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Abstract
Human speech consists mainly of three components: a glottal signal, a vocal tract response, and a harmonic shift. 
The three respectively correlate with the intonation (pitch), the formants (timbre), and the speech resolution (depth). 
Adding the intonation of the Fundamental Frequency (FF) to Automatic Speech Recognition (ASR) systems is neces-
sary. First, the intonation conveys a primitive paralanguage. Second, its speaker-tuning reduces background noises 
to clarify acoustic observations. Third, extracting the speech features is more efficient when they are computed to-
gether at the same time. This work introduces a frequency-modulation model, a novel quefrency-based speech feature 
extraction that is named Speech Quefrency Transform (SQT), and its proper quefrency scaling and transformation 
function. The cepstrums, which are spectrums of spectrums, are suggested in time unit accelerations, whereby the 
discrete variable, the quefrency, is measured in Hertz-per-microsecond. The extracted features are comparable to 
Mel-Frequency Cepstral Coefficients (MFCC) integrated within a quefrency-based pitch tracker. The SQT transform 
directly expands time samples of stationary signals (i.e., speech) to a higher dimensional space, which can help 
generative Artificial Neural Networks (ANNs) in unsupervised Machine Learning and Natural Language Processing 
(NLP) tasks. The proposed methodologies, which are a scalable solution that is compatible with dynamic and paral-
lel programming for refined speech and cepstral analysis, can robustly estimate the features after applying a matrix 
multiplication in less than a hundred sub-bands, preserving precious computational resources.
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Introducton 
At first glance at Figure 1, one can notice the parallel curves in 
the spectrogram of the human voice (Figure 1a) but not in the bird 
chirp (Figure 1b). The salient curly harmonics of the voice render 
a hidden state that appears contentious when connecting the dots. 
The speech spectrogram is a graph of the energy distribution along 
audio frequencies (i.e., the spectrum) versus time. The contrasts of 
the pictured graphs were adjusted per the CMYK printing norms; 
the higher the energies, the darker the pixels, but the color scheme 

can be reversed when printed on monitors. Human speech can be 
captured from the spectrogram using two features: the pitch and 
the harmonic intensities. In order to have artificial agents process-
ing (or understanding) spoken languages naturally, it is crucial to 
realize a mathematical representation for speech that is attuned ac-
cordingly, especially because human intelligence and language are 
tangled up during development.
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Figure 1: Spectrograms of Multi- and Mono-Resonance Commu-
nication Systems

The parallel curves that are shown in the spectrogram are gener-
ated by a locally-stationary signal. This means that the periodicity 
and the waveform shape fluctuate slowly, relative to the sampling 
rate. The local stationarity is proportional to the sharpness of the 
parallel curves. Speech producers flap in response to internal air 
pressure, air molecules are compressed and released periodically, 
and the pulse shape makes speech transmittable through air. The 
time distance between two adjacent compressions (bursts, pulses, 
or cycles) is the wave period (T0), measured in seconds-per-cycle 
(1/Hertz). Equation 1 expresses the reciprocal relation between 
the wave-interval and the fundamental frequency, which is the 
frequency shift between two adjacent harmonic frequencies. This 
minimal shift is the speech fundamental frequency (FF or f0). It is 
also called the frequency carrier and the pitch in some contexts. 
However, being in an air channel as its communication medium, 
the signal’s actual periodicity is in meters per cycle. The λ0 and υ 
in the equation are the corresponding wavelength and the speed 
of sound (in the medium). All variables are time variants. The υ 
is usually assumed to be constant although the temperature, hu-
midity, and wind speed are not so along the air travel paths from 
the speech producer (vocal folds, cords, or glottis) to other human 
receivers.

T0 = λ0/υ = 1/f0 (second-per-cycle) (1) 

In Figure 1b, the birdsong producer constrains its f0 in a time-vari-
ant coordinate, which is then projected onto the two-dimensional 
spectrogram. The projection onto the periodicity space is non-lin-
ear since the f0 teleports in the spectrogram as though two fre-
quencies (e.g., 1 kHz and 4 kHz) are identical, because there are 
unaccounted independent axes. For example, the fundamental 
waveform of the canary bird is visually rotated around a variable 
axis parallel to the time axis, and its perimeter path renders a visual 
effect of cylinders in the figure. Assuming the bird’s monotone was 
traveling with a constant angular velocity in a polar coordinate, the 
inferred radius of a pictured time-variant cylinder is about 1 kHz 
and centered at 2 kHz.

