
Journal of Robotics and Automation Research

 Volume 3 | Issue 2 | 158

A Study of Artificial Neural Network and Its Implementation from Scratch
Research Article

*Nilay Kushawaha, Ankhi Roy

*Corresponding author

J Robot Auto Res, 2022 www.opastonline.com

Abstract
One of the major problems in the field of artificial intelligence (AI) is the use of machine learning model as a black box, even
though it might be helpful in a few cases but understanding the internal structure and the operating mechanism will assist the user
to tweak the variables in a more efficient and productive manner. In this paper we have introduced the working of an artificial
neural network (ANN) by taking the example of a three layered neural network. The entire mathematics behind the working of
neural network along with the different evaluation metrics required to assess the performance of the model are discussed in
this paper. We have also created a custom neural network from scratch and compared it with the keras based model on three
different datasets - susy dataset [8], cardiovascular dataset [6], churn dataset [7]. The results obtained demonstrates that the
overall performance of both the models are almost identical which gives an idea that it is possible to train a neural network
from scratch without the use of any framework.

Submitted: 23 May 2022; Accepted: 31 May 2022; Published:09 Jun 2022

Citation: Nilay Kushawaha, Ankhi Roy.(2022). A study of Artificial Neural Network and its implementation from scratch. J Robot Auto
Res 3(2), 158-164.

Nilay Kushawaha. Department of Physics, Indian Institute of
Technology Indore, Khandwa, 453552 Indore, India.

1Department of Physics, Indian Institute of Technology Indore,
Khandwa, 453552 Indore, India.

2Department of Physics, Indian Institute of Technology Indore,
Khandwa, 453552 Indore, India.

Keywords: Artificial neural network (ANN); Activation function; Optimizer; Efficiency; Object oriented programming (OOP)

ISSN: 2831-6789

ISSN: 2831 - 6789

Introduction
ARTIFICIAL Neural Networks (ANN) have been around for quite
a long time, they have been studied for many years in the hope
of achieving human-like performance. ANN can be thought of
as analogous to a very small network in the cerebral cortex. It is
possible to mimic certain parts of the neurons such as dendrites,
cell bodies, and axons using a simplified mathematical model. The
biological neuron has many similarities with the artificial neuron,
the input nodes in an artificial neuron are same as the dendrites in
a biological neuron. The axon and the axon terminal of the biolog-
ical neuron transfer the synapses from the dendrites to the synap-
tic cleft only when the strength of signal is greater than a certain
threshold value just like a step function [1].

The working of an ANN can simply be understood as the mapping
of function from one space to some other space either linearly or
using some higher-order relation. It can be used for solving both
classification as well as regression problems. In principle an ANN
mainly consists of three layers: an input layer, one or more hidden
layers and an output layer. The Perceptron is one of the simplest
ANN architectures, with only an input layer and an output layer,
or it is simply a one-to-one mapping of the input and output layer.
The shortcomings of the perceptron were soon realized since a sin-
gle layer of perceptron was unable to solve the non-linear classifi-

cation problem. It was also unable to approximate any continuous
functional mapping.

However this problem can be solved by stacking multiple layers of
perceptron or using a fully connected perceptron layer [2].

The only restriction is that the network must be feed-forward, so
that it contains no feedback loops. This ensures that the network
outputs can be calculated as explicit functions of the input weights.
The objective of this paper is to present the working of an ANN
in the simplest form possible both for classification as well as re-
gression. It is seen that people can train a neural network using
some framework but they struggle to understand the mathematics
associated with it. In this paper, we will first understand the math-
ematics behind the working of a neural network and then train a
neural network from scratch using the bare minimum mathematics
required. The programming language we are going to use is py-
thon, however the same can be done in any object-oriented pro-
gramming (OOP) language. In order to compare the performance
of the custom model and the keras based model, we will be using
three different datasets coming from different fields (biomedical,
high energy physics, and industrial sector), more details about the
dataset will be discussed in the later section.

