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Abstract
Many industrial and real-life problems exhibit highly nonlinear periodic behaviors and the conventional methods 
may fall short of finding their analytical or closed-form solutions. Such problems demand cutting-edge computational 
tools with increased functionality and reduced cost. Recently, deep neural networks have gained massive research 
interest due to their ability to handle large data and universality to learn complex functions. In this work, we put 
forward a methodology based on deep neural networks with responsive layers structure to deal nonlinear oscillations 
in microelectromechanical systems. We incorporated some oscillatory and non-oscillatory activation functions such as 
growing cosine unit known as GCU, Sine, Mish and Tanh in our designed network to have a comprehensive analysis on 
their performance for highly nonlinear problems. Integrating oscillatory activation functions with deep neural networks 
definitely outperform in predicting the periodic patterns of underlying systems. To support oscillatory actuation for 
nonlinear systems, we have proposed a novel oscillatory activation function called Amplifying Sine Unit denoted as ASU 
which is more efficient than GCU for complex vibratory systems such as microelectromechanical systems. Experimental 
results show that the designed network with our proposed activation function ASU is more reliable and robust to handle 
the challenges posed by oscillations. 
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1. Introduction
Nonlinear problems are prevalent in several fields of science and 
technology due to the complex and periodic interactions between 
the components involved in scientific and industrial systems. 
These systems can be effectively modeled by differential 
equations (DEs) that contain information about their nonlinearity 
and periodicity. One of the major challenges in dealing 
with such strongly nonlinear and periodic DEs is to provide 
accurate analytical solutions while maintaining computational 
efficiency. To address this challenge, it is necessary to develop 
novel analytical and computational tools that can handle the 
complexities of these nonlinear systems. By doing so, we can 
gain deeper insights into the behavior of such systems and 
devise more efficient and effective strategies for controlling 
and optimizing them. Therefore, modeling and simulation of 
dynamical systems require critical mathematical thinking and 
sophisticated computational tools to simulate their solutions [1-
3]. Recently, many semi-analytic iterative methods have been 
put forward by researchers to address the nonlinear oscillatory 
behaviors of underlying systems [4-6]. The deep neural 
networks (DNNs) have grown as the most effective architectures 
to deal with complex patterns and relationships present in data 
making them well-suited for systems with various interacting 
components [7]. DNNs are capable of learning complex patterns 

and relationships from high-dimensional data through multiple 
layers of nonlinear transformations. This makes them well-suited 
for systems with numerous interacting components that require 
the extraction of high-level representations from raw data. The 
effectiveness of DNNs stems from their ability to leverage 
large amounts of data to learn complex features in an end-to-
end manner, without requiring explicit feature engineering. The 
hierarchical structure helps DNNs to learn increasingly complex 
patterns or interactions present in data [8]. Depending upon the 
nature of the problem being handled by DNNs, the choice of 
appropriate activation function is crucial [9]. It is commonly 
understood in the field of Deep Learning that linear behaviors 
can be easily predicted by stacking multiple layers of neural 
networks that solely collect linear combinations from the former 
layers. We can say, that the linear behaviors might easily be 
predicted by stacking up some layers of the network which are 
just collecting the linear combinations from previous layers as 
(1)

Therefore, using linear activation functions for a network is not 
worth enough as their role can easily be replaced by a single 
linear layer network shown in Fig. 1. 
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Figure 1: A single-layer neural network that can only perform linear operation. Such a 

network can only handle linear problems or can help draw linear decision boundaries 
 

Nonlinear activation functions play a significant role in catching the nonlinearity present 

in data being assigned to DNNs for training. Monotonic nonlinear activation functions 

such as Sigmoid, Tanh, and especially ReLU are being abundantly used by researchers 

and industry [10-13]. Despite their significant contribution to many scientific applications, 

these activation functions may appear problematic during backpropagation when the 

parameters are updated using negative gradients [14]. For instance, sigmoidal activations 

undergo vanishing gradient problems and ReLU-based networks may suffer dying ReLU 

problems which may result in decreased performance and slower convergence [15,16]. 

