
 Volume 2 | Issue 3 | 302

An Empirical Study of Fuzz Stimuli Generation for Asynchronous Fifo And Memory
Coherency Verification

Research Article

Renju Rajeev1* and Xiaoyu Song 1

*Corresponding Author
Renju Rajeev, Department of Electrical and Computer Engineering, Portland
State University, Portland, Oregon 97201, USA

Submitted: 2023, Aug 03; Accepted: 2023, Aug 23; Published: 2023, Sep 14

J Electrical Electron Eng, 2023

Citation: Rajeev, R., Song, X. (2023). An Empirical Study of Fuzz Stimuli Generation for Asynchronous Fifo And Memory
Coherency Verification. J Electrical Electron Eng, 2(3), 302-306.

Abstract
Fuzz testing is a widely used methodology for software testing. It collects feedback of each run and uses it for generation
of interesting stimuli in the future. This paper discusses the ability and process of fuzz stimuli generator for hardware
verification. We chose an asynchronous FIFO and a memory coherency verification using fuzz [1]. Our results substantiate
the effectiveness of fuzz testing in the hardware verification process.

Journal of Electrical Electronics Engineering
ISSN: 2834-4928

1Department of Electrical and Computer Engineer-
ing, Portland State University, Portland, Oregon
97201, USA

1. Introduction
Pre-Silicon verification is an important effort, which usually
is more than 70% of the VLSI design process. The behavioral
model of the design written in a high-level language, which
models the hardware, such as System Verilog (RTL), needs
to be tested/verified in a presilicon/software environment to
verify that it works as intended [2]. A verification plan is then
developed for the design under test, with the intent for “good
enough” verification. This guides the development of test cases,
which are unique enough to verify the features required to be
tested. Constrained Random Verification (CRV) methodology is
a popular strategy, which is then used to generate the stimulus
to cover the test plan. The stimuli that find bugs in the design
is the most valuable since it results in enabling the analysis of
the design bug and fixing it. The stimuli that utilize different
complex parts of the design is also valuable, since it verifies that
the design works as intended.

Fuzz testing is an effective method used in software testing
[3]. Provided a framework to generate stimulus for hardware
verification using a popular fuzz test generator AFL [4]. Fuzz
test generation is powerful, but if run without controlling the
stimulus generation, it can potentially generate a lot of stimuli
that may not be useful to generate interesting scenarios. The AFL
Fuzz stimuli generator works based on feedback from previous
test runs. To collect this feedback, AFL needs to instrument the
test program. Based on this feedback, AFL generates stimuli
that targeted to cover previously unhit scenarios, resulting in
automated stimulus generation for functional and other types
of coverage (Line, toggle etc.). This effectively provides us
with automated coverage guided stimulus generator. This can
be applied to large RTL designs and effectively verify different

logic blocks. The fuzzer can be guided/biased to generate
stimulus targeting a specific logic block by writing coverpoints
in the logic block.

2. Fuzz Testing Asynchronous FIFO
In hardware testing, it is important to fill up the different queues
(eg: FIFOs) to hit interesting cases. CRV may not be able to
do this without providing good enough constraints that target
specific logic in the RTL design. Automating this will provide
accelerated coverage closure. An asynchronous FIFO is chosen
to study Fuzz stimuli generation for the following reasons.
• Relatively easy enough design to understand.
• Easy to generate states to cover by increasing the depth of the
FIFO.
• Easy to add more states to cover by increasing the depth of the
FIFO. During run time, each possible combination of the write
pointer and read pointer of the memory in the FIFO is to be
covered. To create the executable to run AFL, the tool Verilator
is used to first convert the Systemverilog RTL of the FIFO to an
equivalent C model. This C model is then compiled using the C
compiler provided by AFL to create the executable file with fuzz
instrumentation [5].

The Stimuli generated by the Fuzz generator is converted to
transactions that are understood by the interface of the hardware
being verified. For a FIFO, this is relatively easy since there are
only two control signals (Write and Read), with four possible
combinations. The Fuzz generated stimuli were able to cover all
the coverpoints in a relatively fast manner. Since the design is
relatively small, CRV is also able to hit most of the coverpoints
with similar performance as Fuzz stimuli. Since the number
of possible opcodes is 4 (Rd, Wr, RdWr, NoP), it is expected

 Volume 2 | Issue 3 | 303J Electrical Electron Eng, 2023

that CRV is also good at generating good stimuli to hit most
coverpoints. This proves that Fuzz generated stimuli is at-least as
good as the existing popular and widely used stimuli generation
methodology (CRV) for hardware verification.

