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Abstract
One of the major problems in the field of artificial intelligence (AI) is the use of machine learning model as a black box, even 
though it might be helpful in a few cases but understanding the internal structure and the operating mechanism will assist the user 
to tweak the variables in a more efficient and productive manner. In this paper we have introduced the working of an artificial 
neural network (ANN) by taking the example of a three layered neural network. The entire mathematics behind the working of 
neural network along with the different evaluation metrics required to assess the performance of the model are discussed in 
this paper. We have also created a custom neural network from scratch and compared it with the keras based model on three 
different datasets - susy dataset [8], cardiovascular dataset [6], churn dataset [7]. The results obtained demonstrates that the 
overall performance of both the models are almost identical which gives an idea that it is possible to train a neural network 
from scratch without the use of any framework.
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Introduction
ARTIFICIAL Neural Networks (ANN) have been around for quite 
a long time, they have been studied for many years in the hope 
of achieving human-like performance. ANN can be thought of 
as analogous to a very small network in the cerebral cortex. It is 
possible to mimic certain parts of the neurons such as dendrites, 
cell bodies, and axons using a simplified mathematical model. The 
biological neuron has many similarities with the artificial neuron, 
the input nodes in an artificial neuron are same as the dendrites in 
a biological neuron. The axon and the axon terminal of the biolog-
ical neuron transfer the synapses from the dendrites to the synap-
tic cleft only when the strength of signal is greater than a certain 
threshold value just like a step function [1]. 

The working of an ANN can simply be understood as the mapping 
of function from one space to some other space either linearly or 
using some higher-order relation. It can be used for solving both 
classification as well as regression problems. In principle an ANN 
mainly consists of three layers: an input layer, one or more hidden 
layers and an output layer. The Perceptron is one of the simplest 
ANN architectures, with only an input layer and an output layer, 
or it is simply a one-to-one mapping of the input and output layer. 
The shortcomings of the perceptron were soon realized since a sin-
gle layer of perceptron was unable to solve the non-linear classifi-

cation problem. It was also unable to approximate any continuous 
functional mapping.

However this problem can be solved by stacking multiple layers of 
perceptron or using a fully connected perceptron layer [2]. 

The only restriction is that the network must be feed-forward, so 
that it contains no feedback loops. This ensures that the network 
outputs can be calculated as explicit functions of the input weights.
The objective of this paper is to present the working of an ANN 
in the simplest form possible both for classification as well as re-
gression. It is seen that people can train a neural network using 
some framework but they struggle to understand the mathematics 
associated with it. In this paper, we will first understand the math-
ematics behind the working of a neural network and then train a 
neural network from scratch using the bare minimum mathematics 
required. The programming language we are going to use is py-
thon, however the same can be done in any object-oriented pro-
gramming (OOP) language. In order to compare the performance 
of the custom model and the keras based model, we will be using 
three different datasets coming from different fields (biomedical, 
high energy physics, and industrial sector), more details about the 
dataset will be discussed in the later section.
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there, some of them are sigmoid, softmax, tanh, relu, leaky Kusha-
waha and Roy  relu, elu, etc. Sigmoid, softmax, tanh are mostly 
used in the output layer of the neural network whereas relu and its 
variants are used in the input and hidden layer.

We will be mainly focusing on Rectified Linear Unit (ReLU) acti-
vation function as shown in figure 2 and one of its variants, leaky 
relu [3]. The output of relu keeps on increasing linearly for a pos-
itive input value, whereas when the input gets negative the output 
of relu becomes zero which leads to the dead neuron issue. In order 
to solve this we multiply a small smoothing factor to the input of 
the neuron such that the output becomes a small negative number 
close to zero but not completely zero, thus avoiding the dead neu-
ron problem. The reason for choosing leaky relu instead of relu in 
the hidden layer is that it does not completely eliminate the nega-
tive output values from the neurons. The activation function in the 
output layer is sigmoid as shown in figure 3, the motivation for 
choosing it is due to its ability to convert the positive numbers to 
a value close to 1 and the negative numbers to a value close to 0, 
thus allowing us to perform binary classification.

The optimizer we will be using is stochastic gradient descent 
(SGD) algorithm. Even though we have more advanced optimiz-
ers, still we are focusing on the old gradient descent method due to 
its simplicity and physical significance. The working of gradient 

descent can be understood by taking the example of a ball rolling 
down a hill, after traveling a certain amount of distance it reaches 
the point of lowest energy or the minima of the slope. There is 
a slight difference between the working of gradient descent and 
SGD algorithm [3].

In gradient descent, we need to load the complete training data at 
once in the memory (RAM), which might not be possible when we 
have a very large dataset consisting of million records. However, 
in the SGD algorithm instead of loading the complete data at once, 
we pass one instance at a time, calculate its gradient and then up-
date the weights accordingly. Another advantage of SGD is that 
instead of reaching the global minima gently, the loss function will 
first bounce up and down in the starting phase which might help 
the algorithm to jump out of local minima.