These gradient-based issues during backpropagation can be avoided by the utilization of 
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Nonlinear activation functions play a significant role in catching 
the nonlinearity present in data being assigned to DNNs for 
training. Monotonic nonlinear activation functions such as 
Sigmoid, Tanh, and especially ReLU are being abundantly used 
by researchers and industry [10-13]. Despite their significant 
contribution to many scientific applications, these activation 
functions may appear problematic during backpropagation 
when the parameters are updated using negative gradients [14]. 
For instance, sigmoidal activations undergo vanishing gradient 
problems and ReLU-based networks may suffer dying ReLU 
problems which may result in decreased performance and 
slower convergence [15,16]. These gradient-based issues during 
backpropagation can be avoided by the utilization of SELU and 
ELU which are the variants of ReLU [17,18]. In the recent past, 
all the research was based on the development of non-oscillatory 
and monotonic activation functions. Swish and Mish introduced 
the effective and powerful use of non-monotonic functions as 
activations of DNNs for various scientific and industrial problems 
[19-22]. GCU, an oscillatory non-monotonic activation function 
revolutionized the domain of activation functions by breaking 
the custom of utilizing only non-oscillatory activations [23]. 
GCU provided the single neuron solution to the XOR problem 
as a neuron with oscillatory activation can individually perform 
nonlinear decisions. Thus, oscillatory activation functions are 

advantageous to perform the complex assigned tasks with a 
lesser number of neurons and are computationally cheaper with 
enhanced performance [24].

Other than activation functions, the training and efficiency of 
DNNs can also be influenced by the right choice of loss functions 
and optimization algorithms depending on the demand of the 
problem [25,26]. For instance, recognition and classification 
tasks in the field of computer vision may work well with the 
modifications of softmax loss including Sphereface and additive 
parameter approaches [27-32]. On the other hand, the task of 
approximating the solutions to DEs using neural networks can be 
modeled well by applying simple squared loss functions [33,34]. 
We are limiting our discussion to just elaborating on the role of 
different oscillatory and non-oscillatory activation functions in 
dealing with highly nonlinear and periodic systems using DNNs.

A new oscillatory activation function ASU given by (1) has also 
been proposed and its behavior is graphically presented in Fig. 2.
 
  ASU(a)=a.sin (a)  (1)

The ASU is non-monotonic and as input gets larger, its 
oscillations tend to amplify.

 
Figure 2: Graphical illustration of proposed activation function ASU that efficiently 

deals with nonlinear periodic problems. 

We have designed DNNs with modifications using different activation functions for 

highly nonlinear oscillatory systems [35-37]. Outputs of DNNs are being compared with 

numerical solutions of LSODA routines [38] offered by a FORTRAN77 library which 

include Adams-Bash forth and BDF methods [39-41]. Our analysis provides a 

comprehensive assessment of the accuracy and reliability of DNNs in comparison to the 

well-established numerical methods for solving differential equations. The 

implementations are executed by PyTorch and numerical simulations are performed by 

SciPy Odeint library [42-45]. 

 

2. Methodology  
This section covers the detailed methodology adopted to capture complex nonlinear 

oscillations. Modifications in DNNs based on oscillatory and non-oscillatory activation 

functions are summarized in the following sub-sections. 

 

2.1 Formulation of DNN 
The strategy is to first mathematically model the problem as a differential equation i.e. 
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where 𝐿𝐿 is the differential operator, 𝑓𝑓 is the dependent variable wished to be explored 

and  𝑝𝑝  represents a general expression for the remaining terms involved in the 
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We have designed DNNs with modifications using different 
activation functions for highly nonlinear oscillatory systems 
[35-37]. Outputs of DNNs are being compared with numerical 
solutions of LSODA routines [38] offered by a FORTRAN77 
library which include Adams-Bash forth and BDF methods [39-
41]. Our analysis provides a comprehensive assessment of the 
accuracy and reliability of DNNs in comparison to the well-
established numerical methods for solving differential equations. 
The implementations are executed by PyTorch and numerical 
simulations are performed by SciPy Odeint library [42-45].

2. Methodology
This section covers the detailed methodology adopted to capture 
complex nonlinear oscillations. Modifications in DNNs based 
on oscillatory and non-oscillatory activation functions are 
summarized in the following sub-sections.

2.1 Formulation of DNN
The strategy is to first mathematically model the problem as a 
differential equation i.e.

Lf - p = 0                  (2)

where L is the differential operator, f is the dependent variable 
wished to be explored and p represents a general expression for 
the remaining terms involved in the mathematical model. If fN is 
the solution by DNN then it should have to satisfy (2) with the 
imposed initial or boundary conditions. To fulfill the criteria of 
satisfying the subjected conditions, fN can be set to undergo the 
following transformation

where f0 is the imposed initial condition and (3) is one of the 
choices made to ensure the satisfaction of subjected conditions. 

The next step for f ̃ to be a valid solution is that the residual 
Lf-̃p should identically be zero. The loss function given by 
(4) is formulated to train the network so that after a thorough 
optimization process the residuals are as minimized as possible.
 