3. Asynchronous FIFO Architecture
The FIFO’s architecture chosen is the standard architecture.
The depth of the FIFO used is 64. Fig 1 shows the architecture

diagram of the Asynchronous FIFO. The input interface has the
clocks, resets (Read and Write), Read, Write and Write Data
pins. The output interface has the Full, Empty, and the Read data
pins. Internally, it contains instances of a synchronizer module,
which is a clock domain crossing module to synchronize the
read pointer to write clock domain, and vice-versa. These
synchronized pointers are then used by the full and empty
generator modules to generate the write full, and the read empty.

Write), Read, Write and Write Data pins. The output interface has the Full, Empty, and the Read data pins.

Internally, it contains instances of a synchronizer module, which is a clock domain crossing module to

synchronize the read pointer to write clock domain, and vice-versa. These synchronized pointers are then

used by the full and empty generator modules to generate the write full, and the read empty.

Figure 1: Async FIFO Architecture

4. Bug Insertion and Testing

A logic bug which causes the full signal to assert incorrectly is introduced. An assertion which checks the

correct functionality for the full signal is available in the RTL. A cover property is coded to cover the case

where the full signal is asserted. This cover property is intended to guide the fuzzer to generate the stimulus

to assert full. In CRV based verification, a directed test to verify that the full and empty signal are asserted

correctly is to be written by the Design Verification engineer. By using coverage guided fuzzing, the fuzzer

will automatically generate such tests, and in the process, generate multiple interesting stimuli. This becomes

particularly useful as the design gets bigger, and cover properties detailing interesting cases are coded as part

of the design. The fuzzer can act as a bug hunter who is guided by cover properties, which automates

generation of stimuli which executes different logic blocks. The fuzzer was able to find the bug and saves the

stimulus. The following output from the fuzzer indicates the time taken by it to generate the stimulus which

was able to find the bug (88 mins). In the process of finding the bug, it was also able to hit several cover

properties coded. CRV was also able to find this bug, within similar run time. Fig 2 indicates that the fuzzer

took 1 hour, 28 mins to find the first crash. Each crash is caused when the execution finds a bug.

Write), Read, Write and Write Data pins. The output interface has the Full, Empty, and the Read data pins.

Internally, it contains instances of a synchronizer module, which is a clock domain crossing module to

synchronize the read pointer to write clock domain, and vice-versa. These synchronized pointers are then

used by the full and empty generator modules to generate the write full, and the read empty.

Figure 1: Async FIFO Architecture

4. Bug Insertion and Testing

A logic bug which causes the full signal to assert incorrectly is introduced. An assertion which checks the

correct functionality for the full signal is available in the RTL. A cover property is coded to cover the case

where the full signal is asserted. This cover property is intended to guide the fuzzer to generate the stimulus

to assert full. In CRV based verification, a directed test to verify that the full and empty signal are asserted

correctly is to be written by the Design Verification engineer. By using coverage guided fuzzing, the fuzzer

will automatically generate such tests, and in the process, generate multiple interesting stimuli. This becomes

particularly useful as the design gets bigger, and cover properties detailing interesting cases are coded as part

of the design. The fuzzer can act as a bug hunter who is guided by cover properties, which automates

generation of stimuli which executes different logic blocks. The fuzzer was able to find the bug and saves the

stimulus. The following output from the fuzzer indicates the time taken by it to generate the stimulus which

was able to find the bug (88 mins). In the process of finding the bug, it was also able to hit several cover

properties coded. CRV was also able to find this bug, within similar run time. Fig 2 indicates that the fuzzer

took 1 hour, 28 mins to find the first crash. Each crash is caused when the execution finds a bug.