The steps associated with gradient descent include :
1. Initializing the weights with some random value. However, 

the weight initialization is not that random there are various 
weight initialization techniques where the weights are drawn 
either from a random or a normal distribution [4].

2. Calculating the derivative of loss function so as to know the 
direction (sign) of the slope.

3. Updating the weights by using the slope and a small learning 
rate (η) using the formula.

ω(t) = ω(t − 1) − η ∗δL/δω             (1)               

The loss function used for classification and regression are bina-
ry-cross entropy and mean squared error. The expression for bina-
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ry-cross entropy loss function is  L =  ̵ yi ln ( yi )+(1-yi)ln (1-yi ) / n 
and the expression for mean squared error (MSE) is  
L=-(∑(yi-yi )

2 / n   We do not use the same loss function for both 
classification as well  as regression because we want to penalize 
our model more in case of classification than in regression. The 
presence of ”log” will yield a very high loss when the model’s 
prediction is incorrect and vice-versa.

Working of Neural Network
To understand the working of a simple neural network, we need 
to have a basic understanding of matrix algebra [12]. Matrices are 
nothing but an array of numbers that could be of any dimension. 
The dot product of two matrices is an element-wise multiplication 
which results in a scalar value. The use of matrices in neural net-
work makes the computation more faster and compresses all the 
calculations into simple notation.

In general, a neural network contains three layers :
1. Input layer: It takes the input vectors from the user and multi-

plies the respective branch weights to it.
2. Hidden layer: Hidden layer is the set of neurons where all the 

computations are performed on the input data. It is responsible 
for learning more complex patterns from the data.

3. Output layer: It gives the final predicted output value based 
on the input features. Figure 1 shows a simple artificial neu-
ral network with three input neurons, two hidden neurons 
and one output neuron. The presence of three input neurons 
or three independent features will allow the model to draw a 
decision boundary in the 3-dimensional space to separate the 
two classes. A single feature in the input layer is equivalent to 
fixing a threshold value, where the particle is categorized as a 
signal if the value of the feature is greater than the threshold.

The activation function used in the input layer, hidden layer is 
leaky relu and in the output layer is sigmoid. The inputs vectors 
x1, x2 and x3 are first normalized to the interval [0,1]. They are 

then multiplied with some random branch weights and a bias term 
is added to it along with an activation function on top of it. Weights 
and biases (commonly referred to as w and b) are the learnable 
parameters of a neural network. We are writing the algebraic form 
of the equation however, it can also be expressed in matrix form as 
product of a row and a column vector.

κ = (ω1.x1 + ω2.x2 + ω3.x3 + b1)                      (2)
l = leaky relu (κ)                                (3)
l = max(α ∗ κ, κ)                                        (4)

”l” is the output of the first node of the hidden layer. α is the leak-
age that we introduce in the relu function, it is usually set to a small 
number (≈ 0.00001)

l = max(α ∗ ω1.x1 + ω2.x2 + ω3.x3 + b,ω1.x1 + ω2.x2 + ω3.x3 + b1)    (5)

Similarly, the output of the second node of hidden layer will be 
ˆl= max(α ∗ ω1.x1 + ω2.x2 + ω3.x3 + b,ω1.x1 + ω2.x2 + ω3.x3 + b1)         (6)
z = (ω4.l + ω5.ˆl + b2)                          (7)
ˆy =1 / 1+e-z                                                                                         (8)

The predicted output ˆy is compared with the actual value and loss 
function is calculated, the loss function is then minimized using an 
optimizer (SGD in our case) by adjusting the weights. Let’s try to un-
derstand the complete mathematics of weight updation by taking the 
case of classification. The loss function for classification is

L = −yi ln (yi )+(1-yi) ln (1-yi ) / n    (9)

We assume that the output of the leaky relu activation function is al-
ways a positive number however, we will consider all these aspects 
when we code it in python. Also, we drop the constant ”n” (total num-
ber of records) for simplicity. Now, that we have the loss function so 
we will calculate the required slope for all the weights, biases and then 
update each of them one by one in the upcoming iteration.
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In similar manner we can derive the weight updation formula 
for the remaining weights. The weight updation continues till we 
achieve the global minima or a considerable loss value. The same 
concept applies for regression as well, the only difference lies in 
the choice of loss function and the expression of slope that is cal-
culated using the loss function [5].

Once we have the respective weights and biases, we just need to 
transverse through the network to get the final prediction. The 
predicted output will be a continuous value in the range 0 to 1, 
in order to convert it into binary class, we pass it through some 
threshold. The value of this threshold can be computed using the 
Receiver’s Operating Characteristic (ROC) curve [13].