Similarly, the voice of the infancy in Figure 1a teleported back and 
forth between two speech depths during moments of emotional 
outbursts (e.g., between 1.25 and 1.5 seconds), which can be no-
ticed in the audio playback. Per the juxtaposition of the two spec-
trograms, the human voice had a fundamental waveform, whose 
shape was transforming at a slow pace and had harmonic com-
ponents, which rendered the parallel spectral curves. The tone-
height-change phenomenon usually happens during puberty, and 
it doubles the fundamental interval, gears down the speech depth, 
and folds up the spectral code bandwidth. The speech resolutions 
happen accordingly. It is commonly known that deep human voic-
es have been relatively overrepresented in the classic telephony 
bandwidth (4 kHz). It is also known that the spectral bandwidth 
scaling is an issue in Automatic Speech Recognition (ASR). In 
order to equalize the speech features extractions, more coordinates 
must be added.

The spectral energies of the harmonic components are the speech 
features. There are patterns that appear as if they were behind 
openings of window blinds. These patterns are called speech for-
mants, and their mixtures make multitone phonemes. The harmon-
ic components are also called timbre, overtones series, and ceps-
tral coefficients. In this work, they are also the frequency envelope, 
the frequency-modulating signal, and the vocal tract response (Hm) 
for the purpose of mathematically modeling the speech signals 
and systems. Human speech consists of these components, which 
convey the hidden shape of the spatial cavities of the vocal tract 
(the nasal and oral cavities). The molecules’ signals convolve with 
the vocal tract systems. The output of the modulating system is 
the speech signal, which, due to its local stationarity, consists of 
recognizable time units.

A 1989 study [2] suggested that human perception of speech re-
lates to frequency demodulation. It also happens that two conven-
tional approaches to pitch and speech feature extractions are mod-
ulation-based but applied to the frequency domain. Unfortunately, 
the classical frequency domain, albeit vital, made several speech 
modules hardly attainable. The speech modules that are needed 
are namely: pitch tracking and filtering, spectral depth normaliza-
tion, and speech signal generation. Processing natural languages, 
for instance, the Generative Adversarial Networks (GANs), needs 
robust acoustic frontends that effortlessly unpack and compose 
speech utterances in a way that is similar to the natural extractors 
and producers.

A novel modulation-based approach is explained in this work for 
extracting the fundamental frequency and the harmonic energies, 
consisting of a speech model, a transform, and feature extraction 
methods. The approach is based on axiomatic assumptions: The 
voiced utterances are expressed in a variable speech resolution, 
and extracting the piloting f0 makes the speech code instantly ob-
tainable. Per the speech model, the human voice can consume less 
than 25.0 kilobits per second (kbps) of transmission bandwidth 
and is intelligibly recoverable when confined to less than a 4.1-
kbps bandwidth. An overview, related work, and our contributions 
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are in Section 2. Respectively, Sections 3, 4, and 5 outline the ap-
proach, the methodology, and the pitch-track-extraction results. 
The approach embraces two quefrency scales, a cepstral filter 
model, and cepstral processing measurements, and the quefrency 
transform and the speech feature extraction are described in the 
methodology section. Finally, the findings are discussed in Section 
6, and a summary of the article and its implications are in the con-
clusion section (Section 7).

Review
The pitch extraction techniques are generally categorized into 
temporal, spectral, and cepstral approaches based on the process-
ing domain: time, frequency, and quefrency. The quefrency is the 
frequency of frequencies and is the independent variable of the 
cepstrum, like the frequency is so of the spectrum. Even though 
several techniques had existed for pitch extraction [3], it still had 
drawbacks [4]. One of the time-domain methodologies is auto-cor-
relation, which matches the speech signal with its lagged versions 
(as opposed to decomposing its independent frequency compo-
nents). The frequency-domain is obtained in three operations: win-
dow slides, Fast Fourier Transform (FFT), and frequency banks. 
It is noteworthy that although the inverse Fast Fourier transform 
(iFFT) gives exact inversion theoretically, a Fourier transform de-
fined over a finite interval is actually non-invertible, so its iFFT 
inverse is an estimation.

Like the frequency domain, the quefrency domain is a non-linear 
vector space, in which superposition does not hold. In the ceps-
trogram, the signals of the tract and the glottis become separable 
due to their characteristic differences. The cepstrogram is usually 
obtained from a high-resolution spectrogram along with two ad-
ditional operations: logarithmic scaling (on both magnitude and 
frequency) and an iFFT. The iFFT is further approximated using 
the Discrete Cosine Transform (DCT) in the Mel-Frequency Cep-
stral Coefficients (MFCC) method. The cepstrum analysis [5] is 
defined as the power spectrum of the log magnitude of the power 
spectrum of the time samples [6]; i.e., Equation 2 or, equivalently, 
F−1log|F{•}|, where F{•} denotes a forward Fourier transforma-
tion,√ e−jθ = cos(θ) − j · sin(θ) [7, 8], and set j = pof −1. In this 
work, the SQT domain emulates the set of the fundamental wave-
forms, which is a subset of periodic functions.
1 X2cj2π2nmc 1X2cj2π2muc 1

