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Abstract
In this paper, we present a new person re-identification method based on an improved ConvNeXt network, called ConvNeXt-AP. 
This method effectively captures pedestrian features, reduces computing resources, and improves recognition accuracy. ConvNeXt 
is used as the main network to enhance the capture of local spatial features, with the final forward head module removed to retain 
more pedestrian features. Moreover, the segmentation strategy from the PCB_RPP network is incorporated at the end of the model 
to extract fine-grained information from the pedestrian image. To improve the effectiveness of feed-forward convolutional neural 
networks, the ConvNeXt model Block implements the non-parametric attention mechanism SimAM. This mechanism infers the 
three-dimensional attention weight of the feature map without adding parameters to the original network, resulting in significant 
performance improvement with minimal maintenance overhead. To achieve stability and faster convergence, the model achieves 
stability over time by using a warm-up strategy, and during training, a random erasing strategy is used to reduce the risk of 
overfitting and improve robustness to occluded pedestrians. Our method has been rigorously tested on multiple public datasets of 
person re-identification, and the results demonstrate superior performance compared to many state-of-the-art methods.
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1. Introduction
Person re-identification, also known as person re-identification, 
referred to as Reid, is a technology that uses computer vision 
technology to determine whether there is a specific person in an 
image or video sequence; in other words, person re-identification 
refers to the identification of target pedestrians in video sequences 
that may have been sourced from non-overlapping camera views. 
It is widely considered as a sub-problem of image retrieval. In 
addition, person re-identification technology can also be applied to 
criminal investigation, danger warning, unmanned supermarkets, 
lost rescue, and traffic monitoring. The traditional pedestrian re-
identification method is to manually extract image features, such 
as color, HOG, SIFT, etc. Then, XQDA or KISSME is used to learn 
the best similarity measure [1-4]. However, the traditional manual 
feature description ability is limited, and it is difficult to adapt to 
the large amount of data tasks in complex scenes. Moreover, in 
the case of large amount of data, the traditional metric learning 
method will become very difficult to solve. 

In recent years, deep learning represented by convolutional neural 
networks has achieved great success in the field of computer 
vision. It has defeated traditional methods in many tasks and 
even surpassed the human level to some extent [5, 6]. Recently, 
the Swin Transformer network model proposed by Zeet al [7]. 
based on the transformer model recently surpasses the CNN 
model in all areas of computer vision. The model can simulate 
visual entities of different scales and has a linear computational 
complexity, while the traditional convolutional network does 
not have such characteristics; the Swin Transformer can more 
effectively capture the local features in the image, while the 
traditional convolutional network can only capture the global 
features; swim Transformer can better handle visual entities of 
different scales, while traditional convolutional networks can 
only handle small-scale visual entities. However, the ConvNeXt 
network model proposed recently by Zhuang et al [8]. based on the 
Swin Transformer network model is comparable to the transformer 
model and performs better in accuracy and scalability. Compared 
with ViT, the ConvNeXt network is simpler and easier to train and 
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deploy than ViT; the ConvNeXt network is more efficient and can 
achieve higher performance with less computing resources [9]. 
the ConvNeXt network can better capture local spatial features, to 
better handle computer vision tasks, while retaining accuracy, easy 
deployment, and scalability. The representation learning model 
based on supervised learning is still a hot topic in current research.

However, in the current state of person re-identification 
technology, a considerable amount of issues still exist, including 
diverse feature extraction scales, detecting targets in low light 
environments, object occlusion, background interference, and 
target overlap. These issues can adversely affect the accuracy of 
person recognition. For advancing the person re-identification 
technology and augmenting the recognition accuracy of pedestrian 
features while reducing computational resources, this study puts 
forward an approach of person re-identification that employs the 
ConvNeXt-AP network, an improved version of the ConvNeXt 
network that exhibits exceptional performance, simplicity, and 
efficiency. The principal contributions of this research are the 
following.

1. Initially, we employ the ConvNeXt network as the 
backbone network to enhance the localization of spatial features. 
Subsequently, the final head module of the ConvNeXt network is 
eliminated to preserve more pedestrian features. Additionally, we 
incorporate the segmentation strategy from the PCB network at the 
end of the model to extract fine-grained details from the pedestrian 
image. 
2. The representation capability of feed-forward 
convolutional neural networks can be substantially enhanced 
through the inclusion of the non-parametric attention mechanism 
SimAM in the ConvNeXt model Block. The incorporation of this 
mechanism enables the inference of the three-dimensional attention 
weight of the feature map without adding any parameters to the 
original network. Moreover, it results in significant performance 
improvement with low maintenance overhead [10]. 
3. In order to achieve better convergence and overall 
effectiveness of the network, a warm-up strategy is implemented. 
This strategy enables the model to gradually stabilize, thus 
resulting in quicker and more effective convergence. Moreover, 
during training, the network model incorporates a Random erasing 
strategy, which proves to be a useful approach that effectively 
minimizes the risk of overfitting, bolsters the model's resistance to 
occluded pedestrians and ultimately enhances the model's overall 
effectiveness [11]. 

Upon comparison with the state-of-the-art methods, we observe 
that the approach presented in this study has yielded encouraging 
outcomes.

2. Related Work 
In recent years, person re-identification (Re-ID) has gained 
significant research interest due to its numerous applications and 
real-world significance. One of the most actively researched areas 
in this field is supervised machine learning, which enables full 

utilization of labeled data and aids in the extraction of discriminative 
feature representations that result in higher accuracy in person 
re-identification. Supervised person re-identification models can 
be broadly divided into three categories: representation learning, 
metric learning, and ranking learning. Metric learning research 
endeavors to design effective metric loss functions that improve 
model performance, while ranking optimization research aims to 
optimize sequence of results to enhance accuracy. Overall, the 
central focus in supervised learning is to improve the accuracy 
of the model by designing effective features and optimizing the 
performance of its components. 

Representation learning is a crucial task in computer vision and 
can be categorized into four different types: global feature learning, 
local feature learning, auxiliary feature learning, and video feature 
learning [12]. Global feature learning involves extracting features 
from the entire body image. Typically, common approaches of 
improving global feature learning include leveraging attention 
mechanisms such as channel attention, spatial attention, as well 
as cross-image attention, and multi-scale fusion [13-21]. Local 
feature learning is a method that involves extracting features 
from localized image regions, which are subsequently combined 
with whole-body features to produce the final pedestrian features. 
Various techniques have been developed for this purpose, 
including the component-based convolution baseline for horizontal 
partitioning (PCB), pose-driven deep convolution (PDC), multi-
scale context-aware network (MSCAN), long-term and short-term 
memory recursive network, second-order non-local attention, 
interaction-and-aggregation (IA), the combination of global and 
local features (GLAD, SCPNet), the adaptive selection of body 
parts for feature extraction using masks (MaskReID), modeling 
high-order relationships and topological structures of local features 
(HOReID), and feature pyramids at multiple scales (HPM) [22-33]. 
Other introduced methods include randomly dropping some feature 
map blocks (BDB), weighting the importance of different body 
parts (CAMA) and adaptively learning features across multiple 
scales (OSNet) to improve the performance of the algorithms 
[34-36]. The process of auxiliary feature learning involves 
incorporating additional information to improve subsequent 
feature learning stages. This additional information may include 
pedestrian attributes as semantic information, different orientation 
within the image as perspective information, representation of data 
under different cameras as domain information, GAN-generated 
images as well as random erasing and normalization methods [37-
51]. Video feature learning on the other hand utilizes temporally 
distributed image frames to extract temporal features and combine 
frames to construct a pedestrian feature expression [52-54].

Metric learning seeks to establish the similarity between two 
images through the network, while simultaneously mapping 
the acquired features to a new space [55]. Thus, the aim is to 
ensure that the distance between two images depicting the same 
pedestrian (positive sample pairs) is as minimal as possible, and 
the distance between two images of different pedestrians (negative 
sample pairs) is as significant as possible. Prior to the emergence 
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of deep learning, metric learning was extensively researched 
using methods such as the Mahalanobis distance function and 
the construction of a projection matrix [56-58]. Currently, metric 
learning utilizes loss function to modify network parameters and 
enhance image recognition [59]. The prevalent loss functions in 
current research include Verification Loss, Identity Loss, Triplet 
loss, and Circle loss [60-66].