Data collection and metrics
About dataset
We are using the cardiovascular disease dataset  from kaggle, susy 
dataset from UCI repository and telecom churn dataset from kag-
gle too. The shape of cardiovascular disease dataset and the susy 
dataset is approximately same with 15,000 records for training the 
model and 15,000 records for testing [6-8]. However, the size of 

telecom churn dataset is very small with only 776 records for train-
ing and 667 records for testing. The reason for selecting this data-
set is to check the performance of the model on small dataset. We 
are selecting only the best three possible features keeping in mind 
that none of them are internally correlated. The target features of 
all the three datasets contains only two classes 0 and 1, where 0 
denotes the negative class and 1 denotes the positive class.
[]η is the learning rate ≈ 0.0001

Evaluation metrics
The performance of any machine learning model is evaluated on 
the basis of some tandard metrics. In this section we will discuss 
some of them and their advantages over one another. A confusion 
matrix is a table often used to describe the performance of a clas-
sification model based on the actual and predicted outputs. There 
are four possible outcomes for a binary classifier : it can correctly 
classify a signal event (true positive, TP), classify a background 
event as signal (false positive, FP), correctly classify a background 
event (true negative, TN) or classify a signal event as background 
noise (false negative, FN). We can define various metrics from 
these values :
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Signal efficiency or recall is the ratio of the correctly identified sig-
nal to the total signal present in the dataset. The formula for recall 
is : Recall = TP / TP+FN
• Background rejection or specificity is the ability of the model 

to identify and discard the background events. The formula 
for specificity is : Specificity =  TN / TN+FP   

• Precision refers to the ratio of true positive to the total positive 
predictions made by the model. The formula for precision is : 
Precision = TP / TP+FP

• Accuracy refers to the number of correctly predicted data 
points out of all the data points present in the dataset. Ac-
curacy could be a misleading metric if the dataset is highly 
imbalanced, in that case we can go with precision, recall or f1 
score. The formula for accuracy is : 

       Accuracy = TP+TN/TP+FP+TN+FN
• F1 score is a special case of F-beta score when beta equals to 

1. It is defined as the harmonic mean of precision and recall. 
F1 score allows a model to be evaluated taking both precision 
and recall into account using a single score, which is helpful 
in comparing models. The formula for f1 score is : 

       F1score = 2Precision.Recall / Precision+Recall
• ROC or receiver’s operating characteristic is a trade off be-

tween the true positive rate (recall) and the false positive rate 
also called as false alarm rate. The area under the roc curve 
is used as summary of the model’s skill. A model having an 
AUC equal to or less than 0.5 is considered as a non-skill or 
dumb model. We will be using all these metrics to compare the 
efficiency of our custom model with the keras based model.

Results
The efficiency of our custom model is compared with anoth-

er model having same specifications but trained using the keras 
framework [9]. In case of susy and cardiovascular dataset, the 
models are trained for 100 epochs each whereas in case of telecom 
churn dataset the models are trained for 300 epochs. The reason for 
extra epochs in case of churn dataset is due to the low number of 
training records. Figure 4, 5, 6 shows the decrement in the value 
of loss function with respect to epochs for the three datasets. It can 
be seen that for the custom model the value of loss is initially high, 
one of the reasons for this could be the use of old gradient descent 
optimizer whereas in the keras based model we are using the state 
of art ”adam” optimizer.

The confusion matrix of susy dataset for both custom and keras 
based model are nearly identical as shown in figure 8, 11. The 
roc curve of the custom model represented in green shade and the 
keras based model represented in black almost coincide with each 
other, which implies that the performance of both the models on 
the test dataset is almost same. The precision recall curve for both 
the models shows a comparable trend as shown in figure 14. Com-
ing to the cardiovascular disease dataset, we can once more see 
that the confusion matrix for both custom and keras based model 
are approximately same as shown in figure 7, 10 and as a conse-
quence the roc curve and the precision recall curve for both the 
models are also identical as shown in figure 13.

The final dataset is the telecom churn prediction. As mentioned 
earlier the number of training records in it is very low which makes 
the result suspicious and unreliable with respect to the other two 
datasets. However as shown in figure 18, the roc curve for the 
keras based model is slightly better than the custom model, the 
reason for the same could be the presence of low training records, 
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similar is the case with the precision recall curve. Table 1 displays 
the value of accuracy, precision, recall, f1 score and roc auc score 
for all the three datasets trained on the custom and keras based 

models. []False positive rate (FPR) is calculated as the number of 
false positive divided by the sum of the number of false positives 
and true negatives 
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Conclusion and discussion
The first objective of this paper is to present the working of artifi-
cial neural network for calculating the optimal set of weights and 
biases in the most simplest way possible and to develop a better 
understanding of the relationship between the structure of a neural 
network, its ability to perform input-output mapping. The mathe-
matics introduced in this paper is sufficient enough for a beginner 
to get familiar about the working of artificial neural network and 
the different metrics used to evaluate the performance of model.

The second objective is to create a neural network from scratch 
without using any framework. The results presented in section 5 
demonstrates that the performance of the custom neural network is 
comparable to the well known keras based model, which gives us 
an idea that we can create a custom neural network from scratch 
according to our use case. This could necessarily be helpful for the 
beginners to get a hands-on experience of how the weight updation 
takes place and a neural architecture ets trained. Though the code 
is not completely ready for use in production still it can be used for 
learning purpose, experimentation, etc.
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