For the pitch extraction, the Harmonic Product Spectrum is one of 
the most common methods, which De La Cuadra et al. [9] showed 
to be effective in adjusting acoustic instruments. Moreover, several 
methodologies in literature appeared promising, such as Pitch Con-
tours (PC) [10], Amplitude Compression [11] (AC), and neighbor 
normalization [12]. However, David Talkin commented on the 
latter that its Normalized Cross-Correlation (NCC) amplified the 
”peak at twice the correct period,” referring to what is called an 
”A” tone. Figure 2a [12] shows three possible pitch tracks at 70 

Hz, 140 Hz, or 210 Hz. According to the source, an NCC-based 
method was not instantaneously able to differentiate between the 
pitch and the two harmonically similar tones, which are apart at a 
one-unit-octave frequency. The ”almost perfect pitch tracker” of 
Ewender et al. [13] showed the challenge of the overtones still 
occurs in this century’s literature.

Another recent approach to speech features was the coherent mod-
ulation [14]; this method is known to be ”useful” when the mod-
ulating and modulated signals have commonalities. The coherent 
modulation was ”more effective than previously believed,” stated 
Clark and Atlas [15]. Particularly, Li and Atlas [16] outlined a de-
tailed FFT-based procedure. Generally, the bulk of the algorithms 
in the literature perplex with the illusionary overtones because 
of the f0 harmonic characteristic. Even human perception regards 
them as more similar than other tones, but human agents easily dif-
ferentiate between each speech depth, implying that the ambiguity 
in f0 should not exist in the acoustic frontend, rather at a deeper 
perceptual level. For instance, one could argue that harmonic il-
lusion may have played a role in easing the language acquisition 
since it rolls the spectral code of the main speakers’ categories.

On the other hand, the frequency domain approaches are mediocre 
at limited computational power, and customizing.

Figure 2: Cepstrograms of Two Speech Feature Extractors

the conventional quefrency axis requires frequency banks. Accord-
ing to Moorer [17], the temporal and cepstral methods can comple-
ment one another as their features are approached differently. Un-
surprisingly, the cutting-edge pitch trackers, such as Yet Another 
Algorithm for Pitch Tracking (YAAPT) [18], combine observation 
candidates from more than one pitch detection approach before 
smoothing the estimated pitch track. This combination comes 
with a computational cost, at which the sole cepstral approach is 
capable of producing fine pitch tracks.A possible workaround to 
this issue is to apply the process adaptively. Adaptive methodol-
ogies vary in the literature. For example, the overtone noise can 
be suppressed by a smoothing operator [19], which flattened the 
pitch track and, consequently, may have reduced the accuracy of 
the f0 readings. The smoothing is an averaging operator that dis-
torts acoustic information. It has to be replaced with non-linear 
filtering to preserve the original information recoverability. Sev-
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eral cutting-edge approaches have not been as robust as those for 
mammals, whose biological processors demodulate and compose 
speech signals effortlessly even though they operate at much slow-
er processing speeds than today’s machines.

SQT is novel and distinctive. Unlike the previous methodologies, 
not only does SQT extract recoverable harmonic spectra, but it 
also distinguishes the f0 from its over- and undertones during 
the pitch extraction phase. Figure 2b depicts the cepstrogram of 
a multi-speaker channel. Before conducting the SQT-based ex-
tractions, male and female voices were added to an infancy voice 
background. The two persons had their f0 in the quefrency ranges 
[80,155) Hz and [155,250) Hz, respectively, while the infant had 
its in the range [250,550] Hz. Theoretically, the addition of period-
ic signals is irreversible. However, each of the male and female ut-
terances was still intelligible when ”unmasked” or recovered from 
the other two voices in the background. This example illustrates 
the advantageous noise resilience of the proposed method. SQT 
has unique feature spaces, responsive normalizations, and que-
frency scales. SQT extracts the speech features in practical means 
that can satisfy the required accuracy of any application. This is 
because applying Nyquist’s theorem, which is usually applied on 
time axes, on the frequency axis suppresses the quefrency aliases. 
The outcome of this is analogous to the human ability to tune to 
one speaker and having the ambient noises blurred. In other words, 
SQT reduces the resolution of the background speeches. The other 
cepstral, spectral, and temporal approaches were either ineffec-
tive or computationally prohibitive when standing alone. They 
postpone complexities for later post-processing, since finding the 
speech model is not an easy task for unsupervised Machine Learn-
ing. In contrast, SQT facilitates relatively advanced capabilities 
for the artificial speech agents, such as simultaneously processing 
multiple and distant speeches.