Identity Loss treats Re-ID training as an image classification 
problem, where various images depicting the same pedestrian are 
categorized into a single group. The common method employed 
is the SoftMax cross-entropy loss function. Verification Loss 
considers Re-ID training as an image matching problem, where 
the objective is to identify whether two images belong to the same 
pedestrian for binary classification learning. The most commonly 
used methods are contrasting loss function and binary classification 
loss function [67, 68]. Triplet Loss framework considers Re-ID 
training as an image retrieval problem. When comparing same 
pedestrian images against those of different pedestrians, there 
exists a greater similarity in feature distance. Circle loss, a novel 
loss function based on Triplet, aims to address this discrepancy. 
The primary improvement of Circle loss is that it modifies the 
original Triplet loss function, which is optimized by the mean 
force exerted on both positive and negative samples. However, 
this approach causes difficulty distinguishing between positive 
and negative samples once the model reaches convergence. On the 
other hand, Circle loss assigns differing weights to positive and 
negative samples, which allows for better discrimination between 
the two. It also regulates the gradient contributions of positive and 
negative samples, producing a more discriminative model.

Image sorting optimization primarily entails optimizing the order 
of images retrieved. In general, after extracting the features of 
a target image and calculating the distance between this target 
image and the images in the match (Gallery), a ranking result of 
matched images is obtained [69-70]. This ranking result is used 

to calculate the Rank-n Accuracy and draw the CMC curve. This 
process may include re-ranking and rank fusion techniques. Re-
ranking involves optimizing the initial sorting list by utilizing 
inter-library similarity. Sorting fusion combines multiple ranking 
lists generated from disparate approaches to improve retrieval 
performance [71-73]. Our goal is to enhance pedestrian feature 
capture while reducing computational resources and improving 
person re-identification accuracy. To accomplish this, we analyze 
the advantages and disadvantages of supervised learning, and 
introduce a new pedestrian re-identification method based on an 
improved ConvNeXt network, named ConvNeXt-AP network.

3. Approach
In this section, we present the flowchart in Fig. 1 which illustrates 
the proposed person ReID model. The training phase comprises 
four modules: preprocessing, training strategy, network model, and 
classification. Image preprocessing is required to reduce interferences 
in input features. The completion of training set transformation 
enriches the set, improves the model's generalization ability, and 
reduces interference feature introduction while enhancing model 
robustness. The neural network is highly unstable at the start of 
training. To mitigate risk of overfitting, two training strategies are 
employed, namely, learning rate preheating and random erasing. 
These strategies enhance the model's robustness and promote 
convergence to occlusion. The network model module employs an 
improved ConvNeXt network called ConvNeXt-AP network. This 
network model removes the last ConvNeXt network head module, 
retaining more pedestrian features. Additionally, the segmentation 
strategy in the PCB_RPP network is incorporated at the model's 
end to extract fine-grained pedestrian image information. The 
addition of the non-parametric attention mechanism, SimAM, to 
the ConvNeXt model block significantly improves the ability of 
the network to extract pedestrian image features while incurring 
low overhead. Pedestrian re-identification is accomplished through 
the classification module.
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Fig. 1 Person ReID flowchart. 
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instability at the beginning of training, aiming to facilitate better convergence. By starting with a 

smaller learning rate and gradually increasing it, the warm-up strategy helps the model adapt more 

effectively to the features of the training data, thereby improving training efficiency and 

performance. An example of the learning rate warm-up process is illustrated in Fig.2.The learning 

rate warm-up not only aids in model convergence and prevents getting stuck in local optima but 

also enhances the speed of convergence and overall performance. 

As shown in Fig.2., in this example, the total number of epochs is set to 50, warm-up epochs is set 

to 5, lr_init is set to 0.02, and lr_max is set to 0.1. In the learning rate warm-up strategy, lr_init 

represents the initial learning rate during the warm-up phase, gradually increasing the learning rate 

for faster model convergence. On the other hand, lr_max is a relatively large maximum learning 

rate used after the warm-up period to continue training the model for improved results. During the 

first 5 epochs (the warm-up phase), the learning rate gradually increases from 0.02 to 0.1, speeding 

up the model's convergence. After the warm-up phase, the learning rate gradually decreases to 

maintain training stability. Additionally, in the later stages of the example, the model employs a 

Figure 1: Person ReID flowchart.

3.1 Strategy 
3.1.1 Warm-up
The learning rate warm-up strategy refers to gradually increasing 
the learning rate during the initial stages of training a neural 
network model. This strategy is employed to address the network's 
instability at the beginning of training, aiming to facilitate better 
convergence. By starting with a smaller learning rate and gradually 
increasing it, the warm-up strategy helps the model adapt more 

effectively to the features of the training data, thereby improving 
training efficiency and performance. An example of the learning 
rate warm-up process is illustrated in Fig.2.The learning rate 
warm-up not only aids in model convergence and prevents getting 
stuck in local optima but also enhances the speed of convergence 
and overall performance.

As shown in Figure.2., in this example, the total number of epochs 
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is set to 50, warm-up epochs is set to 5, lr_init is set to 0.02, and 
lr_max is set to 0.1. In the learning rate warm-up strategy, lr_init 
represents the initial learning rate during the warm-up phase, 
gradually increasing the learning rate for faster model convergence. 
On the other hand, lr_max is a relatively large maximum learning 
rate used after the warm-up period to continue training the model 
for improved results. During the first 5 epochs (the warm-up 
phase), the learning rate gradually increases from 0.02 to 0.1, 
speeding up the model's convergence. After the warm-up phase, 
the learning rate gradually decreases to maintain training stability. 
Additionally, in the later stages of the example, the model employs 
a cosine annealing strategy to adjust the learning rate. This strategy 
gradually reduces the learning rate in a cosine function manner as 

the training progresses. Unlike other learning rate decay strategies, 
the cosine annealing ensures a smoother decrease in the learning 
rate, preventing the model from failing to converge due to a rapid 
decline in the learning rate.

The main purpose of the learning rate warm-up strategy is to 
accelerate convergence and improve training efficiency in the initial 
stages of training. The cosine annealing strategy, implemented 
in the later stages, helps prevent oscillations and overfitting by 
gradually adjusting the learning rate. In summary, employing these 
two strategies during model training effectively enhances stability, 
training speed, convergence, and generalization capabilities of 
deep learning models.
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The random erasure strategy is a technique to augment data for training deep learning models. 

During the training process, this method randomly selects a rectangular area in the image and 

erases its pixels with random values, thus generating training images with varying degrees of 

occlusion to reduce overfitting and increase robustness to occlusion. This is illustrated in Fig. 3, 

where after random erasing, certain parts of the original image are covered by a rectangular box 

filled with random values to simulate occlusion and enhance the sample data. By adopting the 

Figure 2: Learning rate change using Cosine Warm-up.

3.1.2 Random Erasing
The random erasure strategy is a technique to augment data for 
training deep learning models. During the training process, this 
method randomly selects a rectangular area in the image and 
erases its pixels with random values, thus generating training 
images with varying degrees of occlusion to reduce overfitting 
and increase robustness to occlusion. This is illustrated in Fig. 3, 

where after random erasing, certain parts of the original image are 
covered by a rectangular box filled with random values to simulate 
occlusion and enhance the sample data. By adopting the random 
erasing strategy, the risk of overfitting can be effectively reduced 
and the model can be made more robust to occlusions, thereby 
improving its overall performance.
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3.2 Preprocessing 

The multitude of factors, including the large or small image sizes in the dataset, the various 

pedestrian postures, differing image resolutions, occlusions, and changes in image domain can 

contribute to interference features during pedestrian feature extraction. These features can result 

in less effective algorithms. Hence, image preprocessing is necessary to minimize these 

disturbances. Data augmentation, also known as image preprocessing, enriches the training set 

with transformed data to improve the model's generalization ability. In this study, we employed 

the image preprocessing methods of Resize, Random Horizontal Flip, and Normalization during 

model training to alleviate interference features. The aforementioned techniques provided 

robustness to the model by reducing the introduction of interference features. 

Figure 3: Random Erasing.
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3.2 Preprocessing 
The multitude of factors, including the large or small image sizes 
in the dataset, the various pedestrian postures, differing image 
resolutions, occlusions, and changes in image domain can contribute 
to interference features during pedestrian feature extraction. These 
features can result in less effective algorithms. Hence, image 
preprocessing is necessary to minimize these disturbances. Data 
augmentation, also known as image preprocessing, enriches 
the training set with transformed data to improve the model's 
generalization ability. In this study, we employed the image 
preprocessing methods of Resize, Random Horizontal Flip, and 
Normalization during model training to alleviate interference 
features. The aforementioned techniques provided robustness to 
the model by reducing the introduction of interference features.