  Loss = (Lf ̃- p)2  (4)

The detailed design and implementation of our DNN models are 
discussed in section 2.4.

2.2 Activation functions taking part in DNN-based 
approximations
To recover the dynamics of highly nonlinear systems that 
undergo periodic motions the choice of oscillatory activation 
functions is more robust, feasible, and time and cost-saving. It is 
still possible to use non-oscillatory activation functions for such 
problems but it would be more prone to high computational cost, 
training loss, and time consumption. We conducted a thorough 
analysis of five distinct activation functions to investigate 
their effectiveness in handling a highly nonlinear oscillatory 
system. The results of our study provide valuable insights into 
the suitability of various activation functions for addressing 
complex and nonlinear problems. This information can be 
used to improve the performance of Deep Neural Networks in 
a variety of applications. To validate our stance, we analyzed 
the behaviors of five different activation functions for a highly 
nonlinear oscillatory system.
 
Table 1 provides the detail of activation functions and their 
nature which have a significant effect on their performance and 
Fig. 3 provides the graphical illustrations of proposed ASU 
and other activation functions. It can be observed that Tanh is 
monotonic, whereas ASU, GCU, and Sine are oscillatory and 
non-monotonic. On the other hand, Mish is non-oscillatory and 
non-monotonic. 
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Tanh 𝑓𝑓�𝑧𝑧� � 𝑒𝑒� � 𝑒𝑒��
𝑒𝑒� � 𝑒𝑒�� 

Non-oscillatory and monotonic 

Mish 𝑓𝑓�𝑧𝑧� � 𝑧𝑧. tanh �log �1 � 𝑒𝑒��� Non-oscillatory and non-monotonic 

Sine 𝑓𝑓�𝑧𝑧� � sin �𝑧𝑧� Oscillatory and non-monotonic 

GCU 𝑓𝑓�𝑧𝑧� � 𝑧𝑧. cos �𝑧𝑧� Oscillatory and non-monotonic 

ASU 𝑓𝑓�𝑧𝑧� � 𝑧𝑧. sin �𝑧𝑧� Oscillatory and non-monotonic 

 
Table 1: A mathematical representation and nature of different activation functions 
 

 
Figure 3: Plots of different oscillatory and non-oscillatory activation functions for 

nonlinear periodic systems 

 

2.3 Applications in MEMS  
Microelectromechanical systems (MEMS) are a cutting-edge technology that involves the 

fabrication of miniature, sophisticated, and reliable devices on small silicon chips, 

utilizing microfabrication techniques [46]. In recent years, MEMS have captured 

widespread attention among researchers and have become an essential component of 

almost every modern industry. Despite their potential applications, MEMS exhibit highly 

nonlinear periodic behaviors, which can pose significant challenges for classical 

approaches. As a result, there is an urgent need for state-of-the-art, efficient, and carefully 
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2.3 Applications in MEMS 
Microelectromechanical systems (MEMS) are a cutting-
edge technology that involves the fabrication of miniature, 
sophisticated, and reliable devices on small silicon chips, 
utilizing microfabrication techniques [46]. In recent years, 
MEMS have captured widespread attention among researchers 
and have become an essential component of almost every modern 
industry. Despite their potential applications, MEMS exhibit 
highly nonlinear periodic behaviors, which can pose significant 
challenges for classical approaches. As a result, there is an 
urgent need for state-of-the-art, efficient, and carefully devised 
techniques to handle these sensitive microstructures. This part 
explores the use of proposed DNNs with various activation 
functions to address the highly nonlinear and periodic behaviors 
exhibited by MEMS. The proposed ASU activation function 
is intended to amplify the sinusoidal input signal, thereby 
increasing its effectiveness in capturing the complex nonlinear 
dynamics of MEMS. Through our experiments, we demonstrate 
that ASU can achieve a better performance than GCU in 
modeling complex vibratory systems with higher accuracy and 
lower computational costs. Our findings demonstrate that DNNs 
are capable of providing effective solutions for MEMS and can 

be utilized for real-world applications.

2.3.1 Electrically actuated clamped-clamped MEMS
Suppose a clamped-clamped MEMS with a microbeam of length 
l, width b, thickness h and density ρ as shown in Fig. 4. The 
system is actuated through an electrostatic force given by (5)

where V denotes the applied voltage, εV is dielectric constant and 
d is the initial gap between substrate and beam. The deflection of 
beam in electrically actuated MEMS [47] can be modeled as (6)
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devised techniques to handle these sensitive microstructures. This part explores the use 

of proposed DNNs with various activation functions to address the highly nonlinear and 

periodic behaviors exhibited by MEMS. The proposed ASU activation function is 

intended to amplify the sinusoidal input signal, thereby increasing its effectiveness in 

capturing the complex nonlinear dynamics of MEMS. Through our experiments, we 

demonstrate that ASU can achieve a better performance than GCU in modeling complex 

vibratory systems with higher accuracy and lower computational costs. Our findings 

demonstrate that DNNs are capable of providing effective solutions for MEMS and can 

be utilized for real-world applications. 