 Approach
Since the human acoustic sense is receptive to frequency-modulat-
ed tones, and because the vocal features are separable in the que-
frency domain, it made sense to investigate the cepstral approach. 
Some may argue that not all human speech is periodical because 
there are phonemes that are unvoiced. However, the unvoiced pho-
nemes still have a spectral presence and are partially detected by 
periodic filters. Additionally, the unvoiced phonemes are not en-
tirely unvoiced. They are usually coupled by voiced segments to 
increase their air transmissivity. The unvoiced units are variations 
of noise, such as the violet noise, and can be modeled by small-
er filters since they have smaller frequency resolution. Instead of 

adjusting two frame rates, another way to increase the unvoiced 
presence is to have the frame step no larger than 10 ms, or [0.010 
· fs] samples, where fs is the sampling rate. The frame step is the 
time interval between similar points at two adjacent frames; it is 
also the complement of the frame overlapping. In other words, 
the sampled spectrograms can partially capture speech pulses and 
noises when the frame rate is increased due to its fast-paced transi-
tion. Note that, once the signal is in frames, the speech sequence is 
re-sampled from the sampling rate to the frame rate, fr = 1/Frame 
Step or 100 fps (frames per second). The frequency domain is ob-
tained from the quefrency selection on the SQT domain, which is 
obtained directly from the time frames.

This section presents logical intuitions and infers presumption ax-
ioms for the appropriate quefrency scale, the speech signal model, 
and the periodical cepstral measurement. The discussion also ex-
tends to the maximum window size.

Reciprocal Quefrency Scale
Cepstrum is a measurement of an acceleration rate, and its que-
frency is equivalent to the change in frequency (Hz) per a time 
interval (µs). It may be misleading to count its unit in seconds 
although the unit can be expressed in samples ([20]). The proof 
that quefrency is the rate of change can be derived directly from 
intuitive definitions. Let the scalar quantities λ0, second, and sec-
ond′ be sample measurements of the corresponding units cycle, s, 
and s’, in some ϖ time unit. Since quefrency is the frequency of 
frequencies, but frequency is the rate of cycles per standardized 
second (hence, the rate of occurrence with respect to time), and 
since frequency also is, intuitively, the ratio of the standardized 
second to the comparable λ0 interval (hence,               in cycles/sec-
ond or Hz unit), then similarly, quefrency is                 (in Hz-per-s’ 
unit). That is, quefrency is the rate of (wave-period per the stan-
dardized second) per another constant second’; therefore, the unit 
of the quefrency is cycles per second squared if second′ = second. 
In other words, although some equal quantities may be divided, 
their units are generally multiplied. For that reason, our reciprocal 
definition of the appropriate quefrency scale is
Equation 3, where fmin and fmax are the desired minimum and max-
imum quefrencies or f0 boundaries, and n ∈ {0, 1, ··· , N − 1, N}.
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Notice the quefrency unit factor s’ and the desired quefrency reso-
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when the speed of sound is 343 meters per second. The unit of the 
quefrency can be converted to samples given the sampling rate, 
as has been referred to. Notice that the Bark- and the Mel-scales, 
as well as the quefrency scale, exhibit logarithmic curves. One 
could hypothesize that the human reception of voice has a lower 
boundary (about 20 Hz/s’) because of the reciprocal proportion, 
which spans quickly to infinity for the Direct Current measure-
ment. Figure 3a shows the practical Reciprocal Scale (R-Scale), 
where the quefrency bins are spaced consistently such that ∆q = 
Hz/36µs. On the other hand, Figure 3b shows the regular linear 
scale, where ∆q varies from Hz/392µs to Hz/3µs. The two figures 
show cepstrograms of the same infant voices, whose pitches are 
in [190,480] Hz. The number of calculations was set constant to 
generate the two depictions, yet the linear scale is inefficient for 
several reasons. First, the frequencies around 100 Hz/s’ of the reg-
ular cepstrum received exponentially low intensity, so they might 
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There are three aspects to consider in determining the minimal 
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ing may sense frequencies down to 20 Hz and does not discrim-
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[21]. Rarely does a speech signal have a frequency of less than 60 
Hz, and these constraining values increase as one advances in age. 
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expressed in samples ([20]). The proof that quefrency is the rate of change can be derived directly from 

intuitive definitions. Let the scalar quantities λ0, second, and second′ be sample measurements of the 
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second’; therefore, the unit of the quefrency is cycles per second squared if second′ = second. In other words, 
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frequency is the rate of cycles per standardized second (hence, the rate of occurrence with respect to time), 

and since frequency also is, intuitively, the ratio of the standardized second to the comparable λ0 interval 

(hence,  in cycles/second or Hz unit), then similarly, quefrency is  (in 

 

Hz-per-s’ unit). That is, quefrency is the rate of (wave-period per the standardized second) per another constant 

second’; therefore, the unit of the quefrency is cycles per second squared if second′ = second. In other words, 

although some equal quantities may be divided, their units are generally multiplied. For that reason, our 

reciprocal definition of the appropriate quefrency scale is 
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to. Notice that the Bark- and the Mel-scales, as well as the quefrency scale, exhibit logarithmic curves. One 

could hypothesize that the human reception of voice has a lower boundary (about 20 Hz/s’) because of the 

reciprocal proportion, which spans quickly to infinity for the Direct Current measurement. Figure 3a shows 

the practical Reciprocal Scale (R-Scale), where the quefrency bins are spaced consistently such that ∆q = 