3.3 Network Model：ConvNeXt-AP 
In recent years, Transformer-based models, such as ViT, have 
shown superior performance compared to traditional CNN models 
in various computer vision tasks. Swin Transformer, a notable 
example of Transformer-based models, has drawn significant 
attention due to its remarkable performance. Unlike traditional 
convolutional networks, Swin Transformer can simulate visual 
entities at varying scales, while achieving linear computational 
complexity. Swin Transformer models excel at capturing local 
features in images, which traditional convolutional networks, 
designed for capturing global features, struggle with. Additionally, 
Swin Transformer models demonstrate better performance in 
handling visual entities of different scales compared to traditional 
convolutional networks that can only handle small-scale visuals.

Despite the superiority of Transformer-based models over 
traditional CNN models, Zhuang et al. introduced ConvNeXt, a 
novel CNN model that draws inspiration from Swin Transformer 
based on ResNet architecture. ConvNeXt outperforms Swin 
Transformer in image classification and detection segmentation 
tasks, while still maintaining similar scalability as vision 

transformers, thus achieving better performance as data volume 
and model size increase. ConvNeXt networks present simpler 
and more efficient alternatives to ViT, as they are easier to train, 
deploy, and require fewer computing resources while achieving 
higher accuracy. Unlike vision transformer models, ConvNeXt 
models excel in capturing local spatial features, making them 
more suitable for a variety of computer vision tasks. Additionally, 
ConvNeXt models exhibit high accuracy and scalability, while 
being easy to deploy, making them ideal candidates for various 
computer vision applications.

The article proposes a methodology, named ConvNeXt-AP, 
that aims to improve the recognition accuracy of person re-
identification, capture local spatial features, and reduce computing 
resources requirements. This method relies on an improved 
ConvNeXt network architecture, presented in Figure. 4, which 
is simple, efficient and highly effective. The ConvNeXt network 
architecture is employed in the methodology as the backbone 
network, to capture local spatial features better. The forward_head 
module of ConvNeXt is removed to retain more person features. 
At the end of the model, the segmentation strategy from the PCB 
network is introduced to extract fine-grained information from the 
person image. The refined part pooling (RPP) strategy from PCB 
is utilized to address the problem of including extreme values in 
the fragments during uniform partitioning. The RPP redistributes 
these extreme values to more similar fragments to enhance the 
content consistency of each fragment, leading to better model 
performance. To enhance the feedforward convolutional neural 
network's representation ability effectively, the article introduced 
the SimAM module, a parameter-free attention mechanism, in the 
ConvNeXt model block, introduced in Fig. 5. Significantly, the 
SimAM module can infer the three-dimensional attention weight 
of the feature map without adding parameters to the original 
network, leading to considerable performance improvements with 
low costs, resulting in better model performance.
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Figure 4: The ConvNeXt-AP Network.
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Fig. 5 ConvNeXt-A Block. 

3.3.1 ConvNeXt network 
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the network's FLOPs and thereby enhancing its efficiency in handling computer vision tasks, the 
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1:1:2:1 in ResNet50, is adjusted to 1:1:3:1. Secondly, Patchify replaces the conventional down-

sampling module stem, typically comprising a convolutional layer with a 7x7 kernel size and a 

stride of 2, followed by a max-pooling layer with a 2 stride - both downsampling both height and 

width by a factor of 4. Patchify, like Swin Transformer, uses a large, non-overlapping 

convolutional layer for downsampling. These design modifications enhance the ConvNeXt 

model's ability to capture local spatial features efficiently while reducing FLOPs and handling 

computer vision tasks more effectively. 
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interacts with the outputs of other groups to capture global feature information, thus enhancing the 

Figure 5: ConvNeXt-A Block.

3.3.1 ConvNeXt Network 
To improve the ConvNeXt model's performance in capturing local 
spatial features while reducing the network's FLOPs and thereby 
enhancing its efficiency in handling computer vision tasks, the 
model's macro design is divided into two main parts. Firstly, the 
stacked block ratio, initially 1:1:2:1 in ResNet50, is adjusted to 
1:1:3:1. Secondly, Patchify replaces the conventional down-
sampling module stem, typically comprising a convolutional layer 
with a 7x7 kernel size and a stride of 2, followed by a max-pooling 
layer with a 2 stride - both downsampling both height and width 
by a factor of 4. Patchify, like Swin Transformer, uses a large, 
non-overlapping convolutional layer for downsampling. These 
design modifications enhance the ConvNeXt model's ability to 
capture local spatial features efficiently while reducing FLOPs and 
handling computer vision tasks more effectively.

In ConvNeXt, the group convolution employs cross-group 
interactions. Each group's output interacts with the outputs of other 
groups to capture global feature information, thus enhancing the 
representation power of the network. This results in an improved 
representation power of the network, without an increase 
in computational complexity. Furthermore, ConvNeXt uses 
depthwise convolution, which reduces computational load, and 
improves model accuracy. Although the number of channels could 
be increased from 64 to 96, ConvNeXt increases it from 32 to 64.

The bottleneck layer structure in ConvNeXt model, initially used 
in ResNet, consists of a small middle and two large ends aiming 
to reduce the number of parameters and FLOPs. Conversely, 
MobileNet v2's structure includes a large middle and two small 
ends, to prevent information loss. In addition, the MLP module 
in Transformer is analogous to the inverse bottleneck structure. 

ConvNeXt also employs the inverse bottleneck layer structure, 
leading to decreased parameter and FLOPs count, thereby 
enhancing the network's efficiency.

The use of smaller kernel sizes in mainstream CNN architectures 
can effectively decrease the number of parameters and 
computational complexity. Additionally, 3x3 convolutions have 
GPU efficient implementations. Swin-T, on the other hand, uses 
a larger window size of 7x7, which can capture more local details 
than the 3x3 convolution window. ConvNeXt also explores the 
use of larger kernel sizes. The results of experiments indicate that 
increasing the kernel size offers potential to improve the model's 
performance. Nonetheless, a 7x7 convolutional kernel is selected 
to capture more local details after the performance has saturated 
following experiments.

At the micro level, ConvNeXt modifies the activation function 
by replacing ReLU with GELU to align it with other metrics. 
Transformer and ConvNeXt employ only a few activation 
functions with Transformer using the activation function solely 
on one MLP, and ConvNeXt adding GELU activation functions 
only between two 1x1 convolutions. ConvNeXt derives insight 
from Transformer and includes Batch Normalization only after the 
first convolution, swaps out all other instances of BN for Layer 
Normalization, and introduces a separate downsampling layer. 
Consequently, these micro designs lead to decreased parameter 
and FLOPs count, enhance the network's efficiency, improve 
model convergence, and reduce overfitting.

3.3.2 The Segmentation Strategy 
The segmentation strategy can utilize any classification network 
without a hidden fully connected layer. In order to balance 
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network simplicity and performance, the forward_head module 
was removed from the end of the ConvNeXt network. The 
segmentation strategy was added thereafter to extract granular 

information regarding the pedestrian images. Fig. 6 illustrates this 
approach.
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1) Initially, the removed forward_head module of ConvNeXt 
network is employed as the backbone. 
2) The image of size 384×128×3 is processed by the backbone to 
obtain a tensor T of size 12×6×f along the channel dimension. 
3) The tensor T is then partitioned into p horizontal stripes, where 
an average pooling (AP) operation is performed on f, resulting in 
g. 
4) Convolutional layers are utilized to lower the dimensionality 
and produce h, which is 256- dimensional. 
5) The classifier takes each h and is fine-tuned using a softmax 
optimization technique to predict the ID. The softmax loss function 

is applied separately for each classification layer to optimize their 
weights. 

Additionally, we incorporate the refined part pooling (RPP) 
strategy of the PCB model to tackle the issue of extreme values 
being present in fragments during standard partitioning. RPP 
redistributes these extreme values among fragments with similar 
content to improve the content consistency. As a result, this 
technique enhances the content consistency of each fragment and, 
in turn, heightens the model's performance. This is shown in Fig. 
7.
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Figure 7: A rendering of RPP strategy.