2.3.1 Electrically actuated clamped-clamped MEMS 

Suppose a clamped-clamped MEMS with a microbeam of length 𝑙𝑙, width 𝑏𝑏, thickness ℎ 

and density ρ as shown in Fig. 4. The system is actuated through an electrostatic force 

given by (5) 

 𝐹𝐹� � 𝑏𝑏𝑏𝑏�𝜀𝜀�
2 � 1

�𝑑𝑑 ���� �
1

�𝑑𝑑 ����� 
(5) 

 

where 𝑏𝑏  denotes the applied voltage, 𝜀𝜀�  is dielectric constant and 𝑑𝑑  is the initial gap 

between substrate and beam. The deflection of beam in electrically actuated MEMS [47] 

can be modeled as (6) 

 �𝐴𝐴� � 𝐴𝐴�𝑢𝑢� � 𝐴𝐴�𝑢𝑢�� 𝑑𝑑
�𝑢𝑢
𝑑𝑑𝑑𝑑� � 𝐴𝐴�𝑢𝑢 � 𝐴𝐴�𝑢𝑢� � 𝐴𝐴�𝑢𝑢� � 𝐴𝐴�𝑢𝑢� � 0 

(6) 

 

subjected to initial conditions (7) 

 𝑢𝑢�0� � 𝜋𝜋
3 ,𝑢𝑢��0� � 0 (7) 

 

devised techniques to handle these sensitive microstructures. This part explores the use 

of proposed DNNs with various activation functions to address the highly nonlinear and 

periodic behaviors exhibited by MEMS. The proposed ASU activation function is 

intended to amplify the sinusoidal input signal, thereby increasing its effectiveness in 

capturing the complex nonlinear dynamics of MEMS. Through our experiments, we 

demonstrate that ASU can achieve a better performance than GCU in modeling complex 

vibratory systems with higher accuracy and lower computational costs. Our findings 

demonstrate that DNNs are capable of providing effective solutions for MEMS and can 

be utilized for real-world applications. 

2.3.1 Electrically actuated clamped-clamped MEMS 

Suppose a clamped-clamped MEMS with a microbeam of length 𝑙𝑙, width 𝑏𝑏, thickness ℎ 

and density ρ as shown in Fig. 4. The system is actuated through an electrostatic force 

given by (5) 

 𝐹𝐹� � 𝑏𝑏𝑏𝑏�𝜀𝜀�
2 � 1

�𝑑𝑑 ���� �
1

�𝑑𝑑 ����� 
(5) 

 

where 𝑏𝑏  denotes the applied voltage, 𝜀𝜀�  is dielectric constant and 𝑑𝑑  is the initial gap 

between substrate and beam. The deflection of beam in electrically actuated MEMS [47] 

can be modeled as (6) 

 �𝐴𝐴� � 𝐴𝐴�𝑢𝑢� � 𝐴𝐴�𝑢𝑢�� 𝑑𝑑
�𝑢𝑢
𝑑𝑑𝑑𝑑� � 𝐴𝐴�𝑢𝑢 � 𝐴𝐴�𝑢𝑢� � 𝐴𝐴�𝑢𝑢� � 𝐴𝐴�𝑢𝑢� � 0 

(6) 

 

subjected to initial conditions (7) 

 𝑢𝑢�0� � 𝜋𝜋
3 ,𝑢𝑢��0� � 0 (7) 

 

devised techniques to handle these sensitive microstructures. This part explores the use 

of proposed DNNs with various activation functions to address the highly nonlinear and 

periodic behaviors exhibited by MEMS. The proposed ASU activation function is 

intended to amplify the sinusoidal input signal, thereby increasing its effectiveness in 

capturing the complex nonlinear dynamics of MEMS. Through our experiments, we 

demonstrate that ASU can achieve a better performance than GCU in modeling complex 

vibratory systems with higher accuracy and lower computational costs. Our findings 

demonstrate that DNNs are capable of providing effective solutions for MEMS and can 

be utilized for real-world applications. 

