurrence due to alcohol use. The 
dataset used is very small and consists of only 37 subjects after removing rows and columns with invalid data entries (NaN 
values).
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1. Introduction
Many researchers are in the search of biomarkers that can predict 
Pancreatic cancer. The Carbohydrate Antigen or the Cancer An-
tigen, CA 19-9 was detected in 1981 as a possible biomarker for 
resolution of PC. However, this CA 19-9 can have several false 
positives and hence is not 100% useful. Other subsequent tests 
may have to be done for confirmation [1]. shows that individu-
als who have had type-II diabetes for less than 4 years were at a 
50% higher risk of contracting PC than individuals who have had 
type-II diabetes for greater than 4 years [2]. have concluded that 
subjects with long standing diabetes have a higher relative risk of 
PC association [3]. have also found a relationship between diabe-
tes and PC.

Many papers debate whether it is EUS or CT that is a better detec-
tor of PC [4, 5]. have tried to detect PC via plasma protein profil-
ing [6]. have used digital image analysis on differentiating PC and 
chronic pancreatitis from normal tissue [7]. have used neural net-
work in distinguishing between PC from chronic pancreatitis [8]. 
have used ensemble of decision trees in detecting PCous cells from 
normal tissue [9]. have used digital image processing and support 
vector machines in differentiating PCous cells from normal tissue 
in EUS images [10].

The idea of the above literature study is to suggest that machine 
learning algorithms have delved into the realms of detection of 
pancreatic tumors from normal tissue. However, what is worth 
pointing out is that detection of these PCous cells would not be 
of much significance because by then, the patients would already 
have reached a late stage of cancer and would not survive more 
than a very few years. Pancreatic cancer is one of the cancers that 
is somewhat difficult to detect at its onset since symptoms do not 
show and also there are no qualifying biomarkers validated as of 
date. Hence there is an urgent need for a prediction model for PC 
to identify and precaution the high-risk group of undergoing fre-
quent medical tests.

A huge percentage of pancreatic cancers are being detected at a 
late stage, giving the patient only a couple of years for survival. It 
has also been observed from previous works that use of synthetic 
chemicals, smoking and alcohol history and genetics greatly influ-
ence the occurrence of pancreatic cancer [11, 12].

2. The Dataset
Groupings of the various values in the dataset, after being given a 
digital value for processing and normalized are shown in table 1.
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Feature Values
Sex Male=1,Female=0
age 0 0.28, 0.42, 0.48, 0.57, 0.73, 1
grade 0, 0.25, 0.5, 0.75
stage 0, 1/6, 1/3
tnm 0.12, 0.16, 0.48, 0.6, 0.72, 0.84, 1
survival-status deceased=0, survival=1
survival-months 0, 0.5, 1
MembraneMCS 0, 1/16, 2/16, 4/16, 6/16, 8/16, 9/16, 12/16, 1
CytoMCS 0, 1/9, 2/9, 4/9, 6/9, 8/9, 1
NucleusMCS 0, 1/9, 2/9, 3/9, 4/9, 6/9, 8/9, 1
OverallMCS 0.2/3, 0.4/3, 0.6/3, 1/3, 1.4/3, 1.6/3, 2.2/3, 1
SMOKING 0, 0.038/3, 0.1/3, 0.21/3, 0.328/3, 0.6/3, 1/3, 2/3, 1
DRINKING 0, 1
DIABETES 0, 1
HEPATITIS 0, 1

Table 1: Feature values in dataset
3. Results
We also observe that for mortality status=1 (that is patient sur-
vived), the value of features would be as sex=Female, age between 
33-39 years, grade and stage =0. This dataset consists of 13 in-

put parameters and 2 outputs-survival status and survival no. of 
months. Following are the 2D plots using t-SNE and Adasyn al-
gorithms (considering mortality status as the output variable), as 
shown in figure 1.

(a) (b)

Figure 1: Figure showing 2D t-SNE and 2D ADASYN plots

4. Feature Selection
A total of 15 algorithms were used for the feature selection. Infinite 
Latent Feature Selection (ILFS), Infinite Feature Selection(InfFS), 
Eigenvector Centrality Feature Selection(ECFS), Minimum Re-
dundancy Maximum Relevance Feature selection(mRMR), Re-
lieff, Mutual Information Feature Selection (MutInfFS), Laplacian, 
Fisher, L2,1-norm Regularized Discriminative Feature Selection 
for Unsupervised Learning(UDFS), Feature Selection and Kernel 
Learning for Local Learning-Based Clustering(LLCFS), correla-

tion based feature selection(CFS), Unsupervised Feature Selection 
with Ordinal Locality(UFSOL)[25], Monte Carlo Feature Selec-
tion(MCFS), Feature Selection with Adaptive Structure Learn-
ing(FSASL) [13-27].

The sum of the priorities defined by these algorithms were 
summed up to determine the features ranked as per their priority. 
The results in descending order of priority are: DRINKING, Sex, 
OverallMCS, NucleusMCS, MembraneMCS, HEPATITIS, Tmn, 
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CytoMCS, Smoking, Grade, Stage, DIABETES, Age. These re-
sults were obtained after summing up the ranking given by the 
different feature selection algorithms and the lowest rank was the 
feature which has the greatest influence on Pancreatic Cancer, as 

shown in table 2. Hence drinking definitely influences cause of 
Pancreatic Cancer and also causes increase in MUC13 toxin in the 
cells [28–30].

InfFS ECFS mrmr re-
lieff

mutinffs la-
pla-
cian

mcfs fisher UDFS llcfs cfs fsasl ufsol dgufs Las-
so

Total(-
less is 
better)

1. Sex 1 1 12 2 12 1 3 5 13 6 2 3 12 3 4 80
2.Age 11 12 8 11 6 11 12 9 12 9 5 4 7 4 8 80
3. Grade 7 13 1 8 9 12 7 2 9 12 11 8 6 5 12 122
4. Stage 13 10 4 9 2 13 5 11 4 10 13 11 10 2 6 123
5. Tmn 12 11 7 6 8 10 9 12 7 8 3 1 5 6 7 112
6. Mem-
braneMCS

6 8 13 5 7 6 6 4 3 1 6 9 3 7 11 95

7. CytoMCS 6 8 13 5 7 6 6 4 3 1 6 9 3 7 11 95
8. Nucle-
usMCS

3 6 3 1 4 5 13 1 5 3 8 7 8 9 13 89

9. Overall-
MCS

10 5 5 3 1 9 11 10 2 5 4 5 1 10 1 82

10.Smoking 9 9 9 13 3 7 8 8 11 11 12 12 4 1 5 122
11. Drinking 9 9 9 13 3 7 8 8 11 11 12 12 4 1 5 122
12. Diabetes 5 3 11 12 13 3 2 13 8 13 9 6 9 12 9 128
13. Hepatitis 4 4 6 4 11 4 4 6 6 7 1 13 11 13 2 96

Table 2: The Features Considered in The Dataset.

5. Conclusion
Pancreatic cancer has been found to be directly influenced by 
smoking history, alcohol abuse, no. of cigarettes smoked in a day, 
genetics etc. Interestingly, there are certain other less known fea-
tures, for example, sex, hepatitis -B, diabetes which are found to 
also influence causality of cancer in a subtle way.
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