 Volume 3 | Issue 2 | 159J Robot Auto Res, 2022 www.opastonline.com

form possible both for classification as well as regression. It is seen that people can train a

neural network using some framework but they struggle to understand the mathematics

associated with it. In this paper, we will first understand the mathematics behind the working

of a neural network and then train a neural network from scratch using the bare minimum

mathematics required. The programming language we are going to use is python, however

the same can be done in any object-oriented programming (OOP) language. In order to

compare the performance of the custom model and the keras based model, we will be using

three different datasets coming from different fields (biomedical, high energy physics, and

industrial sector), more details about the dataset will be discussed in the later section.

Activation function and Optimizer

Activation functions are used to bring some sort of non-linearity in the network such that it

can learn more complex patterns from the data. Without activation function, it simply is a

one-to-one mapping of the function. There are various activation functions out there, some of

them are sigmoid, softmax, tanh, relu, leaky Kushawaha and Roy relu, elu, etc. Sigmoid,

softmax, tanh are mostly used in the output layer of the neural network whereas relu and its

variants are used in the input and hidden layer.

Activation function and Optimizer
Activation functions are used to bring some sort of non-linearity in
the network such that it can learn more complex patterns from the
data. Without activation function, it simply is a one-to-one map-
ping of the function. There are various activation functions out
there, some of them are sigmoid, softmax, tanh, relu, leaky Kusha-
waha and Roy relu, elu, etc. Sigmoid, softmax, tanh are mostly
used in the output layer of the neural network whereas relu and its
variants are used in the input and hidden layer.

We will be mainly focusing on Rectified Linear Unit (ReLU) acti-
vation function as shown in figure 2 and one of its variants, leaky
relu [3]. The output of relu keeps on increasing linearly for a pos-
itive input value, whereas when the input gets negative the output
of relu becomes zero which leads to the dead neuron issue. In order
to solve this we multiply a small smoothing factor to the input of
the neuron such that the output becomes a small negative number
close to zero but not completely zero, thus avoiding the dead neu-
ron problem. The reason for choosing leaky relu instead of relu in
the hidden layer is that it does not completely eliminate the nega-
tive output values from the neurons. The activation function in the
output layer is sigmoid as shown in figure 3, the motivation for
choosing it is due to its ability to convert the positive numbers to
a value close to 1 and the negative numbers to a value close to 0,
thus allowing us to perform binary classification.

The optimizer we will be using is stochastic gradient descent
(SGD) algorithm. Even though we have more advanced optimiz-
ers, still we are focusing on the old gradient descent method due to
its simplicity and physical significance. The working of gradient

descent can be understood by taking the example of a ball rolling
down a hill, after traveling a certain amount of distance it reaches
the point of lowest energy or the minima of the slope. There is
a slight difference between the working of gradient descent and
SGD algorithm [3].

In gradient descent, we need to load the complete training data at
once in the memory (RAM), which might not be possible when we
have a very large dataset consisting of million records. However,
in the SGD algorithm instead of loading the complete data at once,
we pass one instance at a time, calculate its gradient and then up-
date the weights accordingly. Another advantage of SGD is that
instead of reaching the global minima gently, the loss function will
first bounce up and down in the starting phase which might help
the algorithm to jump out of local minima.

The steps associated with gradient descent include :
1. Initializing the weights with some random value. However,

the weight initialization is not that random there are various
weight initialization techniques where the weights are drawn
either from a random or a normal distribution [4].

2. Calculating the derivative of loss function so as to know the
direction (sign) of the slope.

3. Updating the weights by using the slope and a small learning
rate (η) using the formula.

ω(t) = ω(t − 1) − η ∗δL/δω (1)

The loss function used for classification and regression are bina-
ry-cross entropy and mean squared error. The expression for bina-

 Volume 3 | Issue 2 | 160J Robot Auto Res, 2022 www.opastonline.com

ry-cross entropy loss function is L = ̵ yi ln (yi)+(1-yi)ln (1-yi) / n
and the expression for mean squared error (MSE) is
L=-(∑(yi-yi)

2 / n We do not use the same loss function for both
classification as well as regression because we want to penalize
our model more in case of classification than in regression. The
presence of ”log” will yield a very high loss when the model’s
prediction is incorrect and vice-versa.