The RPP strategy reassigns extreme values present in f to similar parts depending on the resemblance between f and gi. The steps 
involved in this implementation are as follows:

1) part classifier: 
Initially, the part classifier computes the probability of f being present in region Pi by using the weight matrix W.
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resemblance between f and gi. The steps involved in this implementation are as follows: 

1) part classifier： 

Initially, the part classifier computes the probability of f being present in region Pi by using the 

weight matrix W. 

P(Pi ∣ f) = softmax(Wi
Tf) = exp(Wi

Tf)
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j=1 exp(Wj

Tf)
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2) sampling operation： 2) sampling operation:
Then, according to the probability P (Pi |f) of f belonging to the region Pi, a new region partition is performed with P as the sampling 
weight of Pi.
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Then, according to the probability P (Pi |f) of f belonging to the region Pi, a new region partition is 

performed with P as the sampling weight of Pi. 

Pi = {P(Pi ∣ f) × f, ∀f ∈ F} (2) 
The PCB+RPP structure is obtained by replacing the avg pooling steps in the PCB structure with 

the two steps 1) and 2) described above, Where Pi represents the i-th horizontal partition. As shown 

in Fig. 8. 
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Fig. 8 PCB+RPP structure. 

3.3.3 The SimAM Attention Module 

SimAM is a novel attention module for Convolutional Neural Networks (CNN) that is compatible 

with existing architectures such as ResNet and VGG, and delivers superior performance in 

multiple computer vision tasks. SimAM is a simple yet effective approach that infers the three-

dimensional attention weights of feature maps without adding parameters to the original network, 

resulting in no memory overhead or extra computational resources. We integrate the parameter-

free attention mechanism SimAM into the ConvNeXt model block, as illustrated in Figure 5. This 

effectively enhances the model's performance and robustness while reducing computational costs. 

Most of existing attention modules generate 1-D or 2-D weights from features X,and then expand 

the generated weights for channel (a) and spatial (b) attention. As shown in Fig. 9. 
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3.3.3 The SimAM Attention Module
SimAM is a novel attention module for Convolutional Neural 
Networks (CNN) that is compatible with existing architectures 
such as ResNet and VGG, and delivers superior performance in 
multiple computer vision tasks. SimAM is a simple yet effective 
approach that infers the three-dimensional attention weights of 
feature maps without adding parameters to the original network, 
resulting in no memory overhead or extra computational resources. 

We integrate the parameter-free attention mechanism SimAM 
into the ConvNeXt model block, as illustrated in Figure 5. This 
effectively enhances the model's performance and robustness 
while reducing computational costs. 
Most of existing attention modules generate 1-D or 2-D weights 
from features X,and then expand the generated weights for channel 
(a) and spatial (b) attention. As shown in Figure 9.
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Fig. 9 1-D or 2-D Attention Module. 

Full 3-D weights is better than conventional 1-D and2-D attentions. SimAM Attention Module 

 propose to refine that features with full 3-D weights, as shown in Fig. 10. 
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Fig. 10 SimAM Attention Module. 

 

The simAM attention module assigns a unique weight to each neuron. The following energy 

function for each neuron: 

et(wt, bt, 𝐲𝐲, xi) = 1
M − 1 ∑(−1 − (wtxi + bt))2 + (1 − (wtt + bt))2 + λwt

2
M−1

i=1
(3) 

wt = 2(t − μt)
(t − μt)2 + 2σt

2 + 2λ (4) 

bt = − 1
2 (t + μt)wt (5) 

Where  𝑤𝑤𝑡𝑡 and 𝑏𝑏𝑡𝑡are weight and bias the transform .Where t and 𝑥𝑥𝑖𝑖 are the target neuron and other 

neurons in a single channel of the input feature.X ∈ RC×H×W. i is index over spatial dimension 18 
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Figure 10: SimAM Attention Module.

The simAM attention module assigns a unique weight to each neuron. The following energy function for each neuron:
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and M = H × W is the number of neurons on that channel.  μt =
1

M−1∑ xiM−1
i=1 and σt2 =

1
M−1∑ (xi − μt)2

M−1
i  are mean and variance calculated over all neurons except t in that channel. 

The simAM attention module use a scaling operator rather than an addition for feature refinement. 

The whole refinement phase of our module is: 

X
~
= sigmoid (1E)⊙ X (6) 

where E groups all 𝑒𝑒𝑡𝑡∗across channel and spatial dimensions. 

In short, it can be easily inserted into convolutional neural networks to improve the capture of 

image detail features. 

3.4 Loss Functions 

In supervised learning, regardless of whether it is a regression or a classification problem, 

employing a loss function is essential. The loss function measures the inconsistency between the 

predicted value f(x) and the actual value y of the model. If the loss function is small, it implies that 

the machine learning model is proximate to the real data distribution, and, therefore, performs well. 

If the loss function is large, it implies that the machine learning model differs significantly from 

the true data distribution and thereby performs poorly. The main training objective is to apply 

optimization methods to determine the model parameters that correspond to the loss function's 

least value. So, in conjunction with the benefits of the Id loss and Triple loss, Circle loss is 

introduced as an alternative loss function to enhance the accuracy, efficiency, and differentiation 

of the pedestrian re-identification algorithm. Circle loss is a radius-based loss function utilized 

mainly for deep neural network classification tasks. Its primary objective is to address the issue of 

imbalanced intra-class distribution and unclear inter-class distance while also preventing 

overfitting. Circle loss applies weight to the positive and negative sample pairs to regulate the 
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The simAM attention module use a scaling operator rather than an addition for feature refinement. The whole refinement phase of our 
module is:

where E groups all 𝑒𝑡∗across channel and spatial dimensions.
In short, it can be easily inserted into convolutional neural networks 
to improve the capture of image detail features.

3.4 Loss Functions
In supervised learning, regardless of whether it is a regression or a 
classification problem, employing a loss function is essential. The 
loss function measures the inconsistency between the predicted 
value f(x) and the actual value y of the model. If the loss function 
is small, it implies that the machine learning model is proximate to 
the real data distribution, and, therefore, performs well. If the loss 
function is large, it implies that the machine learning model differs 
significantly from the true data distribution and thereby performs 
poorly. The main training objective is to apply optimization 
methods to determine the model parameters that correspond to 
the loss function's least value. So, in conjunction with the benefits 

of the Id loss and Triple loss, Circle loss is introduced as an 
alternative loss function to enhance the accuracy, efficiency, and 
differentiation of the pedestrian re-identification algorithm. Circle 
loss is a radius-based loss function utilized mainly for deep neural 
network classification tasks. Its primary objective is to address 
the issue of imbalanced intra-class distribution and unclear inter-
class distance while also preventing overfitting. Circle loss applies 
weight to the positive and negative sample pairs to regulate the 
gradient involvement of each sample pair. Ultimately, an enhanced 
model with greater discriminatory power can be achieved. 

Given K intra-class similarity scores and L inter-class similarity 
scores, the formula for Circle loss is derived by maximizing intra-
class similarity and minimizing inter-class similarity. The formula 
is as follows:
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discriminatory power can be achieved. 

Given K intra-class similarity scores and L inter-class similarity scores, the formula for Circle loss 

is derived by maximizing intra-class similarity and minimizing inter-class similarity. The formula 

is as follows: 
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Lcircle =  log [1 + ∑ exp (γαn
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j ) − ∑ exp(−γαp
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where γ is a scaling factor, 𝛼𝛼𝑛𝑛
𝑗𝑗  、𝛼𝛼𝑝𝑝

𝑖𝑖  are non-negative weighting factors, 𝑠𝑠𝑛𝑛
𝑗𝑗  is the inter-class 

similarity, and 𝑠𝑠𝑝𝑝
𝑖𝑖  is the maximization of intra-class similarity. 

Circle loss has several advantages, including its ability to address the issues of uneven intra-class 

distribution and unclear inter-class distances. By projecting comparable samples to neighboring 

locations, Circle loss can increase the margin between classes and enhance the model's 

classification accuracy. Moreover, Circle loss can also prevent overfitting by preventing the model 

from overfitting on the training dataset and increasing its generalization capacity. A combination 

of traditional performance metrics, including Rank-n, CMC, and mAP, are employed to enhance 

the precision, efficiency, and significance of pedestrian re-identification algorithms. 

4 Data and Realization 

To validate the efficiency of the ConvNeXt-AP network, we carried out experiments on three 

widely utilized person ReID datasets. 

20 

gradient involvement of each sample pair. Ultimately, an enhanced model with greater 

discriminatory power can be achieved. 