Hz/36µs. On the other hand, Figure 3b shows the regular linear scale, where ∆q varies from Hz/392µs to 

Hz/3µs. The two figures show cepstrograms of the same infant voices, whose pitches are in [190,480] Hz. The 

number of calculations was set constant to generate the two depictions, yet the linear scale is inefficient for 

several reasons. First, the frequencies around 100 Hz/s’ of the regular cepstrum received exponentially low 
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For most people, however, human perception is most responsive 
to the frequency band [1,5] kHz. Having said that, one should set 
the lowest measurable fundamental of the speech model to fmin = 50 
Hz. This value sets the minimal frequency required to 25 Hz (this is 
approximately the lowest perceivable frequency to human beings) 
and the window length to 40.125 ms (less than the length of the 
ambiguity). Moreover, 50 Hz is the minimum frequency in most 
audio applications [22, p. 140]. The silence at 50 Hz corresponds 
to 40dB, at the lowest contour of loudness [23]. In summary, for an 
8 kHz sampling rate, 321 subsequent samples are required in order 
to detect an event (e.g., impulse) that happens every 161 samples, 
and the shortest stationary unit of spoken languages takes more 
than 40 milliseconds.

Signal Model
Because speech is sampled, its harmonic sequence is bounded. 
The continuous speech signal is a random process whose random 
variables are the vocal tract and fold states. The two have physical 
limits safeguarding their characteristics from abrupt changes. This 
makes speech presentable in frames. Let each time frame have (2c 
+ 1) subsequent samples such that the discrete time axis is u ∈ 
{0,1,··· ,2c} = Z[0,2c]. Let a harmonic number (also called order, 
rank, or term) be m ∈ {1,2,··· ,M}, where M is the highest desired 
harmonic order. In addition, let a set of fundamental frequencies 
have indices n ∈ {0,1,··· ,N}. The variable lengths N, M, and c 
are non-negative integers (Z+) and are utilized in Section 4.2. To 
obtain the signal model, it is of interest to formulate a quefrency 
transform   

that  maps  the (2c + 1)-sample vector to an (N + 1)-quefrency × 
M-harmonic matrix.

Without loss of generality, consider the situation where only one 
glottal signal and one vocal tract system generate the time frame. 
The speech is a time variant whose waveform can be modeled with 
wavelets. Needless to say, the harmonic multiplicities are embed-
ded within the f0 waveform, which is a variable function. However, 
in the ideal case, the glottal signal is a unit impulse train, whose 
Fourier transform is a train of impulses, re-scaled to 2πf0 magnitude 
(noted later in Equation 8). The idealization of the basic waveform 
g[u] spreads its f0 into harmonics with equal magnitudes. Now, 
placing four formants on that harmonic medium can be obtained 
when the impulse train passes through a multi-bandpass filter, 
whose impulse response function h is actually the shape of the 
waveform. The convolution happens as the filtering tract system 
responds with a time sequence at every stimulus it receives. More-
over, due to the speech depth phenomenon, the filtering system 
(h) is a nonlinear function of f0. In general, a speech time frame 
is modeled as Equation 4, where the summation is over the har-
monics, the convolution (*) is the filter operator, and the φ is the 
instantaneous phase, usually in the range [0,2π] radians. However, 
since the phase is considered only for synchronization (minimiz-
ing the angular difference between the signal transmission and the 
filter reception), and because the output of interest is the absolute 

magnitude, its effective range becomes [0,  ] radians, and an ab-
solute value operator is added for the other half. The function φ[ω] 
for the d-index phase ω = {0,1,··· ,d − 1} is defined in 
Equation 5 for completion.
	   	                                        (5)
 
A practical enhancement to reduce the spectral leakage is to define 
the time-frame windowing w[u,f0], controlling the widths of the 
harmonic banks because the default window is square if the shape 
is not defined. The frequency response of the window substitutes 
each sinusoid filter with a continuous range of sinusoids, resulting 
in a relatively wider band at mf0. The windowing also attenuates 
the energy magnitudes exponentially. The Dolph-Chebyshev func-
tion is one of the unique windows because it has an almost flat 
spectral attenuation. In other words, the additive distortion of the 
Chebyshev window is roughly distributed uniformly, enhancing 
the performance of a subsequent maxima detection. Framewise, 
the windowing operator is linear and reversible as long as its en-
tries are positives. The Chebyshev window is achieved per the de-
sired width of the main lobe and an iFFT application. Applying 
the Stone-Weierstrass theorem, the windowing generates polyno-
mial functions that realize approximated cosine functions on the 
bounded bandwidth. Keep in mind that the equality of Parseval’s 
theorem is defined on rectangular windows.