2.3.1 Electrically actuated clamped-clamped MEMS 

Suppose a clamped-clamped MEMS with a microbeam of length 𝑙𝑙, width 𝑏𝑏, thickness ℎ 

and density ρ as shown in Fig. 4. The system is actuated through an electrostatic force 

given by (5) 

 𝐹𝐹� � 𝑏𝑏𝑏𝑏�𝜀𝜀�
2 � 1

�𝑑𝑑 ���� �
1

�𝑑𝑑 ����� 
(5) 

 

where 𝑏𝑏  denotes the applied voltage, 𝜀𝜀�  is dielectric constant and 𝑑𝑑  is the initial gap 

between substrate and beam. The deflection of beam in electrically actuated MEMS [47] 

can be modeled as (6) 

 �𝐴𝐴� � 𝐴𝐴�𝑢𝑢� � 𝐴𝐴�𝑢𝑢�� 𝑑𝑑
�𝑢𝑢
𝑑𝑑𝑑𝑑� � 𝐴𝐴�𝑢𝑢 � 𝐴𝐴�𝑢𝑢� � 𝐴𝐴�𝑢𝑢� � 𝐴𝐴�𝑢𝑢� � 0 

(6) 

 

subjected to initial conditions (7) 

 𝑢𝑢�0� � 𝜋𝜋
3 ,𝑢𝑢��0� � 0 (7) 

 

devised techniques to handle these sensitive microstructures. This part explores the use 

of proposed DNNs with various activation functions to address the highly nonlinear and 

periodic behaviors exhibited by MEMS. The proposed ASU activation function is 

intended to amplify the sinusoidal input signal, thereby increasing its effectiveness in 

capturing the complex nonlinear dynamics of MEMS. Through our experiments, we 

demonstrate that ASU can achieve a better performance than GCU in modeling complex 

vibratory systems with higher accuracy and lower computational costs. Our findings 

demonstrate that DNNs are capable of providing effective solutions for MEMS and can 

be utilized for real-world applications. 

2.3.1 Electrically actuated clamped-clamped MEMS 

Suppose a clamped-clamped MEMS with a microbeam of length 𝑙𝑙, width 𝑏𝑏, thickness ℎ 

and density ρ as shown in Fig. 4. The system is actuated through an electrostatic force 

given by (5) 

 𝐹𝐹� � 𝑏𝑏𝑏𝑏�𝜀𝜀�
2 � 1

�𝑑𝑑 ���� �
1

�𝑑𝑑 ����� 
(5) 

 

where 𝑏𝑏  denotes the applied voltage, 𝜀𝜀�  is dielectric constant and 𝑑𝑑  is the initial gap 

between substrate and beam. The deflection of beam in electrically actuated MEMS [47] 

can be modeled as (6) 

 �𝐴𝐴� � 𝐴𝐴�𝑢𝑢� � 𝐴𝐴�𝑢𝑢�� 𝑑𝑑
�𝑢𝑢
𝑑𝑑𝑑𝑑� � 𝐴𝐴�𝑢𝑢 � 𝐴𝐴�𝑢𝑢� � 𝐴𝐴�𝑢𝑢� � 𝐴𝐴�𝑢𝑢� � 0 

(6) 

 

subjected to initial conditions (7) 

 𝑢𝑢�0� � 𝜋𝜋
3 ,𝑢𝑢��0� � 0 (7) 

 

devised techniques to handle these sensitive microstructures. This part explores the use 

of proposed DNNs with various activation functions to address the highly nonlinear and 

periodic behaviors exhibited by MEMS. The proposed ASU activation function is 

intended to amplify the sinusoidal input signal, thereby increasing its effectiveness in 

capturing the complex nonlinear dynamics of MEMS. Through our experiments, we 

demonstrate that ASU can achieve a better performance than GCU in modeling complex 

vibratory systems with higher accuracy and lower computational costs. Our findings 

demonstrate that DNNs are capable of providing effective solutions for MEMS and can 

be utilized for real-world applications. 