Working of Neural Network
To understand the working of a simple neural network, we need
to have a basic understanding of matrix algebra [12]. Matrices are
nothing but an array of numbers that could be of any dimension.
The dot product of two matrices is an element-wise multiplication
which results in a scalar value. The use of matrices in neural net-
work makes the computation more faster and compresses all the
calculations into simple notation.

In general, a neural network contains three layers :
1. Input layer: It takes the input vectors from the user and multi-

plies the respective branch weights to it.
2. Hidden layer: Hidden layer is the set of neurons where all the

computations are performed on the input data. It is responsible
for learning more complex patterns from the data.

3. Output layer: It gives the final predicted output value based
on the input features. Figure 1 shows a simple artificial neu-
ral network with three input neurons, two hidden neurons
and one output neuron. The presence of three input neurons
or three independent features will allow the model to draw a
decision boundary in the 3-dimensional space to separate the
two classes. A single feature in the input layer is equivalent to
fixing a threshold value, where the particle is categorized as a
signal if the value of the feature is greater than the threshold.

The activation function used in the input layer, hidden layer is
leaky relu and in the output layer is sigmoid. The inputs vectors
x1, x2 and x3 are first normalized to the interval [0,1]. They are

then multiplied with some random branch weights and a bias term
is added to it along with an activation function on top of it. Weights
and biases (commonly referred to as w and b) are the learnable
parameters of a neural network. We are writing the algebraic form
of the equation however, it can also be expressed in matrix form as
product of a row and a column vector.

κ = (ω1.x1 + ω2.x2 + ω3.x3 + b1) (2)
l = leaky relu (κ) (3)
l = max(α ∗ κ, κ) (4)

”l” is the output of the first node of the hidden layer. α is the leak-
age that we introduce in the relu function, it is usually set to a small
number (≈ 0.00001)

l = max(α ∗ ω1.x1 + ω2.x2 + ω3.x3 + b,ω1.x1 + ω2.x2 + ω3.x3 + b1) (5)

Similarly, the output of the second node of hidden layer will be
ˆl= max(α ∗ ω1.x1 + ω2.x2 + ω3.x3 + b,ω1.x1 + ω2.x2 + ω3.x3 + b1) (6)
z = (ω4.l + ω5.ˆl + b2) (7)
ˆy =1 / 1+e-z (8)

The predicted output ˆy is compared with the actual value and loss
function is calculated, the loss function is then minimized using an
optimizer (SGD in our case) by adjusting the weights. Let’s try to un-
derstand the complete mathematics of weight updation by taking the
case of classification. The loss function for classification is

L = −yi ln (yi)+(1-yi) ln (1-yi) / n (9)

We assume that the output of the leaky relu activation function is al-
ways a positive number however, we will consider all these aspects
when we code it in python. Also, we drop the constant ”n” (total num-
ber of records) for simplicity. Now, that we have the loss function so
we will calculate the required slope for all the weights, biases and then
update each of them one by one in the upcoming iteration.

The predicted output ˆy is compared with the actual value and loss function is calculated, the

loss function is then minimized using an optimizer (SGD in our case) by adjusting the

weights. et’s try to understand the complete mathematics of weight updation by taking the

case of classification. The loss function for classification is

L = − () () () (9)

We assume that the output of the leaky relu activation function is always a positive number

however, we will consider all these aspects when we code it in python. Also, we drop the

constant ”n” (total number of records) for simplicity. Now, that we have the loss function so

we will calculate the required slope for all the weights, biases and then update each of them

one by one in the upcoming iteration.

