A Systematic Review on Environmental Impact Pesticide Residues in Fruit and Vegetables and their Detection Methods

Yahya Bin Abdullah Alrashdi¹, Salem Said Jarooj Al-Touby¹ and Mohammad Amzad Hossain²*

¹School of Nursing, University of Nizwa, Oman
²School of Pharmacy, University of Nizwa, Oman

*Corresponding Author
Mohammad Amzad Hossain, School of Pharmacy, University of Nizwa, Oman.

Submitted: 2023, May 08; Accepted: 2023, June 29; Published: 2023, July 06

Abstract
Background: Pesticides are used mainly to protect agricultural crops from various insects since the old times. Four basic needs for human beings are namely food, water, cloth and shelter. For the survival of living things, food is mandatory and it plays a primary role. Based on global reports, the world population is increasing geometrically, therefore, the demand for food, also increasing.

Objectives: To fulfil this basic need, farmers produce food by applying various pesticides that can increase the production of food. Due to the unscientific way of pesticides use, the grains, fruits and vegetables accumulate the pesticides as. Pesticides contaminate foods which is hazardous for the consumer because the long-term consumption of these contaminated foods may cause serious health problems such as cancer, diabetes, hypertension etc.

Methods: Previous studies showed that more than 50% of analysed crops samples were contaminated by different pesticides namely organophosphate, pyrethroids and organochlorine. Several methods were used to isolate the pesticides based on the detection methods from the fruits and vegetables.

Results: Several studies showed that the pesticide residues in fresh fruits and vegetables namely tomatoes, apples, watermelons, mangos, grapes, and plums exceeded the FAO/WHO permissible limits. Several methods have been discovered and modified for the detection of pesticide residues in various foods, fruits, vegetables and water samples. Therefore, this present review aims to update the status of pesticide residues in various food items and their detection methods that are used currently for the detection of food contamination.

Conclusion: The present review is to explain different aspects of food contaminating pesticides and it will help the scientist with the current scenario of pesticide residues.

Keywords: Pesticides, Fruits and Vegetables, Contamination, Pesticides Isolation, Detection Methods

1. Background
The world population is currently reached 7.9 billion according to the United Nations report [1]. Every year the population increases by approximately 81 million. Therefore, it is very difficult to provide food for a large population. Even though the density of population in some of the countries is very high. They have a shortage of food for surviving in some places. However, the farmers use pesticides excessively to kill the harmful insecticides for the production of more food [1].

Most of the pesticides are organic chemical compounds that applied often to kill pests and insects. Pesticides are chemical or biological agents such as virus, bacteria, fungi, or disinfectant that prevents, incapacitates, kills, pests [2]. The use of pesticides in the agriculture sector is very common and the meaning of pesticides is to protect the plant product from the animal and insects. Those pesticides are commonly applied to destroy or control harmful agricultural pests that can destroy crops and livestock as well as reduce the production of crops. The applied pesticides are considered insecticides that kill insects, herbicides, rodents, and fungicides [1]. Based on the chemical structure and physical properties, pesticides are broadly classified as organochlorines, organophosphates, thiocarbamic derivatives, carboxylic acid derivatives, urea derivatives, phenolic derivatives,
the status of pesticide residues in various food items and their detection methods that are used currently for the detection of food contamination.

1.1. Types of Pesticides
Several types of pesticides are used in the agriculture sector to kill our crops from harmful insects. The classification depends on the chemical structures and their physical properties. Organochlorines, organophosphates, thiocarbamic derivatives, carboxylic acid derivatives, urea derivatives, phenolic derivatives, fluoride and copper-containing compounds, natural and synthetic pyrethroids are the major class of pesticides [2,31].

1.2. Organochlorines Pesticides
Organochlorine pesticides are the most commonly used pesticides in the agriculture sector. They are namely dichlorodiphenyltrichloroethane (DDT), dieldrin, endosulfan, heptachlor, dicrofol, methoxychlor etc. Globally, including in Oman, the farmers used frequently the said pesticides to protect fruits, and vegetables from insects. However, the farmers are use these pesticides uncontrolled way therefore many health effects are created due to exposure of pesticides [2,45,46]. Due to the health effect, DDT is band items most of the countries, but still it is used in some countries due to its easy application. The general side effects of organochlorine pesticide are endocrine problems, embryonic development, and haematological and hepatic problems [10,47-49].