Given the equation of the main-lobe width defined by Smith [24], 
one may obtain Equation 6, which calculates the level of attenu-
ation (A) in decibels (dB), having a frame length (2c + 2) and a 
main-lobe side width wb. From the cepstral perspective, the spec-
trum of h[u,f0]

(Hm[f,fs])  is sampled at  (in harmonics per 
Hz). Crystallizing the definition of the quefrency unit of the previ-
ous section, the application of Nyquist’s theorem on the quefrency 
domain makes the spectral width less than or equal to 2f0; i.e., 2wb 
≤ 2/qs. The desired width is wb = f0/|2κ − σ|, where σ ∈ [0.5,1.5]. 
When σ = 0.5, the model is resilient to noise, and when σ = 1.5, the 
model is enhanced in noise-free environments. Since most Cheby-
shev implementations require the attenuation, the included equa-
tion is handy. The default value of σ is 1.0. Equation 7 defines a 
Gaussian-based alternative window. Most importantly, estimating 
the energy after the transform is possible only when the samples of 
the window sum to one. Finally, an obvious best practice is to have 
the windowing operation applied once to the SQT matrix rather 
than to every input frame.
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Cepstral Measurement
To derive the harmonic sampling, first apply the Fourier transform 
to Equation 4 to obtain Equation 8, where Wm[f,f0] is the window’s 
frequency response. (Let Wm[f,f0] = Wm[f] and Hf,f0 = H[f] since 
the non-linearity of H is discussed later in Section 6). After rear-
ranging the terms, the glottal frequency response is Equation 9.

The formants are much wider than the harmonic samples in G, so 
the energy of H is approximately non-varying within ±  . There-
fore,                               ],  and at f = mf0 ± ,  the S[f] becomes 
the tract signal H[f] plus some noise. The additive noise is sizable 
in the signal-to-noise (SNR) ratio because the impulse response is 
attenuated in that region. That is                                                  and 
the spectral energy at mf0 is

Since the detection of f0 depends on the M harmonic observations, 
the detection probability Pr[f0] is equivalent to Qm Pr[mf0]. Like-
wise, the cepstral similarly, P[f0], is equivalent to Qm P[mf0]. The 
calculation is usually preferred in decibels for several reasons. 
Also the adjacent harmonics should be multiplied to filter out the 
undertones. The addition operation is computationally safer than 
multiplication, and underflowing can be avoided with a stabilizing 
ϵ = 0.001. The logarithmic option is also more time efficient than 
the multiplication when the log conversion of the matrix entries is 
applied in parallel. However, the log operation can be substituted 
by a fractional exponent. One of the possible cepstral measures 
P[f0] is therefore defined in Equation 10. Overall, the intensity of 
the quefrency correlates positively with Q

m |S[mf0]| and negatively 
with Qm |S[(m−0.5)f0]|. The relation between them can be either a 
signal-minus-noise value or a Signal-to-Noise Ratio (SNR), and 
the subsequent detection can be done with either maxima or mini-
ma. This section covered the basic mathematical intuitions, and the 
next section uses the inferences.

Methodology
Having had the signal model of Equation 4, the quefrency measure 
in Equation 10, and the context of the previous section, this section 
applies the SQT matrix T, which is applicable on the frames s[u], 
to obtain the desired speech features S[f].

Notation
Let (N + 1), M, and (2c + 1) be the numbers of quefrencies, har-
monics, and time samples respectively. The variables N, M, and c 
are user-defined integers larger than one. Also fmin and fmax are vari-
able f0 boundaries, where fmin < fmax. Additionally, let d ∈ {1,2,4} be 
a selectable phase synchrony mode, where the complexity levels 
1, 2, and 4 correspond to real, complex, and sliding-phase types of 
detection. In terms of notation, let s(t,u) be the uth time sample in 
the tth frame of N frames, and so s is an (N + 1) × (2c + 1) matrix. 
In Equation 10, label the first cepstral signal S (of the modeled nu-
merator) with κ = 0 and the second S (of the noise) κ = 1. Then, the 
first and second S[f]e−jφ of the equation can be expressed in a 5-d 
matrix, Equation 11. Now, an entry of S is equivalent to a vector 
product between a time frame and a slice of the transform. That is 
the matrix multiplication S = s·T. The next section describes how 
to build and use a transform such as the one in Figure 4.
	
|S(t,n,m,ω,κ)| = |s(t,∀u) × T(∀u,n,m,ω,κ)|	 (11)

Transformation
We define the T of SQT and its instantaneous frequency
f(n,m,κ) as follows:

The R and φ are N-lengthed and d-lengthed vectors, obtained from 
the scale definition in Equation 3 and the instantaneous phase defi-
nition in Equation 5. W is a (2c + 1)-lengthed vector of a Cheby-
shev window with an 

Figure 4: SQT Matrix

attenuation of Equation 6. The frequency-shift function ψ is de-
fined in Equation 19. The time index u was shifted by c and the 
phase index was shifted by d for filter centering. Table 1 completes 
the definition of the transform. In practice, the transform is con-
structed using matrix manipulations on Mesh Grid coordinates. It 
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 Methodology 

Having had the signal model of Equation 4, the quefrency measure in Equation 10, and the context of the 

previous section, this section applies the SQT matrix T, which is applicable on the frames s[u], to obtain the 

desired speech features S[f]. 