Figure 1: Async FIFO Architecture

4. Bug Insertion and Testing
A logic bug which causes the full signal to assert incorrectly is
introduced. An assertion which checks the correct functionality
for the full signal is available in the RTL. A cover property is
coded to cover the case where the full signal is asserted. This
cover property is intended to guide the fuzzer to generate the
stimulus to assert full. In CRV based verification, a directed test
to verify that the full and empty signal are asserted correctly
is to be written by the Design Verification engineer. By using
coverage guided fuzzing, the fuzzer will automatically generate
such tests, and in the process, generate multiple interesting
stimuli. This becomes particularly useful as the design gets

bigger, and cover properties detailing interesting cases are coded
as part of the design. The fuzzer can act as a bug hunter who
is guided by cover properties, which automates generation of
stimuli which executes different logic blocks. The fuzzer was
able to find the bug and saves the stimulus. The following output
from the fuzzer indicates the time taken by it to generate the
stimulus which was able to find the bug (88 mins). In the process
of finding the bug, it was also able to hit several cover properties
coded. CRV was also able to find this bug, within similar run
time. Fig 2 indicates that the fuzzer took 1 hour, 28 mins to find
the first crash. Each crash is caused when the execution finds a
bug.

Figure 2: AFL Fuzzer output screen for FIFO Fuzzing

The fuzz execution was run on the C model executable file, compiled using the C compiler provided by AFL. This enabled
instrumenting the code to collect event coverage feedback by AFL.

Fig 3 shows the waveform indicating the states of the read and write pointer to cause the full signal to be asserted incorrectly.

 Volume 2 | Issue 3 | 304J Electrical Electron Eng, 2023

Figure 2: AFL Fuzzer output screen for FIFO Fuzzing

The fuzz execution was run on the C model executable file, compiled using the C compiler provided by AFL.

This enabled instrumenting the code to collect event coverage feedback by AFL.

Fig 3 shows the waveform indicating the states of the read and write pointer to cause the full signal to be

asserted incorrectly.

Figure 3: Fuzz Stimuli Which Found the Bug Inserted in the FIFO

5. Memory Coherency Verification Using Fuzz

The behavior of a memory system as described formally in the Memory Consistency Model (MCM) must be

verified so that software programmers can rely upon it for parallel programming. We attempt to generate

stimuli using fuzz. A memory model created in gem5 memory simulator is used for this. AFL is the fuzz

generator used to generate the stimuli. A requirement for fuzz testing is that the fuzz generator should be

provided feedback by the target being fuzzed about the coverage achieved by each stimulus generated, and

the fuzz generator will use that to generate the future stimuli. AFL provides a compiler tool for C++, which

compiles the source code which also instruments the executable file specifically for the feedback purpose.

Hence it is important to compile the gem5 memory model implemented in C++ using the compiler provided

by AFL. Once this is done, a system with four CPU cores with one dedicated cache per core(L1), one shared

cache (L2), and a main memory of a specified size (64MB) can be configured, and run the stimuli generated

by the fuzz generator (AFL). The file generated by AFL needs a conversion layer to convert it to a format

understood by the memory model. We use a simple decoder implemented for this purpose, which reads the

stimuli generated by AFL, and converts it into Command, Address and Data format.

The tests are written in python, which in turn executes the C++ model. Hence the fuzzing is also invoked

using python. A python specific package, Python-afl is installed, and a wrapper script is implemented to

invoke the python test run command line. Checks which are available in gem5 is enabled to generate an error

if a bug is found out. The fuzzer’s goal is to send stimulus so that these checks fail and cause the execution to

crash. A bug in the state machine is intentionally introduced, and fuzzing is executed to see if it can find this

bug [6].

6. Memory Model Using Gem5

Figure 3: Fuzz Stimuli Which Found the Bug Inserted in the FIFO

5. Memory Coherency Verification Using Fuzz
The behavior of a memory system as described formally in the
Memory Consistency Model (MCM) must be verified so that
software programmers can rely upon it for parallel programming.
We attempt to generate stimuli using fuzz. A memory model
created in gem5 memory simulator is used for this. AFL is
the fuzz generator used to generate the stimuli. A requirement
for fuzz testing is that the fuzz generator should be provided
feedback by the target being fuzzed about the coverage achieved
by each stimulus generated, and the fuzz generator will use that
to generate the future stimuli. AFL provides a compiler tool for
C++, which compiles the source code which also instruments
the executable file specifically for the feedback purpose. Hence
it is important to compile the gem5 memory model implemented
in C++ using the compiler provided by AFL. Once this is
done, a system with four CPU cores with one dedicated cache
per core(L1), one shared cache (L2), and a main memory of a
specified size (64MB) can be configured, and run the stimuli
generated by the fuzz generator (AFL). The file generated by
AFL needs a conversion layer to convert it to a format understood
by the memory model. We use a simple decoder implemented
for this purpose, which reads the stimuli generated by AFL, and
converts it into Command, Address and Data format.