1.3. Organophosphorus Pesticides
Organophosphates are also commonly used pesticides in the agriculture sector. The most important pesticides in this class are malathion, parathion, and dimethoate [49,50]. Some pesticides are known for disrupting potential endocrine disrupting properties [10,51-54]. They could be promoted as an ecological alternative to organochlorines [52]. The most commonly used pesticide is known as glyphosate. It has directly linked with inhibiting cholinesterase enzymes that can decrease the secretion of insulin, interrupt the normal metabolism function such as proteins, carbohydrates and fats [52,55]. In addition, the genotoxic effects and mitochondrial effects can cause oxidative stress and nervous and endocrine disruption systems [54,55]. Previously, several population-based studies were conducted and they showed that exposure to organophosphorus pesticides can cause serious health problems such as cardiovascular diseases, reproduction system, nervous system (CNS), and lymphoma [56-58].

Recently, some studies showed that the correlation between glyphosate and genetically modified crops could directly affect health deterioration in the USA. Correlation analyses showed the possible link between glyphosate use with different health problems and chronic diseases namely high blood pressure, diabetes, several types of strokes, autism, chronic kidney failure, Parkinson and Alzheimer’s diseases, and various types of cancer [47]. Additionally, glyphosate can cause gluten intolerance,
deficiency of essential amino acids, trace metals, reproductive, therefore, the risk of lymphoma increases [50].

1.4. Carbamate Pesticides
The third commonly used group of pesticides in the agriculture sector is the carbamate pesticides, namely aldicarb, carbofuran, and ziram. They have also a negative impact by disrupting the endocrine system, destroy the reproductive system, metabolic and mitochondrial functions [10,47,55,58]. However, several in vitro studies showed that carbamate pesticides can cause cancer and genotoxic effects, ovarian cancer, immune cells effect, and killer cells [33,42,43]. Research also showed that the carbaryl as well as carbamate pesticides, it can link with the hydrocarbon receptor and enhance dioxin toxicity [44-47,59].

1.5. Human Health Risk Assessment
The health risk and contaminated food with pesticides are related to each other. However, the assessment of pesticides in the foods is mandatory for the protection of our human health. Most of the foods available in the global markets are contaminated by harmful toxic chemicals such as pesticides residues, polycyclic aromatic hydrocarbons, toxic phenolic derivatives etc [28-30].

Due to the consumption of contaminated foods, toxic chemicals are deposited in the human body. Long-term consumption of these contaminated foods in our daily diet, results in several diseases such as high blood pressure, diabetes, strokes, autism, chronic kidney failure, Parkinson's and Alzheimer's diseases, and various types of cancer [34-43,60]. The FAO and WHO are recommended the permissible limit of pesticide residues in fruits and vegetables [15-18]. Monitoring of pesticide residues in our daily dietary foods is necessary to ensure the limit of pesticides and to compare with the limit provided by the WHO and FAO [22-34]. If the values of fruits and vegetables are within the permissible limit then it is, considered safe food. However, if the values exceed the permissible, it will create health problems like high blood pressure, diabetes, brain strokes, autism, chronic kidney disorders, Parkinson's and Alzheimer's diseases, and various types of ovarian cancer [34-43,60]. Therefore, in the current review, we compare the data that are available in the literature on pesticide residues in fruits and vegetables. The previous studies also showed that it is possible to assess human health risk by hazard risk index [48].

This review also aims to define the complete structure of pesticide residues in various fruits and vegetables. More recently, the QuEChERS extraction method has been considerably modified by the scientist to raise its effectiveness and sensitivity, particularly the cleanup methods. The modified method has been used simultaneously for the extraction of various classes of pesticide residues.

1.7. Detection of Pesticide Residues
Several chromatographic and spectroscopic methods are currently used for the separation and quantification of pesticide residues in the fruit and vegetable samples. They are namely gas chromatography-mass spectrometry (GC-MS) and liquid chromatography-mass spectrometry (LC-MS). Advanced sensitive mass spectrometry (MS/MS) coupled with GC and LC is currently used for the separation and quantification of pesticides to improve their detection performance. Nowadays, GC-MS/MS, LC-MS/MS, and MS/MS techniques are most commonly applied for pesticides detection are periodically reviewed [33-36].

Casado et al, developed a method for the analysis of pesticides in water samples by using a multi-residue analysis method [26]. Their method was applied to determine more than 250 pesticide residues in surface water samples. This method was also able to detect more than 215 pesticides with detection limits of quantification (LOQs) less than 5 ng/L.