2.3.1 Electrically actuated clamped-clamped MEMS 

Suppose a clamped-clamped MEMS with a microbeam of length 𝑙𝑙, width 𝑏𝑏, thickness ℎ 

and density ρ as shown in Fig. 4. The system is actuated through an electrostatic force 

given by (5) 

 𝐹𝐹� � 𝑏𝑏𝑏𝑏�𝜀𝜀�
2 � 1

�𝑑𝑑 ���� �
1

�𝑑𝑑 ����� 
(5) 

 

where 𝑏𝑏  denotes the applied voltage, 𝜀𝜀�  is dielectric constant and 𝑑𝑑  is the initial gap 

between substrate and beam. The deflection of beam in electrically actuated MEMS [47] 

can be modeled as (6) 

 �𝐴𝐴� � 𝐴𝐴�𝑢𝑢� � 𝐴𝐴�𝑢𝑢�� 𝑑𝑑
�𝑢𝑢
𝑑𝑑𝑑𝑑� � 𝐴𝐴�𝑢𝑢 � 𝐴𝐴�𝑢𝑢� � 𝐴𝐴�𝑢𝑢� � 𝐴𝐴�𝑢𝑢� � 0 

(6) 

 

subjected to initial conditions (7) 

 𝑢𝑢�0� � 𝜋𝜋
3 ,𝑢𝑢��0� � 0 (7) 

 

devised techniques to handle these sensitive microstructures. This part explores the use 

of proposed DNNs with various activation functions to address the highly nonlinear and 

periodic behaviors exhibited by MEMS. The proposed ASU activation function is 

intended to amplify the sinusoidal input signal, thereby increasing its effectiveness in 

capturing the complex nonlinear dynamics of MEMS. Through our experiments, we 

demonstrate that ASU can achieve a better performance than GCU in modeling complex 

vibratory systems with higher accuracy and lower computational costs. Our findings 

demonstrate that DNNs are capable of providing effective solutions for MEMS and can 

be utilized for real-world applications. 

2.3.1 Electrically actuated clamped-clamped MEMS 

Suppose a clamped-clamped MEMS with a microbeam of length 𝑙𝑙, width 𝑏𝑏, thickness ℎ 

and density ρ as shown in Fig. 4. The system is actuated through an electrostatic force 

given by (5) 

 𝐹𝐹� � 𝑏𝑏𝑏𝑏�𝜀𝜀�
2 � 1

�𝑑𝑑 ���� �
1

�𝑑𝑑 ����� 
(5) 

 

where 𝑏𝑏  denotes the applied voltage, 𝜀𝜀�  is dielectric constant and 𝑑𝑑  is the initial gap 

between substrate and beam. The deflection of beam in electrically actuated MEMS [47] 

can be modeled as (6) 

 �𝐴𝐴� � 𝐴𝐴�𝑢𝑢� � 𝐴𝐴�𝑢𝑢�� 𝑑𝑑
�𝑢𝑢
𝑑𝑑𝑑𝑑� � 𝐴𝐴�𝑢𝑢 � 𝐴𝐴�𝑢𝑢� � 𝐴𝐴�𝑢𝑢� � 𝐴𝐴�𝑢𝑢� � 0 

(6) 

 

subjected to initial conditions (7) 

 𝑢𝑢�0� � 𝜋𝜋
3 ,𝑢𝑢��0� � 0 (7) 

 

 
Figure 4: Clamped-clamped microbeam MEMS undergoing electrostatic force-based 

actuation where d is the initial gap between the beam and fixed substrate 
 

2.4 Implementation 
The designed DNNs (utilizing activation functions discussed in Table 1) consist of three 

hidden layers with 128 neurons each and one output unit which spits out 𝑓𝑓�. In order to 

train the network for our modeled MEMS, the squared loss is being calculated using (4) 

and networks’ weights are adjusted using Adam as an optimizer. Implementations are 

being executed by PyTorch and Fig. 5 hierarchically defines the steps involved in DNN-

based approximations.  
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Outputs of DNNs are then being compared with the numerical simulations performed in SciPy. In order to have a comprehensive 
view of overall performance, an error analysis for each simulation is also being performed. For a given time domain, the error values 
simply represent the difference between the solution values approximated by DNNs and other numerical techniques.

3. Results and discussion
This section provides a detailed discussion on the outcomes of DNNs for electrically actuated MEMS. The performance of networks 
for each activation function has been discussed case by case.

3.1 DNN-based Simulations with non-oscillatory activation functions 
We performed two experiments to recover the dynamics of MEMS modeled mathematically by (3.2) and (3.3). First experiment 
utilizes Tanh activations throughout the hidden layers and the other one is with Mish as an activation function. The training of DNNs 
with non-oscillatory activation functions needed large number of epochs, thus was slow and time consuming. 

3.1.1 Utilization of Tanh
The network with Tanh activations was able to approximate the solution to the underlying MEMS after a training process of 35,000 
epochs. Fig. 6(a) provides the solution curve approximated by DNN with Tanh activations. Fig. 6(b) provides the history of both the 
training and validation loss.