 

Notation 

Let (N + 1), M, and (2c + 1) be the numbers of quefrencies, harmonics, and time samples respectively. The 

variables N, M, and c are user-defined integers larger than one. Also fmin and fmax are variable f0 boundaries, 

where fmin < fmax. Additionally, let d ∈ {1,2,4} be a selectable phase synchrony mode, where the complexity 

levels 1, 2, and 4 correspond to real, complex, and sliding-phase types of detection. In terms of notation, let 

s(t,u) be the uth time sample in the tth frame of N frames, and so s is an (N + 1) × (2c + 1) matrix. In Equation 

10, label the first cepstral signal S (of the modeled numerator) with κ = 0 and the second S (of the noise) κ = 

1. Then, the first and second S[f]e−jφ of the equation can be expressed in a 5-d matrix, Equation 11. Now, an 

entry of S is equivalent to a vector product between a time frame and a slice of the transform. That is the 

matrix multiplication S = s·T. The next section describes how to build and use a transform such as the one in 

Figure 4. 

 |S(t,n,m,ω,κ)| = |s(t,∀u) × T(∀u,n,m,ω,κ)| (11) 

4.2. Transformation 

We define the T of SQT and its instantaneous frequency 

f(n,m,κ) as follows: 
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attenuation of Equation 6. The frequency-shift function ψ is defined in Equation 19. The time index u was 
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c and the phase index was shifted by d for filter centering. Table 1 completes the definition of the transform. 

In practice, the transform is constructed using matrix manipulations on Mesh Grid coordinates. It may also be 

necessary to flatten (or vectorize) the dimensions 2-5 in low-level programming languages. 
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may also be necessary to flatten (or vectorize) the dimensions 2-5 
in low-level programming language.

For the general description of the transform, Figure 4 depicts the 
real part and imaginary parts of a flattened matrix example, T(u,···,κ). 
The depiction visualizes a stack of scallops rather than cochleas. 
The real part is even with respect to time, while the imaginary part 
is odd, so it is symmetric about the time origin. The vertical axis 
is the frame’s interval in seconds. The first set of 48 filters along 
the horizontal axis corresponds to κ = 0 (the numerator S), and the 
remaining set of 48 filters corresponds to κ = 1 

Table 1: SQT Generation

(the denominator). The difference between the two sets of 23: end 
procedure 24: 
functions is the scale with respect to time. In the two sets, the first 
16 filters are of m = 1 (the first harmonic, the f0),
the next 16 filters are of m = 2 (the second harmonic), and the last 
16 filters are of m = 3. The 16 filters in each are n ∈ {0,··· ,15}. In 
the general case, the first axis corresponds to the time samples of 
windowed sinusoids. The second dimension varies the sinusoids’ 
frequencies according to the quefrencies, and the third varies per 
the harmonic overtones. The last two dimensions are for detection 
enhancement via phase synchronization and alias cancellation. The 
transform is applied on stationary frames. The output of the trans-
form is a stochastic process that conveys three random variables: 
the periodicity, the envelope, and the noise. They are necessary 
to detect the quefrency f0, which shifts the modulating signal Hm.

Speech Feature Extraction
The sampled time frames are projected onto a three-dimension-

al feature space during the transformation. (See Equation 11). We 
theoretically demonstrated that including two extra axes (i.e., ω & 
κ) was a necessity for reliable quefrency readings. To obtain the 
visioned 3-D speech space, apply absolute magnitude, synchro-
nize by either a max operation or a summation along the ω axis, 
as in Equation 14, and extract the κ = 0 matrix slice. The S(•,n,m,κ=0) 
resembles a monochromatic 2-D time-frame, where the n and m 
are the indices for the quefrency rate track f0(t) and the normalized 
spectrograms Hm(t).

S(t,n,m,κ) = max|S(t,n,m,∀ω,κ)|	 (14) ω

To calculate the cepstrogram measurements	 of Equation 10, ap-
ply a log or fractional exponent operator, flip the sign where κ= 1, 
and aggregate the κ and m terms. The log operator of the noise-can-
celing stage is not required, but pre-processing it with a 4-adjacen-
cy filter can bridge the transitioning between the connected pixels 
instead of significantly distorting the extracted information with 
the smoothing operator at the end.