(10)

 Volume 3 | Issue 2 | 161J Robot Auto Res, 2022 www.opastonline.com

Table 1: Value of different metrics for custom and keras based modelTable 1: Value of different metrics for custom and keras based model

The formula for weight, bias updation is :

In similar manner we can derive the weight updation formula for the remaining weights. The

weight updation continues till we achieve the global minima or a considerable loss value. The

same concept applies for regression as well, the only difference lies in the choice of loss

function and the expression of slope that is calculated using the loss function [5].

Once we have the respective weights and biases, we just need to transverse through the

network to get the final prediction. The predicted output will be a continuous value in the

range 0 to 1, in order to convert it into binary class, we pass it through some threshold. The

value of this threshold can be computed using the Receiver’s Operating Characteristic (ROC)

curve [13].

Data collection and metrics

About dataset

We are using the cardiovascular disease dataset from kaggle, susy dataset from UCI

repository and telecom churn dataset from kaggle too. The shape of cardiovascular disease

dataset and the susy dataset is approximately same with 15,000 records for training the model

In similar manner we can derive the weight updation formula
for the remaining weights. The weight updation continues till we
achieve the global minima or a considerable loss value. The same
concept applies for regression as well, the only difference lies in
the choice of loss function and the expression of slope that is cal-
culated using the loss function [5].

Once we have the respective weights and biases, we just need to
transverse through the network to get the final prediction. The
predicted output will be a continuous value in the range 0 to 1,
in order to convert it into binary class, we pass it through some
threshold. The value of this threshold can be computed using the
Receiver’s Operating Characteristic (ROC) curve [13].

Data collection and metrics
About dataset
We are using the cardiovascular disease dataset from kaggle, susy
dataset from UCI repository and telecom churn dataset from kag-
gle too. The shape of cardiovascular disease dataset and the susy
dataset is approximately same with 15,000 records for training the
model and 15,000 records for testing [6-8]. However, the size of

telecom churn dataset is very small with only 776 records for train-
ing and 667 records for testing. The reason for selecting this data-
set is to check the performance of the model on small dataset. We
are selecting only the best three possible features keeping in mind
that none of them are internally correlated. The target features of
all the three datasets contains only two classes 0 and 1, where 0
denotes the negative class and 1 denotes the positive class.
[]η is the learning rate ≈ 0.0001

Evaluation metrics
The performance of any machine learning model is evaluated on
the basis of some tandard metrics. In this section we will discuss
some of them and their advantages over one another. A confusion
matrix is a table often used to describe the performance of a clas-
sification model based on the actual and predicted outputs. There
are four possible outcomes for a binary classifier : it can correctly
classify a signal event (true positive, TP), classify a background
event as signal (false positive, FP), correctly classify a background
event (true negative, TN) or classify a signal event as background
noise (false negative, FN). We can define various metrics from
these values :

 Volume 3 | Issue 2 | 162J Robot Auto Res, 2022 www.opastonline.com

and 15,000 records for testing [6-8]. However, the size of telecom churn dataset is very small

with only 776 records for training and 667 records for testing. The reason for selecting this

dataset is to check the performance of the model on small dataset. We are selecting only the

best three possible features keeping in mind that none of them are internally correlated. The

target features of all the three datasets contains only two classes 0 and 1, where 0 denotes the

negative class and 1 denotes the positive class.

[]η is the learning rate ≈ 0.0001

Evaluation metrics

The performance of any machine learning model is evaluated on the basis of some tandard

metrics. In this section we will discuss some of them and their advantages over one another.

A confusion matrix is a table often used to describe the performance of a classification

model based on the actual and predicted outputs. There are four possible outcomes for a

binary classifier : it can correctly classify a signal event (true positive, TP), classify a

background event as signal (false positive, FP), correctly classify a background event (true

negative, TN) or classify a signal event as background noise (false negative, FN). We can

define various metrics from these values :

Signal efficiency or recall is the ratio of the correctly identified sig-
nal to the total signal present in the dataset. The formula for recall
is : Recall = TP / TP+FN
• Background rejection or specificity is the ability of the model

to identify and discard the background events. The formula
for specificity is : Specificity = TN / TN+FP