Given K intra-class similarity scores and L inter-class similarity scores, the formula for Circle loss 

is derived by maximizing intra-class similarity and minimizing inter-class similarity. The formula 

is as follows: 

Lcircle = log [1 + ∑ ∑ exp (γ(αn
j sn

j − αp
i sp

i ))
L

J=1

K

i=1
] (7) 

Lcircle =  log [1 + ∑ exp (γαn
j sn

j ) − ∑ exp(−γαp
i sp

i )
L

J=1

K

i=1
] (8) 

where γ is a scaling factor, 𝛼𝛼𝑛𝑛
𝑗𝑗  、𝛼𝛼𝑝𝑝

𝑖𝑖  are non-negative weighting factors, 𝑠𝑠𝑛𝑛
𝑗𝑗  is the inter-class 

similarity, and 𝑠𝑠𝑝𝑝
𝑖𝑖  is the maximization of intra-class similarity. 

Circle loss has several advantages, including its ability to address the issues of uneven intra-class 

distribution and unclear inter-class distances. By projecting comparable samples to neighboring 

locations, Circle loss can increase the margin between classes and enhance the model's 

classification accuracy. Moreover, Circle loss can also prevent overfitting by preventing the model 

from overfitting on the training dataset and increasing its generalization capacity. A combination 

of traditional performance metrics, including Rank-n, CMC, and mAP, are employed to enhance 

the precision, efficiency, and significance of pedestrian re-identification algorithms. 

4 Data and Realization 

To validate the efficiency of the ConvNeXt-AP network, we carried out experiments on three 

widely utilized person ReID datasets. 

20 

gradient involvement of each sample pair. Ultimately, an enhanced model with greater 

discriminatory power can be achieved. 

Given K intra-class similarity scores and L inter-class similarity scores, the formula for Circle loss 

is derived by maximizing intra-class similarity and minimizing inter-class similarity. The formula 

is as follows: 

Lcircle = log [1 + ∑ ∑ exp (γ(αn
j sn

j − αp
i sp

i ))
L

J=1

K

i=1
] (7) 

Lcircle =  log [1 + ∑ exp (γαn
j sn

j ) − ∑ exp(−γαp
i sp

i )
L

J=1

K

i=1
] (8) 

where γ is a scaling factor, 𝛼𝛼𝑛𝑛
𝑗𝑗  、𝛼𝛼𝑝𝑝

𝑖𝑖  are non-negative weighting factors, 𝑠𝑠𝑛𝑛
𝑗𝑗  is the inter-class 

similarity, and 𝑠𝑠𝑝𝑝
𝑖𝑖  is the maximization of intra-class similarity. 

Circle loss has several advantages, including its ability to address the issues of uneven intra-class 

distribution and unclear inter-class distances. By projecting comparable samples to neighboring 

locations, Circle loss can increase the margin between classes and enhance the model's 

classification accuracy. Moreover, Circle loss can also prevent overfitting by preventing the model 

from overfitting on the training dataset and increasing its generalization capacity. A combination 

of traditional performance metrics, including Rank-n, CMC, and mAP, are employed to enhance 

the precision, efficiency, and significance of pedestrian re-identification algorithms. 

4 Data and Realization 

To validate the efficiency of the ConvNeXt-AP network, we carried out experiments on three 

widely utilized person ReID datasets. 

20 

gradient involvement of each sample pair. Ultimately, an enhanced model with greater 

discriminatory power can be achieved. 

Given K intra-class similarity scores and L inter-class similarity scores, the formula for Circle loss 

is derived by maximizing intra-class similarity and minimizing inter-class similarity. The formula 

is as follows: 

Lcircle = log [1 + ∑ ∑ exp (γ(αn
j sn

j − αp
i sp

i ))
L

J=1

K

i=1
] (7) 

Lcircle =  log [1 + ∑ exp (γαn
j sn

j ) − ∑ exp(−γαp
i sp

i )
L

J=1

K

i=1
] (8) 

where γ is a scaling factor, 𝛼𝛼𝑛𝑛
𝑗𝑗  、𝛼𝛼𝑝𝑝

𝑖𝑖  are non-negative weighting factors, 𝑠𝑠𝑛𝑛
𝑗𝑗  is the inter-class 

similarity, and 𝑠𝑠𝑝𝑝
𝑖𝑖  is the maximization of intra-class similarity. 

Circle loss has several advantages, including its ability to address the issues of uneven intra-class 

distribution and unclear inter-class distances. By projecting comparable samples to neighboring 

locations, Circle loss can increase the margin between classes and enhance the model's 

classification accuracy. Moreover, Circle loss can also prevent overfitting by preventing the model 

from overfitting on the training dataset and increasing its generalization capacity. A combination 

of traditional performance metrics, including Rank-n, CMC, and mAP, are employed to enhance 

the precision, efficiency, and significance of pedestrian re-identification algorithms. 

4 Data and Realization 

To validate the efficiency of the ConvNeXt-AP network, we carried out experiments on three 

widely utilized person ReID datasets. 

Circle loss has several advantages, including its ability to address 
the issues of uneven intra-class distribution and unclear inter-
class distances. By projecting comparable samples to neighboring 
locations, Circle loss can increase the margin between classes and 
enhance the model's classification accuracy. Moreover, Circle loss 
can also prevent overfitting by preventing the model from overfitting 
on the training dataset and increasing its generalization capacity. A 
combination of traditional performance metrics, including Rank-n, 
CMC, and mAP, are employed to enhance the precision, efficiency, 
and significance of pedestrian re-identification algorithms.

4 Data and Realization 
To validate the efficiency of the ConvNeXt-AP network, we carried 
out experiments on three widely utilized person ReID datasets.

4.1 CUHK03 
The CUHK03 dataset is widely used in person re-identification 
research and comprises pedestrian images taken on the Chinese 
University of Hong Kong (CUHK) campus. The dataset was 
obtained from six stationary surveillance cameras capturing each 
pedestrian identity from two non-overlapping camera views, 
resulting in an average of 4.8 images per pedestrian for each 
camera view. The dataset contains 1467 pedestrians, the training 
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set consisting of 767 entities and the testing set consisting of 700 
entities. For each pedestrian in the testing set, one image is picked 
randomly from all cameras to form the query set, while the other 
pedestrian images in the testing set comprise the gallery set [74].

4.2 Market-1501
The Market-1501 dataset was collected in 2015 during the summer 
at Tsinghua University campus, comprising 1501 pedestrians 
and 32,668 detected pedestrian bounding boxes captured by six 
cameras, one low-resolution and five high-resolution. At least two 
cameras captured each pedestrian, and in some cases, there exist 
multiple images of the same person in one camera. The training 
dataset is composed of 751 individuals and includes 12,936 images 
in total, with an average of 17.2 training images per individual. The 
750-individual test set includes 19,732 images, with an average of 

26.3 test images per individual [75].

4.3 DukeMTMC-reID
The DukeMTMC-reID dataset is a substantial pedestrian image 
dataset designed for person re-identification, which became 
available in 2017 [76]. It was primarily obtained from 8 static 
cameras positioned across Duke University campus. The 
DukeMTMC-reID dataset has been frequently adopted as a 
benchmark dataset in the field of reID, with numerous models 
proposed by both academia and industry. The dataset encompasses 
36,411 images of 1,812 unique pedestrians, with 1,404 distinct 
pedestrians captured by more than two cameras, and 408 
pedestrians detected by only one camera. Comparative tables for 
datasets are provided in Table 1.
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academia and industry. The dataset encompasses 36,411 images of 1,812 unique pedestrians, with 

1,404 distinct pedestrians captured by more than two cameras, and 408 pedestrians detected by 

only one camera. Comparative tables for datasets are provided in Table 1. 

Table 1 Dataset Comparison. 

Dataset Pedestrian 
number 

Image 
number 

Annotation 
method 

Camera 
number 

Multi-camera 
capturing 

CUHK03 1,467 13,164 mixed 10 Yes 
Market1501 1,501 4,096 mixed 6 Yes 

DukeMTMC-reID 1,812 36,441 manual 8 Yes 
 

5 Experimental Results 

5.1 Implementation Details 

The experimentation employed a Windows 11 operating system, with PyTorch 1.11 framework, 

and programmed in Python 3.7. The processing units utilized were an AMD Ryzen 7 5800H with 

Radeon Graphics 3.20 GHz CPU, and an NVIDIA GeForce RTX 3090 with 24GB of memory 

GPU. A preprocessing strategy was implemented to eliminate interfering features during 

pedestrian feature extraction, which extensively hampers the algorithm's efficacy. The 

preprocessing strategy includes Random Erasing, Resize, Random Horizontal Flip, and 

Normalization. Random Erasing's p parameter is set to 0.5, and Resizing modifies the pedestrian 

image dimensions into h, w = 256, 128. The paper also introduced a learning rate warm-up strategy 

to ensure that the network can converge well. The warm-up strategy's epochs were set to 120, the 

warm-up_epochs were set to 5, with lr_init and lr_max set to 0.02 and 0.1, respectively. 