The tests are written in python, which in turn executes the C++

model. Hence the fuzzing is also invoked using python. A python
specific package, Python-afl is installed, and a wrapper script
is implemented to invoke the python test run command line.
Checks which are available in gem5 is enabled to generate an
error if a bug is found out. The fuzzer’s goal is to send stimulus
so that these checks fail and cause the execution to crash. A bug
in the state machine is intentionally introduced, and fuzzing is
executed to see if it can find this bug [6].

6. Memory Model Using Gem5
The memory model used is the model provided by gem5,
which is a widely used model for research. A configuration of
4 processors with one L1 and L2 caches using Two level MESI
protocol, and main memory is used to run the fuzz generated
stimuli. The model is implemented in C++, and the top-level tests
wrappers are written in Python which configures the system and
tester. The model is compiled using the C++ compiler provided
by AFL to insert the instrumentation code in the executable,
which is used by the AFL fuzz generator for collecting feedback
of running a stimulus, for the purpose of generating subsequent
stimuli. Fig 4 shows the memory model configuration used for
running fuzz. Four processes are using a 64MB main memory.
Each process has its own L1 Cache. A L2 Cache is shared among
the four processes.

The memory model used is the model provided by gem5, which is a widely used model for research. A

configuration of 4 processors with one L1 and L2 caches using Two level MESI protocol, and main memory

is used to run the fuzz generated stimuli. The model is implemented in C++, and the top-level tests wrappers

are written in Python which configures the system and tester. The model is compiled using the C++ compiler

provided by AFL to insert the instrumentation code in the executable, which is used by the AFL fuzz

generator for collecting feedback of running a stimulus, for the purpose of generating subsequent stimuli. Fig

4 shows the memory model configuration used for running fuzz. Four processes are using a 64MB main

memory. Each process has its own L1 Cache. A L2 Cache is shared among the four processes.

Figure 4: Memory Coherency Model

7. Bug Insertion and Testing

A bug in the L1 Cache’s state machine is introduced, with a goal of finding the bug by fuzzing the model.

The bug inserted is to not send an invalidation acknowledgement in the “S: Shared” state of the L1 Cache.

This will cause a deadlock when an invalidation request is sent to the cache model. A check is implemented

to crash the execution when it detects a deadlock. The fuzzer saves the stimuli which was able to cause any

crash, which can be used to rerun the test with more debug options and root-cause the crash. A random test

(CRV) which generates transactions (Reads/ Writes) per process is used to compare against Fuzz. AFL fuzzer

was able to find the bug in 70 minutes, running 209 executions. Fig 5 indicates that the fuzzer took 1 hr, 10

mins to find the first crash. Each crash is caused when the execution finds a bug. The 209th execution found

the bug in this case. CRV took ~3hours with ~500 executions to find the bug. The state of the cache entry

should change from Invalid → Shared → Invalid. The transition from Shared to Invalid can be caused by

another processor writing to the same address and sending an Invalidation to all other processes. This

Invalidation will get stuck since the bug inserted will cause the Invalidation acknowledgement not be sent.

AFL Iterative Algorithm for FIFO/memory test

Figure 4: Memory Coherency Model

7. Bug Insertion and Testing
A bug in the L1 Cache’s state machine is introduced, with a
goal of finding the bug by fuzzing the model. The bug inserted
is to not send an invalidation acknowledgement in the “S:
Shared” state of the L1 Cache. This will cause a deadlock when
an invalidation request is sent to the cache model. A check is

implemented to crash the execution when it detects a deadlock.
The fuzzer saves the stimuli which was able to cause any crash,
which can be used to rerun the test with more debug options
and root-cause the crash. A random test (CRV) which generates
transactions (Reads/ Writes) per process is used to compare
against Fuzz. AFL fuzzer was able to find the bug in 70 minutes,

 Volume 2 | Issue 3 | 305J Electrical Electron Eng, 2023

ˆ

running 209 executions. Fig 5 indicates that the fuzzer took 1
hr, 10 mins to find the first crash. Each crash is caused when
the execution finds a bug. The 209th execution found the bug
in this case. CRV took ~3hours with ~500 executions to find the
bug. The state of the cache entry should change from Invalid

→ Shared → Invalid. The transition from Shared to Invalid can
be caused by another processor writing to the same address and
sending an Invalidation to all other processes. This Invalidation
will get stuck since the bug inserted will cause the Invalidation
acknowledgement not be sent.