• Precision refers to the ratio of true positive to the total positive
predictions made by the model. The formula for precision is :
Precision = TP / TP+FP

• Accuracy refers to the number of correctly predicted data
points out of all the data points present in the dataset. Ac-
curacy could be a misleading metric if the dataset is highly
imbalanced, in that case we can go with precision, recall or f1
score. The formula for accuracy is :

 Accuracy = TP+TN/TP+FP+TN+FN
• F1 score is a special case of F-beta score when beta equals to

1. It is defined as the harmonic mean of precision and recall.
F1 score allows a model to be evaluated taking both precision
and recall into account using a single score, which is helpful
in comparing models. The formula for f1 score is :

 F1score = 2Precision.Recall / Precision+Recall
• ROC or receiver’s operating characteristic is a trade off be-

tween the true positive rate (recall) and the false positive rate
also called as false alarm rate. The area under the roc curve
is used as summary of the model’s skill. A model having an
AUC equal to or less than 0.5 is considered as a non-skill or
dumb model. We will be using all these metrics to compare the
efficiency of our custom model with the keras based model.

Results
The efficiency of our custom model is compared with anoth-

er model having same specifications but trained using the keras
framework [9]. In case of susy and cardiovascular dataset, the
models are trained for 100 epochs each whereas in case of telecom
churn dataset the models are trained for 300 epochs. The reason for
extra epochs in case of churn dataset is due to the low number of
training records. Figure 4, 5, 6 shows the decrement in the value
of loss function with respect to epochs for the three datasets. It can
be seen that for the custom model the value of loss is initially high,
one of the reasons for this could be the use of old gradient descent
optimizer whereas in the keras based model we are using the state
of art ”adam” optimizer.

The confusion matrix of susy dataset for both custom and keras
based model are nearly identical as shown in figure 8, 11. The
roc curve of the custom model represented in green shade and the
keras based model represented in black almost coincide with each
other, which implies that the performance of both the models on
the test dataset is almost same. The precision recall curve for both
the models shows a comparable trend as shown in figure 14. Com-
ing to the cardiovascular disease dataset, we can once more see
that the confusion matrix for both custom and keras based model
are approximately same as shown in figure 7, 10 and as a conse-
quence the roc curve and the precision recall curve for both the
models are also identical as shown in figure 13.

The final dataset is the telecom churn prediction. As mentioned
earlier the number of training records in it is very low which makes
the result suspicious and unreliable with respect to the other two
datasets. However as shown in figure 18, the roc curve for the
keras based model is slightly better than the custom model, the
reason for the same could be the presence of low training records,

 Volume 3 | Issue 2 | 163J Robot Auto Res, 2022 www.opastonline.com

similar is the case with the precision recall curve. Table 1 displays
the value of accuracy, precision, recall, f1 score and roc auc score
for all the three datasets trained on the custom and keras based

models. []False positive rate (FPR) is calculated as the number of
false positive divided by the sum of the number of false positives
and true negatives

Conclusion and discussion

The first objective of this paper is to present the working of artificial neural network for

calculating the optimal set of weights and biases in the most simplest way possible and to

develop a better understanding of the relationship between the structure of a neural network,

its ability to perform input-output mapping. The mathematics introduced in this paper is

sufficient enough for a beginner to get familiar about the working of artificial neural network

and the different metrics used to evaluate the performance of model.

The second objective is to create a neural network from scratch without using any

framework. The results presented in section 5 demonstrates that the performance of the

custom neural network is comparable to the well known keras based model, which gives us

an idea that we can create a custom neural network from scratch according to our use case.

This could necessarily be helpful for the beginners to get a hands-on experience of how the

weight updation takes place and a neural architecture ets trained. Though the code is not

Conclusion and discussion

The first objective of this paper is to present the working of artificial neural network for

calculating the optimal set of weights and biases in the most simplest way possible and to

develop a better understanding of the relationship between the structure of a neural network,

its ability to perform input-output mapping. The mathematics introduced in this paper is

sufficient enough for a beginner to get familiar about the working of artificial neural network

and the different metrics used to evaluate the performance of model.