 
Figure 6: The recovered solution and loss history in case of Tanh as an activation function 

for the network 
 

The lowest calculated loss is 0.00017960761963920115 and it took 18 minutes and 33 

seconds to accomplish the training and get the solution. Fig. 7(a) illustrates the 

comparison of DNN-based and numerical solutions and Fig. 7(b) demonstrates the 

incurred error in the specified time span. 
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Figure 7: Comparison and error illustrations of solutions approximated by both the DNNs 
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Figure 8: DNN outcomes for the approximation of deflection of electrically actuated microbeam in MEMS

Fig. 9(a) depicts the comparison of outputs and Fig. 9(b) graphically presents the error between DNN and LSODA based 
approximations.

The error simply represents difference between the solutions approximated by our designed networks and numerical simulations.

3.1.2 Utilization of Mish
The network using Mish as an activation function recovered the solution after 20,000 training epochs and this process took 17 
minutes and 50 seconds. Fig. 8(a) presents the resultant solution of MEMS and Fig. 8(b) provides the loss history. The lowest 
calculated loss in this case is 0.0001531996326778283.

The error simply represents difference between the solutions approximated by our 

designed networks and numerical simulations. 
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Figure 9: Graphical comparison of solutions from both the techniques and discrepancy 
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3.2 DNN-based Simulations with oscillatory activation 
functions 
This section discusses the utilization of oscillatory activation 
functions to approximate the solutions of nonlinear periodic 
dynamical systems. In comparison to conventional deep neural 
networks, the utilization of oscillatory activation functions for 
training deep neural networks has demonstrated significantly 
improved training performance, including increased training 
speed and improved training efficiency. These findings suggest 
that oscillatory activation functions hold great promise for 
advancing the development of deep learning models.

3.2.1 Deployment of Sine
In case of Sine activations, DNN approximated the solution after 
a training of 6,000 epochs. The training was much faster than the 
case of non-oscillatory activation functions as it completed in 3 
minutes and 16 seconds. 

Fig. 10(a) provide the illustrations of recovered solution after 
training and Fig. 10(b) details the training and validation loss. 
The lowest calculated loss is 0.00014502210832914825. Fig. 
11(a) presents the comparison of solutions from DNN and 
LSODA solvers while Fig. 11(b) illustrates the corresponding 
error between their values.
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Figure 10: DNN-based simulation results and loss history in case of Sine as an activation 
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Figure 11: Comparison of approximations for the deflection of beam and error 

calculations for the case of Sine based DNN 
 

One can observe that the error fairly small when the network used an oscillatory activation 

i.e. Sine to approximate the solution of a highly nonlinear periodic problem. Sine 

functions have been observed to enhance the predictive power of DNN models compared 

to non-oscillatory functions. Therefore, utilizing sine functions as a feature set can lead 

to better predictions of oscillations in MEMS using DNN models. In other words, it can 
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Figure 11: Comparison of approximations for the deflection of beam and error calculations for the case of Sine based DNN

One can observe that the error fairly small when the network used 
an oscillatory activation i.e. Sine to approximate the solution 
of a highly nonlinear periodic problem. Sine functions have 
been observed to enhance the predictive power of DNN models 
compared to non-oscillatory functions. Therefore, utilizing 
sine functions as a feature set can lead to better predictions of 
oscillations in MEMS using DNN models. In other words, it can 
be said that Sine, unlike non-oscillatory functions, has enhance 
the ability of DNN to predict the oscillations in MEMS.

3.2.2 Deployment of GCU
When the hidden layers of DNN were implemented by GCU 
as an activation function, the efficiency of network enhanced 
remarkably. The network was able to predict the solution after 
a training of just 4,000 epochs and the process took 2 minutes 
53 seconds. Fig. 12(a) represents the solution predicted by the 
network and loss history is mentioned by Fig. 12(b). 
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Figure 12: Output of network and details of training and validation loss in case of GCU 

activation function 
 

Fig. 13(a) provides the detailed comparison of DNN-based and numerical solutions. The 

error analysis presented by Fig. 13(b) is also ensuring the capability of GCU to perceive 

the high oscillatory patterns. 

Figure 12: Output of network and details of training and validation loss in case of GCU activation function

Fig. 13(a) provides the detailed comparison of DNN-based and numerical solutions. The error analysis presented by Fig. 13(b) is 
also ensuring the capability of GCU to perceive the high oscillatory patterns.
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Figure 13: Output from DNN being compared by numerical simulations and the error 

which is representing the difference between the solutions approximated by both the 
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Now we will discuss the details of last experiment which was performed by utilizing 

proposed activation function ASU. 