5.2 Analysis of The Attention Module 

The experiment conducted an incremental evaluation and validation to ascertain the effects of 

Attention Modules for ConvNeXt-AP on three datasets; CUHK03, Market-1501, and 

Table 1: Dataset Comparison.

5 Experimental Results
5.1 Implementation Details
The experimentation employed a Windows 11 operating system, 
with PyTorch 1.11 framework, and programmed in Python 3.7. 
The processing units utilized were an AMD Ryzen 7 5800H with 
Radeon Graphics 3.20 GHz CPU, and an NVIDIA GeForce RTX 
3090 with 24GB of memory GPU. A preprocessing strategy was 
implemented to eliminate interfering features during pedestrian 
feature extraction, which extensively hampers the algorithm's 
efficacy. The preprocessing strategy includes Random Erasing, 
Resize, Random Horizontal Flip, and Normalization. Random 
Erasing's p parameter is set to 0.5, and Resizing modifies the 
pedestrian image dimensions into h, w = 256, 128. The paper also 

introduced a learning rate warm-up strategy to ensure that the 
network can converge well. The warm-up strategy's epochs were 
set to 120, the warm-up_epochs were set to 5, with lr_init and lr_
max set to 0.02 and 0.1, respectively.

5.2 Analysis of The Attention Module
The experiment conducted an incremental evaluation and validation 
to ascertain the effects of Attention Modules for ConvNeXt-AP on 
three datasets; CUHK03, Market-1501, and DukeMTMC-reID. 
The following two variants of the Block were constructed: (a) 
Block and (b) Block + simAM. Fig. 11 displays the comparison 
between the two variants.
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Fig. 11 The comparison between the two Block.     

Based on Table 2, when Attention Modules are absent, the baseline model has a rank-1 accuracy 

of merely 72.5%, 92.9%, and 83.9%, with corresponding mAP scores of 70.8%, 81.7%, and 73.4% 

on the CUHK03, Market1501, and DukeMTMC-reID datasets, respectively. Implementing 

Attention Module enhances the model's outcome, leading to a rank-1 improvement of 0.8%, 0.6%, 

and 1.4%, with an enhancement in mAP of 1.4%, 0.9%, and 1.8%, respectively.  

Table 2 Attention Module Ablation Experiment. 

SimAM, an innovative convolutional neural network attention module, determines the 3D 

attention weights of feature maps without adding parameters to the original network. This process 

helps decrease computational expenses, accelerate model speed and promote the model's precision, 

robustness, and performance to handle noise and perturbations in the image. Comparative analyses 

CUHK03 Market-1501 DukeMTMC-reID   

Model Rank-1 mAP Rank-1 mAP Rank-1 mAP FLOPs Parameters

Baseline 72.5 70.8 92.9 81.7 83.9 73.4 10.04G 88.00 M 

Baseline + simAM 73.3 72.2 93.5 82.6 85.3 75.2 10.04 G 88.00 M 

Figure 11: The comparison between the two Block.
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Based on Table 2, when Attention Modules are absent, the 
baseline model has a rank-1 accuracy of merely 72.5%, 92.9%, 
and 83.9%, with corresponding mAP scores of 70.8%, 81.7%, 
and 73.4% on the CUHK03, Market1501, and DukeMTMC-reID 

datasets, respectively. Implementing Attention Module enhances 
the model's outcome, leading to a rank-1 improvement of 0.8%, 
0.6%, and 1.4%, with an enhancement in mAP of 1.4%, 0.9%, and 
1.8%, respectively.
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Based on Table 2, when Attention Modules are absent, the baseline model has a rank-1 accuracy 

of merely 72.5%, 92.9%, and 83.9%, with corresponding mAP scores of 70.8%, 81.7%, and 73.4% 

on the CUHK03, Market1501, and DukeMTMC-reID datasets, respectively. Implementing 

Attention Module enhances the model's outcome, leading to a rank-1 improvement of 0.8%, 0.6%, 

and 1.4%, with an enhancement in mAP of 1.4%, 0.9%, and 1.8%, respectively.  

Table 2 Attention Module Ablation Experiment. 

SimAM, an innovative convolutional neural network attention module, determines the 3D 

attention weights of feature maps without adding parameters to the original network. This process 

helps decrease computational expenses, accelerate model speed and promote the model's precision, 

robustness, and performance to handle noise and perturbations in the image. Comparative analyses 

CUHK03 Market-1501 DukeMTMC-reID   

Model Rank-1 mAP Rank-1 mAP Rank-1 mAP FLOPs Parameters

Baseline 72.5 70.8 92.9 81.7 83.9 73.4 10.04G 88.00 M 

Baseline + simAM 73.3 72.2 93.5 82.6 85.3 75.2 10.04 G 88.00 M 

Table 2: Attention Module Ablation Experiment.

SimAM, an innovative convolutional neural network attention 
module, determines the 3D attention weights of feature maps 
without adding parameters to the original network. This process 
helps decrease computational expenses, accelerate model speed 
and promote the model's precision, robustness, and performance 
to handle noise and perturbations in the image. Comparative 
analyses of the FLOPs and parameters show that the difference 
between the two models is minimal, further supporting the above 
conclusion. In summary, SimAM facilitates easy integration into 
convolutional neural networks, leading to improved image detail 

feature extraction.

5.3 Analysis of The Segmentation Strategy
The paper performed incremental evaluation and validation on 
three datasets - CUHK03, Market- 1501, and DukeMTMC-reID to 
determine the effects of the Segmentation Strategy on ConvNeXt- 
AP. Two variants were constructed based on the baseline model 
- (a) Baseline, and (b) Baseline + the Segmentation Strategy. Fig. 
12 presents a comparison between the two variants.
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Fig. 12 The comparison between the two Baseline. 

The results presented in Table 3 indicates that the baseline achieves a rank-1 accuracy of only 

72.5%, 92.9%, and 83.9%, with corresponding mAP scores of 70.8%, 81.7%, and 73.4% on the 

CUHK03, Market1501, and DukeMTMC-reID datasets, respectively, when the Segmentation 

Strategy is not used. Implementing the Segmentation Strategy enhances the model's outcome, 

Figure 12: The comparison between the two Baseline.

The results presented in Table 3 indicates that the baseline 
achieves a rank-1 accuracy of only 72.5%, 92.9%, and 83.9%, 
with corresponding mAP scores of 70.8%, 81.7%, and 73.4% 
on the CUHK03, Market1501, and DukeMTMC-reID datasets, 
respectively, when the Segmentation Strategy is not used. 

Implementing the Segmentation Strategy enhances the model's 
outcome, leading to rank-1 accuracy improvements of 3.3%, 1.8%, 
and 3.3%, with an enhancement in mAP of 2.8%, 3.4%, and 2.5%, 
respectively.
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leading to rank-1 accuracy improvements of 3.3%, 1.8%, and 3.3%, with an enhancement in mAP 

of 2.8%, 3.4%, and 2.5%, respectively. 

Table 3 Attention Module Ablation Experiment. 

The segmentation strategy is primarily used for the extraction of features. It involves dividing the 

image into various parts during the feature extraction process and concatenating the derived 

features to derive a comprehensive feature map. Part-based Convolutional Baseline (PCB) divides 

the input image into several parts and extracts features from each of these parts. Residual Pyramid 

Pooling (RPP) is a feature pooling method used to enhance the representational power of the 

feature maps. RPP applies pyramid pooling on the feature map and merges the pooled outcomes 

with the initial feature map using concatenation. Comparing the FLOPs and parameters, we notice 

little difference in FLOPs between the two models mentioned above, whereas the improved model 

has more parameters. Nevertheless, the research findings affirm the previous statement. The 

segmentation strategy improves the models' overall performance by making them more robust to 

factors such as pedestrian posture and occlusion. Additionally, it helps improve the 

representational power of the feature map, making it an efficient technique for pedestrian re-

identification. 