1: Find the stimuli to crash the target memory model in: Rd/Wr transactions (Addr, Data) out: Order of

txns(Stimuli) to expose the bug.

2: //AFL dry run

3: Run the initial input to make sure the target doesn’t always crash

4: while (AFL not done)

5: Generate stimulus (Rd/Wr transaction on a process)

6: Send and observe the response from the DUT

7: Collect feedback from coverage instrumentation

8: If target crashed/timed out, save the stimuli, and restart the test.

9: Set AFL done when coverage is 100%

10: end while

1: Find the stimuli to crash the target memory model in: Rd/Wr transactions (Addr, Data) out: Order of

txns(Stimuli) to expose the bug.

2: //AFL dry run

3: Run the initial input to make sure the target doesn’t always crash

4: while (AFL not done)

5: Generate stimulus (Rd/Wr transaction on a process)

6: Send and observe the response from the DUT

7: Collect feedback from coverage instrumentation

8: If target crashed/timed out, save the stimuli, and restart the test.

9: Set AFL done when coverage is 100%

10: end while

The memory model used is the model provided by gem5, which is a widely used model for research. A

configuration of 4 processors with one L1 and L2 caches using Two level MESI protocol, and main memory

is used to run the fuzz generated stimuli. The model is implemented in C++, and the top-level tests wrappers

are written in Python which configures the system and tester. The model is compiled using the C++ compiler

provided by AFL to insert the instrumentation code in the executable, which is used by the AFL fuzz

generator for collecting feedback of running a stimulus, for the purpose of generating subsequent stimuli. Fig

4 shows the memory model configuration used for running fuzz. Four processes are using a 64MB main

memory. Each process has its own L1 Cache. A L2 Cache is shared among the four processes.

Figure 4: Memory Coherency Model

7. Bug Insertion and Testing

A bug in the L1 Cache’s state machine is introduced, with a goal of finding the bug by fuzzing the model.

The bug inserted is to not send an invalidation acknowledgement in the “S: Shared” state of the L1 Cache.

This will cause a deadlock when an invalidation request is sent to the cache model. A check is implemented

to crash the execution when it detects a deadlock. The fuzzer saves the stimuli which was able to cause any

crash, which can be used to rerun the test with more debug options and root-cause the crash. A random test

(CRV) which generates transactions (Reads/ Writes) per process is used to compare against Fuzz. AFL fuzzer

was able to find the bug in 70 minutes, running 209 executions. Fig 5 indicates that the fuzzer took 1 hr, 10

mins to find the first crash. Each crash is caused when the execution finds a bug. The 209th execution found

the bug in this case. CRV took ~3hours with ~500 executions to find the bug. The state of the cache entry

should change from Invalid → Shared → Invalid. The transition from Shared to Invalid can be caused by

another processor writing to the same address and sending an Invalidation to all other processes. This

Invalidation will get stuck since the bug inserted will cause the Invalidation acknowledgement not be sent.

AFL Iterative Algorithm for FIFO/memory test

Figure 5: AFL Fuzzer Output Screen For Memory Model Fuzzing

 Volume 2 | Issue 3 | 306J Electrical Electron Eng, 2023

8. Conclusion
In this paper, we have demonstrated the results of using coverage
guided AFL fuzzer for hardware verification. The fuzzer was
able to use coverage as a guidance to generate stimulus for
verifying a FIFO and a memory coherency model. Both designs
were inserted with a bug. Fuzz and CRV methodologies were
applied to find the bugs [7,8]. For the smaller FIFO design,
both methodologies were able to find the bug in a reasonable
amount of time. This proves that Fuzz is at least as good as
CRV. With Memory model testing, Fuzz was able to find the
bug in about half the time taken by CRV. This proves that Fuzz’s
methodology of using coverage as a feedback mechanism can
accelerate verification process.

Acknowledgment
"This article’s(chapter’s) publication was funded by the Portland
State University Open Access Article Processing Charge Fund,
administered by the Portland State University Library".

References
1. Binkert, N., Beckmann, B., Black, G., Reinhardt, S. K.,

Saidi, A., Basu, A., & Wood, D. A. (2011). The gem5
simulator. ACM SIGARCH computer architecture news,
39(2), 1-7.