 

3.2.3 Deployment of ASU 
The DNN architecture with ASU activation function was super-fast and vigilant to 

discover the nonlinear oscillatory patterns of underlying MEMS. The network 

approximated the solution efficaciously after a training of just 2,000 epochs and the 

process completed in a short time of just 1 minute and 14 seconds. Fig. 14(a) provides us 

with the graphical representation of solution whereas the training and validation loss are 

presented by Fig. 14(b). 

Figure 13: Output from DNN being compared by numerical simulations and the error which is representing the difference between 
the solutions approximated by both the techniques

Now we will discuss the details of last experiment which was 
performed by utilizing proposed activation function ASU.

3.2.3 Deployment of ASU
The DNN architecture with ASU activation function was super-
fast and vigilant to discover the nonlinear oscillatory patterns 

of underlying MEMS. The network approximated the solution 
efficaciously after a training of just 2,000 epochs and the process 
completed in a short time of just 1 minute and 14 seconds. Fig. 
14(a) provides us with the graphical representation of solution 
whereas the training and validation loss are presented by Fig. 
14(b).

 
(a) Solution approximated by DNN    (b) Loss history in case of ASU 
Figure 14: Illustrations of approximated solution by DNN utilizing ASU as activation 

along with training and validation loss history 
 

Fig. 15(a) provides the detailed comparison of DNN-based solution with numerical 

approximation by LSODA and Fig. 15(b) depicts the error evaluation of the network’s 

output. It can be observed that besides the competence of DNN with ASU to deal 

nonlinear oscillations rigorously, the error also fairly lies in an acceptable range. 

 
(a) Comparison of solutions     (b) Error in case of ASU 

Figure 15: Comparison of solutions from both computational techniques and the 

difference (error) of DNN-based solution from Numerical approximation 
 

Figure 14: Illustrations of approximated solution by DNN utilizing ASU as activation along with training and validation loss history

Fig. 15(a) provides the detailed comparison of DNN-based solution with numerical approximation by LSODA and Fig. 15(b) 
depicts the error evaluation of the network’s output. It can be observed that besides the competence of DNN with ASU to deal 
nonlinear oscillations rigorously, the error also fairly lies in an acceptable range.
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Figure 15: Comparison of solutions from both computational techniques and the difference (error) of DNN-based solution from 
Numerical approximation

Therefore, to study the dynamics of nonlinear periodic systems using DNNs, the choice of oscillatory activation functions is more 
radical and effective with faster training cum less computational cost. One can have a glance on Table 2 to get an idea about the 
performance and effectivity of different activation functions being discussed.

Therefore, to study the dynamics of nonlinear periodic systems using DNNs, the choice 

of oscillatory activation functions is more radical and effective with faster training cum 

less computational cost. One can have a glance on Table 2 to get an idea about the 

performance and effectivity of different activation functions being discussed. 

 

Activation function Training epochs Training time 

Tanh 35,000 18 minutes 33 seconds 

Mish 20,000 17 minutes 50 seconds 

Sine 6,000 3 minutes 16 seconds 

GCU 4,000 2 minutes 53 seconds 

ASU 2,000 1 minute 14 seconds 

Table 2 Summary of training DNNs to deal the modeled MEMS with different activation 

functions. 

 

Fig. 16 endorses the use of oscillatory activation functions for the cases of handling 

nonlinear periodic behaviors of systems. It also confirms the computational feasibility 

and effectiveness of proposed ASU to deal the complex, periodic and nonlinear dynamical 

systems. 
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Table 2: Summary of training DNNs to deal the modeled MEMS with different activation functions.

Figure 16: Time taken by each DNN architecture with different activation functions to simulate the solution of MEMS undergoing 
electric actuations

Fig. 16 endorses the use of oscillatory activation functions for the cases of handling nonlinear periodic behaviors of systems. It also 
confirms the computational feasibility and effectiveness of proposed ASU to deal the complex, periodic and nonlinear dynamical 
systems.
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4. Conclusion
This work provides a comprehensive analysis on the behaviors 
of different oscillatory and non-oscillatory activation functions 
regarding highly nonlinear and periodic systems. Experimental 
results clearly approved the computational feasibility, effectivity 
and robustness of oscillatory activation functions for handling 
pure periodic behaviors. The performance of integrated GCU 
with DNNs for MEMS is better then Sine, Tanh and Mish. The 
proposed ASU outperformed GCU in predicting the nonlinear 
periodic behaviors of electrically actuated microbeam under 
consideration. As a future work, the role of proposed activation 
function can also be examined on different tasks with other deep 
network structures, loss functions and optimization techniques.
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