Lara-Ortega et al., reported that dielectric barrier discharge ionization (DBDI) as an LC-MS ionization interface is a good and sensitive method for the determination of pesticide residues [27]. The advantage of this method is electrospray ionization (ESI). In addition, DBDI can detect organochlorine pesticide residues by using GC-MS, it also showed the performance of electrospray ionization (ESI).

Zhang et al., reported the development of a solid-phase microextraction method for the extraction of pesticide residues and it was detected by using gas chromatography mass spectrometry (SPME-GC-MS) [32]. Currently, this method is used to determine polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs), and pesticide residues in seaweeds and water samples.

2. Results and Discussion
Since the ancient times, both organic inorganic compounds and their salts substances were currently applied as pesticides to protect our food against pests and insects [47]. Various chemical pesticides are produced by agrochemical companies to enhance food production. The newly produced chemical substances with pesticide properties have been applied to the crops by the traditional agricultural methods. However, the current practices for agriculture sectors are based on the extensive use of pesticides that have been associated with negative impacts on human health, wildlife, and the natural environment [9,11,45-47].

Agriculture can control some important factors namely the growth of population, food safety, health hazards from pesticides, the resistance of pesticide, break the chain of the natural environment as well as climate change [14-20]. Recently, various updated concepts of food production have been constructed. One concept, the agriculture climate-smart, pursues several solutions regarding the climate change [61,62]. Secondly, an ongoing argument has occurred between the genetically modified engineered based pesticide-resistant plants, it will help us their safety food as well as the impact on pesticide use [28,50-54].

Besides, exposure to the mixture of pesticides and their real-life with possible protective or synergistic effects are determined by using in depth research. The mixture of toxic ingredients might cause anonymous adverse health effects in the human body. Therefore, it is mandatory to determine the safe levels of pesticides in foods exposure might miscalculate the health effects in the human body.

Different grains, vegetables, and fruits contains different classes of pesticide residues. The majority of pesticides is considered as a metabolic product that can remain excess in grains, vegetables and fruits when the farmer applies it to their crops. Several biochemical residues, especially chlorinated pesticides, might be accumulated in high levels in the human body [10]. The excess chemicals can be transferred through the food chain that can be quantified in various food products such as meat, poultry, fish, vegetable oils, nuts, fruits and vegetables [11,54,56-58]. Due to the insects and pests that can cause a loss in the quality and amount crops and their furnish products. Since the ancient times, several pesticides have been used to protect our crops before and after harvest. In addition, during the cultivation as well as the storage of crops farmers regularly use pesticides the residue of which can be found in the crops and the prepared foods items [12]. Sometimes farmers apply degradable pesticides such as organophosphates, carbamate, and insect growth regulators to the cereal grains during the storage period and before shipment to prevent loss caused by insects. [13]. The most applied pesticides in the agriculture sector are namely sulphur, endosulfan, methyl parathion, isoproturon, chlorpyrifos, malathion, carbendazim, butachlor, quinalphos, copper oxychloride, and dichlorvos for the protection of vegetables, fruits and food grains. Therefore, the vegetables, fruits and food grains accumulate pesticide residues in the highest levels that is legally tolerated by the food or feed when the pesticides are applied appropriately. Most of the international bodies namely European Union, WHO, FAO, and North American Free Trade Agreement regulate the pesticide content by setting the highest residue limits. However, these limits remain are not constant in different countries.

In south Asian countries such as India, Pakistan and Bangladesh agriculture sector is the most pesticide-consuming sector. Globally, about 14% of agricultural land is used for agricultural activities. It is also reported that 37-79% of the crops are lost due to the effect of harmful weeds that can be managed by applying of herbicides. Recently, the application of organochlorine pesticides (OCPs) is applied in the agriculture sector has potentially decrease in the developed and developing countries. Even though, some countries they are still using organochlorine pesticides (OCPs) in the agriculture sectors in illegal way.

3. Conclusion
Pesticides from food such as vegetables and fruits that can accumulate in the human body. Due to the consumption of food containing pesticides may cause a variety of human health effects such as damage CNS (central and nervous systems), ANS (autonomous nervous systems), cancer, hypertension, immune system disorder, diabetics, and reproductive system disorders. To minimize the negative impact on human health due to pesticide residues some precautions must be taken such as proper use of pesticides, washing properly, processing of the food products properly, and promoting organic farming, applying of natural pesticides as well as strictly following pesticide-related laws.

References
Distribution and risk assessment of 82 pesticides in Jiulong River and estuary in South China. Chemosphere, 144, 1177-1192.