The second objective is to create a neural network from scratch without using any

framework. The results presented in section 5 demonstrates that the performance of the

custom neural network is comparable to the well known keras based model, which gives us

an idea that we can create a custom neural network from scratch according to our use case.

This could necessarily be helpful for the beginners to get a hands-on experience of how the

weight updation takes place and a neural architecture ets trained. Though the code is not

Conclusion and discussion
The first objective of this paper is to present the working of artifi-
cial neural network for calculating the optimal set of weights and
biases in the most simplest way possible and to develop a better
understanding of the relationship between the structure of a neural
network, its ability to perform input-output mapping. The mathe-
matics introduced in this paper is sufficient enough for a beginner
to get familiar about the working of artificial neural network and
the different metrics used to evaluate the performance of model.

The second objective is to create a neural network from scratch
without using any framework. The results presented in section 5
demonstrates that the performance of the custom neural network is
comparable to the well known keras based model, which gives us
an idea that we can create a custom neural network from scratch
according to our use case. This could necessarily be helpful for the
beginners to get a hands-on experience of how the weight updation
takes place and a neural architecture ets trained. Though the code
is not completely ready for use in production still it can be used for
learning purpose, experimentation, etc.

Availability of data and materials
In this paper we have used the open sourced data from kaggle and
UCI repository. The respective links for all the datasets along with
the author’s name are mentioned in the reference section.

Competing interests
The authors declare that they have no competing interests. []
Github repository link for custom neural network : https://github.
com/nilay121/ Simple-ANN-from-Scratch

Funding
Not applicable

Author’s contributions
Nk wrote the custom code and analyzed the datasets for keras and
custom based model. AR helped in interpreting the results and
writing the paper. All authors read and approved the final manu-
script

Acknowledgements
Not applicable

 Volume 3 | Issue 2 | 164J Robot Auto Res, 2022 www.opastonline.com

Copyright: ©2022: Nilay Kushawaha. This is an open-access article
distributed under the terms of the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction
in any medium, provided the original author and source are credited.

References
1. Alzubi, J., Nayyar, A., & Kumar, A. (2018, November). Ma-

chine learning from theory to algorithms: an overview. In
Journal of physics: conference series (Vol. 1142, No. 1, p.
012012). IOP Publishing.

2. Schuman, C. D., & Birdwell, J. D. (2013). Dynamic artifi-
cial neural networks with affective systems. PloS one, 8(11),
e80455.

3. Géron, A. (2017). Hands-on machine learning with scikit-
learn and tensorflow: Concepts. Tools, and Techniques to
build intelligent systems.

4. Datta, L. (2020). A survey on activation functions and their re-
lation with xavier and he normal initialization. arXiv preprint
arXiv:2004.06632.

5. Bishop, C. M. (1995). Neural networks for pattern recogni-
tion. Oxford university press.

6. Cardiovascular disease dataset, Svetlana Ulianova (kaggle).
7. Telecom Churn Dataset, Baligh Mnassri (kaggle).
8. SUSY Data Set UCI, Daniel Whiteson.
9. Introduction to keras, Ketkar, Nikhil, Springer.
10. JETNET 3.0—A versatile artificial neural network package,

Carsten Peterson and Thorsteinn R¨ognvaldsson and Leif
L¨onnblad.

11. Van Der Smagt, P. P., Krˆse, B. J., Krose, B. J., & Smagt, P. P.
(1993). An introduction to neural networks.

12. Arfken, G. B., & Weber, H. J. (1999). Mathematical methods
for physicists.

13. Body, R., Carlton, E., Sperrin, M., Lewis, P. S., Burrows, G.,
Carley, S., ... & Mackway-Jones, K. (2017). Troponin-only
Manchester Acute Coronary Syndromes (T-MACS) decision
aid: single biomarker re-derivation and external validation in
three cohorts. Emergency Medicine Journal, 34(6), 349-356.