5.4 Analysis of The ConvNeXt-AP network 

To evaluate the effects of the ConvNeXt-AP network, we conducted incremental validation and 

evaluation on three datasets: CUHK03, Market-1501, and DukeMTMC-reID. We constructed 

three variants of the baseline model: "Baseline (ConvNeXt)," "Baseline + Attention Module + 

CUHK03 Market-1501 DukeMTMC-reID   

Model Rank-1 mAP Rank-1 mAP Rank-1 mAP FLOPs Parameters

Baseline 72.5 70.8 92.9 81.7 83.9 73.4 10.04 G 88.00 M 

Baseline+ Strategy 75.8 73.6 94.7 85.1 87.2 75.9 10.04 G 90.74 M 

Table 3: Attention Module Ablation Experiment.

The segmentation strategy is primarily used for the extraction of 
features. It involves dividing the image into various parts during the 
feature extraction process and concatenating the derived features 
to derive a comprehensive feature map. Part-based Convolutional 
Baseline (PCB) divides the input image into several parts and 
extracts features from each of these parts. Residual Pyramid 
Pooling (RPP) is a feature pooling method used to enhance the 
representational power of the feature maps. RPP applies pyramid 
pooling on the feature map and merges the pooled outcomes with 
the initial feature map using concatenation. Comparing the FLOPs 
and parameters, we notice little difference in FLOPs between 
the two models mentioned above, whereas the improved model 
has more parameters. Nevertheless, the research findings affirm 
the previous statement. The segmentation strategy improves the 

models' overall performance by making them more robust to 
factors such as pedestrian posture and occlusion. Additionally, 
it helps improve the representational power of the feature map, 
making it an efficient technique for pedestrian re-identification.

5.4 Analysis of The ConvNeXt-AP Network 
To evaluate the effects of the ConvNeXt-AP network, we conducted 
incremental validation and evaluation on three datasets: CUHK03, 
Market-1501, and DukeMTMC-reID. We constructed three 
variants of the baseline model: "Baseline (ConvNeXt)," "Baseline 
+ Attention Module + Segmentation Strategy (ConvNeXt-A)," 
"Baseline + Attention Module (ConvNeXt-P)," and "Baseline + 
Attention Module + Segmentation Strategy (ConvNeXt-AP)."
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Segmentation Strategy (ConvNeXt-A)," "Baseline + Attention Module (ConvNeXt-P)," and 

"Baseline + Attention Module + Segmentation Strategy (ConvNeXt-AP)." 

Table 4 Ablation Experiment. 

Table 4 shows that without the ConvNeXt-AP network and the two strategies, the baseline only 

achieves rank-1 scores of 72.5%, 92.9%, and 83.9% on the CUHK03, Market1501, and 

DukeMTMC-reID datasets, respectively. Adding these two strategies improves rank-1 by 4.4%, 

2.3%, and 4.3% for the respective datasets. Similarly, it improves mAP by 4.0%, 4.8%, and 3.9%. 

Based on the results presented above, integrating the two strategies into the ConvNeXt network 

offers the following benefits: 

1. Improved recognition accuracy: The partitioning strategy decomposes the image into 

different components for recognition purposes, and the attention mechanism facilitates a 

more accurate comparison of similarities between these components, resulting in more 

accurate recognition of various pedestrians within the image. 

2. Increased robustness: Combining the two strategies reduces the risk of overfitting and 

enhances the overall robustness of the model. 

In summary, combining the partitioning strategy and the attention mechanism strategy and 

incorporating them into the ConvNeXt network can achieve better recognition performance, 

stronger robustness, and faster training speed. 

CUHK03 Market-1501 DukeMTMC-reID   

Model Rank-1 mAP Rank-1 mAP Rank-1 mAP FLOPs Parameters

The ConvNeXt 72.5 70.8 92.9 81.7 83.9 73.4 10.04G 88.00 M 

The ConvNeXt-A 73.3 72.2 93.5 82.6 85.3 75.2 10.04 G 88.00 M 

The ConvNeXt-P 75.8 73.6 94.7 85.1 87.2 75.9 10.04 G 90.74 M

The ConvNeXt- AP 76.9 74.8  95.2 86.5  88.2 77.3 10.04 G 90.74 M

Table 4: Ablation Experiment.

Table 4 shows that without the ConvNeXt-AP network and the two 
strategies, the baseline only achieves rank-1 scores of 72.5%, 92.9%, 
and 83.9% on the CUHK03, Market1501, and DukeMTMC-reID 
datasets, respectively. Adding these two strategies improves rank-
1 by 4.4%, 2.3%, and 4.3% for the respective datasets. Similarly, 
it improves mAP by 4.0%, 4.8%, and 3.9%. Based on the results 
presented above, integrating the two strategies into the ConvNeXt 
network offers the following benefits:

1. Improved recognition accuracy: The partitioning strategy 
decomposes the image into different components for recognition 
purposes, and the attention mechanism facilitates a more accurate 
comparison of similarities between these components, resulting in 
more accurate recognition of various pedestrians within the image. 

2. Increased robustness: Combining the two strategies reduces 
the risk of overfitting and enhances the overall robustness of the 
model. 

In summary, combining the partitioning strategy and the attention 
mechanism strategy and incorporating them into the ConvNeXt 
network can achieve better recognition performance, stronger 
robustness, and faster training speed.

5.5 Comparison with State-of-the-Art Methods
To demonstrate the advanced pedestrian re-identification 
performance of the ConvNeXt-AP network, we compared it 
with state-of-the-art methods on two datasets: Market-1501, and 
DukeMTMC-reID, as shown in Table 5.
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5.5  Comparison with State-of-the-Art Methods 

To demonstrate the advanced pedestrian re-identification performance of the ConvNeXt-AP 

network, we compared it with state-of-the-art methods on two datasets: Market-1501, and 

DukeMTMC-reID, as shown in Table 5. 

Table 5 Comparison of results on Market1501, and DukeMTMC-reID. 

Market-1501 DukeMTMC-reID

Method Rank-1 mAP Rank-1 mAP
GLAD29  89.9 83.1 — —

MaskReID31  90 75.3  78.8 61.9 

SCPNet30  91.2 75.2  80.3 62.6 

SPReID41 92.5 81.3  84.4 71 

PCB-RPP22-23 93.8 81.6  83.3 69.2 

HOReID32 94.2 84.9  86.9 75.6 

HPM33 94.2 82.7  86.6 74.3 

CBN50 94.3 83.6  84.8 70.1 

IANet28 94.4 76.5  87.1 73.4 

StrongReID51 94.5 85.9  86.4 76.4 

BDB34 94.5 85  88.7 75.8 

CAMA35 94.7 84.5  85.8 72.9 

DG-Net48 94.8 86  86.6 74.8 

OSNet36 94.8 84.9  88.6 73.5 

MHN20 95.1 85  89.1 77.2 

Ours  95.2 86.5  88.2 77.3 

The results demonstrate the high performance of the ConvNeXt-AP network on pedestrian re-

identification tasks by comparing it to other state-of-the-art methods on the Market-1501 and 

DukeMTMC-reID datasets, including models based on global and local features, mask-based 

models, semantic segmentation-based models, models based on interaction and aggregation, pose-

based models, generative-based models, and attention-based models. Table 5 shows that the 

ConvNeXt-AP network outperforms most other methods in both Rank-1 and mAP, particularly on 

the DukeMTMC-reID dataset. The above conclusion is more intuitively demonstrated in Fig. 13. 

Table 5: Comparison of results on Market1501, and DukeMTMC-reID.
The results demonstrate the high performance of the ConvNeXt-
AP network on pedestrian re-identification tasks by comparing 
it to other state-of-the-art methods on the Market-1501 and 
DukeMTMC-reID datasets, including models based on global and 
local features, mask-based models, semantic segmentation-based 
models, models based on interaction and aggregation, pose-based 
models, generative-based models, and attention-based models. 
Table 5 shows that the ConvNeXt-AP network outperforms 
most other methods in both Rank-1 and mAP, particularly on 
the DukeMTMC-reID dataset. The above conclusion is more 
intuitively demonstrated in Figure 13.