2. Laeufer, K., Koenig, J., Kim, D., Bachrach, J., & Sen, K.
(2018, November). RFUZZ: Coverage-directed fuzz testing

of RTL on FPGAs. In 2018 IEEE/ACM International
Conference on Computer-Aided Design (ICCAD) (pp. 1-8).
IEEE.

3. Trippel, T., Shin, K. G., Chernyakhovsky, A., Kelly, G.,
Rizzo, D., & Hicks, M. (2022). Fuzzing hardware like
software. In 31st USENIX Security Symposium (USENIX
Security 22) (pp. 3237-3254).

4. Nossum, V., & Casasnovas, Q. (2016). Filesystem fuzzing
with american fuzzy lop. In Vault Linux Storage and
Filesystems Conference.

5. Snyder, W. (2004). Verilator and systemperl. In North
American SystemC Users’ Group, Design Automation
Conference.

6. Elver, M., & Nagarajan, V. (2016, March). McVerSi: A
test generation framework for fast memory consistency
verification in simulation. In 2016 IEEE International
Symposium on High Performance Computer Architecture
(HPCA) (pp. 618-630). IEEE.

7. Holmes, J., Ahmed, I., Brindescu, C., Gopinath, R., Zhang,
H., & Groce, A. (2020). Using relative lines of code to guide
automated test generation for Python. ACM Transactions on
Software Engineering and Methodology (TOSEM), 29(4),
1-38.

8. Luo, D., Li, T., Chen, L., Zou, H., & Shi, M. (2022).
Grammar-based fuzz testing for microprocessor RTL
design. Integration, 86, 64-73.

Copyright: ©2023 Renju Rajeev, et al. This is an open-access article
distributed under the terms of the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any
medium, provided the original author and source are credited.

https://opastpublishers.com

https://people.csail.mit.edu/tushar/papers/pdfs/gem5_can2011.pdf
https://people.csail.mit.edu/tushar/papers/pdfs/gem5_can2011.pdf
https://people.csail.mit.edu/tushar/papers/pdfs/gem5_can2011.pdf
https://people.csail.mit.edu/tushar/papers/pdfs/gem5_can2011.pdf
https://people.eecs.berkeley.edu/~laeufer/papers/rfuzz_kevin_laeufer_iccad2018.pdf
https://people.eecs.berkeley.edu/~laeufer/papers/rfuzz_kevin_laeufer_iccad2018.pdf
https://people.eecs.berkeley.edu/~laeufer/papers/rfuzz_kevin_laeufer_iccad2018.pdf
https://people.eecs.berkeley.edu/~laeufer/papers/rfuzz_kevin_laeufer_iccad2018.pdf
https://people.eecs.berkeley.edu/~laeufer/papers/rfuzz_kevin_laeufer_iccad2018.pdf
https://www.usenix.org/system/files/sec22-trippel.pdf
https://www.usenix.org/system/files/sec22-trippel.pdf
https://www.usenix.org/system/files/sec22-trippel.pdf
https://www.usenix.org/system/files/sec22-trippel.pdf
https://lcamtuf.coredump.cx/afl/
https://lcamtuf.coredump.cx/afl/
https://lcamtuf.coredump.cx/afl/
https://www.veripool.com/papers/verilator_systemperl_nascug.pdf
https://www.veripool.com/papers/verilator_systemperl_nascug.pdf
https://www.veripool.com/papers/verilator_systemperl_nascug.pdf
https://homepages.inf.ed.ac.uk/vnagaraj/papers/hpca16.pdf
https://homepages.inf.ed.ac.uk/vnagaraj/papers/hpca16.pdf
https://homepages.inf.ed.ac.uk/vnagaraj/papers/hpca16.pdf
https://homepages.inf.ed.ac.uk/vnagaraj/papers/hpca16.pdf
https://homepages.inf.ed.ac.uk/vnagaraj/papers/hpca16.pdf
https://arxiv.org/pdf/2103.07006.pdf
https://arxiv.org/pdf/2103.07006.pdf
https://arxiv.org/pdf/2103.07006.pdf
https://arxiv.org/pdf/2103.07006.pdf
https://arxiv.org/pdf/2103.07006.pdf
https://www.sciencedirect.com/science/article/abs/pii/S0167926022000529
https://www.sciencedirect.com/science/article/abs/pii/S0167926022000529
https://www.sciencedirect.com/science/article/abs/pii/S0167926022000529