In particular, on the Market-1501 dataset, the ConvNeXt-AP 
network achieved a Rank-1 accuracy of 95.2% and an mAP of 
86.5%. For Market-1501, the Rank-1 accuracy improved by 0.1% 
and mAP improved by 1.5% compared to the MHN method. On 
the DukeMTMC-reID dataset, ConvNeXt-AP achieved a Rank-1 
accuracy of 88.2% and an mAP of 77.3%, which is one of the best 
results among all existing methods. Although its Rank-1 accuracy 
is not the best on the DukeMTMC-reID dataset, ConvNeXt-AP 
outperforms all other methods in terms of mAP.
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Fig. 13 Comparison with State-of-the-Art Methods on different datasets 

By achieving the best results on both datasets, this study demonstrates the ConvNeXt-AP 

network's outstanding performance in pedestrian re-identification tasks. Furthermore, the 

ConvNeXt-AP network exhibits superior performance compared to existing methods, indicating 

its feasibility and practicality. These results provide valuable references for future research. 

5.5 Experimental Visualization 

In this section, we present experimental results by visualizing probe images and identifying the 

top five matching gallery images. We conducted experiments using the ConvNeXt-AP network on 

the Market1501 and DukeMTMC-reID datasets. The correct matches are highlighted with a green 

Figure 13: Comparison with State-of-the-Art Methods on different datasets
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By achieving the best results on both datasets, this study 
demonstrates the ConvNeXt-AP network's outstanding 
performance in pedestrian re-identification tasks. Furthermore, the 
ConvNeXt-AP network exhibits superior performance compared 
to existing methods, indicating its feasibility and practicality. 
These results provide valuable references for future research.

5.5 Experimental Visualization
In this section, we present experimental results by visualizing probe 
images and identifying the top five matching gallery images. We 
conducted experiments using the ConvNeXt-AP network on the 
Market1501 and DukeMTMC-reID datasets. The correct matches 
are highlighted with a green bounding box in Figure 14-15. Our 
proposed model can accurately retrieve corresponding pedestrian 
images from the gallery, even with occluded, profile, or back-view 
probe images.
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bounding box in Fig. 14-15. Our proposed model can accurately retrieve corresponding pedestrian 

images from the gallery, even with occluded, profile, or back-view probe images.  
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Fig. 14 The top five rankings on query images of the Market1501 dataset using the proposed ConvNeXt-AP 

network. 
Figure 14: The top five rankings on query images of the Market1501 dataset using the proposed ConvNeXt-AP network.
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Fig. 15 Pedestrian feature heatmaps. 

In order to visualize the attention regions and important features of ConvNeXt-AP network on 

pedestrian images more intuitively, we employed feature heatmaps and compared them with the 

traditional ConvNeXt network, as shown in Figure 16. By generating feature heatmaps on 

pedestrian images, we can visually observe the differences in attention levels of ConvNeXt-AP 

network and ConvNeXt network towards different body parts of pedestrians. The ConvNeXt-AP 

Figure 15: Pedestrian feature heatmaps.
In order to visualize the attention regions and important features 
of ConvNeXt-AP network on pedestrian images more intuitively, 
we employed feature heatmaps and compared them with the 
traditional ConvNeXt network, as shown in Figure 16. By 
generating feature heatmaps on pedestrian images, we can visually 
observe the differences in attention levels of ConvNeXt-AP 
network and ConvNeXt network towards different body parts of 
pedestrians. The ConvNeXt-AP network improves the attention 

capability towards different body parts in pedestrian images by 
introducing the slice strategy and parameter-free attention module. 
Compared to the traditional ConvNeXt network, the ConvNeXt-
AP network more accurately captures the feature information in 
pedestrian images. The generated feature heatmaps reveal how the 
ConvNeXt-AP network focuses on the key features of different 
body parts in pedestrian images, demonstrating the advantages of 
ConvNeXt-AP network in pedestrian re-identification tasks.
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Fig. 16 Pedestrian feature heatmaps. 

Additionally, we plot the cumulative matching characteristic (CMC) curves in Fig. 17 to present 

our model's performance at different rank values. The CMC curve is a commonly used metric for 

evaluating model performance at different rank values. In summary, our experimental visualization 

comprehensively demonstrates the high model performance in pedestrian re-identification task. 

Figure 16: Pedestrian feature heatmaps.

Additionally, we plot the cumulative matching characteristic 
(CMC) curves in Figure 17 to present our model's performance 
at different rank values. The CMC curve is a commonly used 
metric for evaluating model performance at different rank values. 

In summary, our experimental visualization comprehensively 
demonstrates the high model performance in pedestrian re-
identification task.
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Fig. 17 The CMC curve graphs on different datasets: (a) Market-1501 and (b) DukeMTMC-reID. 

In conclusion, the superiority of the ConvNeXt-AP network in pedestrian re-identification tasks 

has been thoroughly demonstrated through the visualization experiments, including matching 

pedestrian visualizations, feature heatmaps, and CMC curve visualizations. 

6 Conclusions 

This paper proposes a pedestrian re-identification method called ConvNeXt-AP, which is based 

on an improved ConvNeXt network. Our approach aims to capture pedestrian-related features 

more effectively while improving re-identification accuracy. The backbone network is 

implemented using the ConvNeXt network, which can better capture local spatial features. 

Additionally, we remove the forward_head module to retain more pedestrian-related features. At 

the end of the model, we introduce a segmentation strategy to extract fine-grained information 

from pedestrian images. This strategy increases the model's robustness to factors such as pedestrian 

pose and occlusion, and it also improves the representational capacity of feature maps, thus 

enhancing the model's performance. It makes our approach an effective pedestrian re-identification 

method. 

Figure 17: The CMC curve graphs on different datasets: (a) Market-1501 and (b) DukeMTMC-reID.

In conclusion, the superiority of the ConvNeXt-AP network 
in pedestrian re-identification tasks has been thoroughly 
demonstrated through the visualization experiments, including 
matching pedestrian visualizations, feature heatmaps, and CMC 
curve visualizations.

6. Conclusions 
This paper proposes a pedestrian re-identification method called 
ConvNeXt-AP, which is based on an improved ConvNeXt 
network. Our approach aims to capture pedestrian-related features 
more effectively while improving re-identification accuracy. The 
backbone network is implemented using the ConvNeXt network, 
which can better capture local spatial features. Additionally, we 
remove the forward_head module to retain more pedestrian-related 
features. At the end of the model, we introduce a segmentation 
strategy to extract fine-grained information from pedestrian 

images. This strategy increases the model's robustness to factors 
such as pedestrian pose and occlusion, and it also improves the 
representational capacity of feature maps, thus enhancing the 
model's performance. It makes our approach an effective pedestrian 
re-identification method. 

To improve the representational capacity of convolutional neural 
networks (CNNs) effectively, the SimAM, a parameter-free 
attention mechanism, is incorporated into the ConvNeXt model 
block. SimAM can infer three-dimensional attention weights of 
a feature map without adding parameters to the original network, 
resulting in a significant boost in accuracy and robustness to 
noise and disturbances while keeping computation time low. This 
method reduces computational complexity, improves model speed, 
and ultimately enhances the model's performance and accuracy in 
capturing image detail features. In summary, the SimAM can be 
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easily added to CNNs to improve the representation of images.

In order to ensure successful network convergence, a learning rate 
warm-up strategy was introduced. This gradually stabilizes the 
model, enhancing convergence speed and optimizing performance 
results. Additionally, the training process utilizes a random erasing 
strategy which reduces overfitting risks and equips the model 
with greater resilience against occluded pedestrians, thus ensuring 
higher performance outcomes. 
Our study has conducted experiments on various datasets and 
analyzed the results. Based on our analysis, we have reached the 
following conclusions:

1. The results of our study suggest that utilizing a segmentation 
strategy to divide image inputs into multiple parts, combined with 
an attention mechanism that draws similarity-based comparisons 
between such parts, can significantly enhance the accuracy rate of 
pedestrian recognition. 
2. Our study has found that incorporating both the learning rate 
warming strategy and the random erasing strategy into the model 
training process can lead to a stronger level of robustness. This 
is due to their ability to minimize the risk of overfitting, thus 
improving the model's generalization to novel data. 

3.Our study has demonstrated that utilizing a combination of four 
specific strategies - segmentation, attention, learning rate warm-up, 
and random erasing - can make the training process more efficient 
for pedestrian recognition models. Specifically, this combination 
allows the model to better leverage the training data, leading to 
better performance in fewer iterations and a reduction in overall 
training time.

In conclusion, we have proposed a model that combines a 
segmentation strategy, attention mechanism strategy, random 
erasing strategy, and learning rate warm-up strategy with the 
ConvNeXt network that significantly exceeds the performance of 
current state-of-the-art models.
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