P(t,n) = X (−1)κ · 20log10S(t,n,∀m,∀κ) (dB)(15) m,κ

The f0-levels (or indices) with the highest score estimate along the 
n-axis are extracted with the arguments of the maxima (arg max), 
as in Equation 16a. Given the f0 track, the vocal tract responses 
(Hm) are extracted by applying the indices to Equation 16b. The 
f0-levels at t/frs are then converted to the Hertz unit by the R-Scale 
of Equation 16c, since the f0 axis is quantized earlier per the recip-
rocal frequency scale R (of Equation 3). Finally, Table 2: Valida-
tion Results of Preliminary Data the f0 and Hm are the extracted 
speech features.

               r[t] = argmax[P(t,∀n)]              (16a) 
	
           Hm[t] = S(t,n=r[t],m,κ=0)	      (16b)

	 f0[t] = R(n=r[t])	                   (16c)
Results
A preliminary comparison between three pitch extraction im-
plementations is in Table 2. The Quefrency Transform Twelve 
(QT12) is one of our Matlab implementations based on the SQT 
method (defined in Table 1). The other two pitch extractors are for-
mal Matlab implementations based on the Pitch Contours (PC) and 
the Amplitude Compression (AC), which are briefed in Section 
2. According to Matlab, the two implementations are not entirely 
based on the proposals “A Pitch Estimation Filter 

Robust to High Levels of Noise (PEFAC)” and ”Automatic Speak-
er Recognition Based on Pitch Contours” by Gonzalez et. al. and 
Atal respectively. GPE (Gross Pitch Error) is a common speech 
metric of pitch performance. A smaller GPE value correlates with 
better methods. It is the probability the error threshold is exceed-
ed. GPE-20 is the probability of obtaining an absolute-value error 
over the threshold of 0.20 or 20% of the target label. The statis-
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the next 16 filters are of m = 2 (the second harmonic), and the last 16 filters are of m = 3. The 16 filters in each 

are n ∈ {0,··· ,15}. In the general case, the first axis corresponds to the time samples of windowed sinusoids. 

Table 1: SQT Generation 

INPUT: fs = 8000, fmin = 100, fmax = 300, N = 15, M = 3, c = 160, d = 2, σ = 1.0 - parameters 

OUTPUT: T, R - quefrency transform and scale 

1: procedure SQT(a,b) ▷ generates the transform if it is not in memory. 2: T ← zeros( 

(2c+1)×(N +1)×M ×d×2 ) ▷ initializes the transform matrix with zero values 3: R ← zeros( 

N + 1 ) ▷ initializes the quefrency scale of the transform 4: f ← zeros((N + 1) × M × 2 ) ▷ 

allocates temporary matrix space 5: W ← zeros( N + 1 ) ▷ allocates temporary vector space 

6: for n ∈ [0,N] do 

7: find R(n) ▷ using Equation 3 

8: for m ∈ [0,M − 1] do 

9: for κ ∈ {0,1} do 

10: Calculate f(n,m,κ) ▷ using Equation 13 

11: if f(n,m,κ) ≤ fs/2 then 

12: Calculate W(n) ▷ given the main-lobe width of 0.5R(n)/|2κ − σ| 

13: end if 

14: for u ∈ [0,2c] do 

15: for ω ∈ [0,d − 1] do 

16: Calculate T(u,n,m,ω,κ) ▷ using Equations 12 and 19 

17: end for 

18: end for 

19: end for 

20: end for 

21: end for 

22: return T,R ▷ used together: T extracts the spectral values at R 
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tical significance validation was applied to the Matlab reference 
audio file ”Counting-16-44p1-mono-15secs” with 0dB additive 
noise of ”Turbine-16-44p1-mono-22secs.” The SQT matrix had 12 
harmonic components, hence, QT12. Its complexity was adjusted 
so that it equals the sum of the complexities of the MFCC’s and 
PC’s implementations, since the SQT features are comparable to 
the features of both MFCC and PC. The table shows that the time 
complexity of the QT12 was lower than the AC’s complexity and 
higher than the PC’s. Also, the GPE of QT12 was lower than the 
PC’s error and slightly higher than the AC’s. Generally, the FFT 
spectrogram had the lowest computational complexity. Note that 
the features of FFT and the QT12 are recoverable. That is, the SQT 
technology can be utilized for AI speech composition and speech 
synthesis. However, the features of MFCC and FFT do not pro-
duce pitch tracks. This section continues with a detailed pitch tract 
evaluation of the three Matlab functions.

 Pitch Extraction Evaluation
Table 3 prints out performance metrics of three methods under 
several noise conditions, totaling 28 tests. QT mostly had the low-
est probability of Type-1 error when the significance thresholds 
were set to 20% and 10%. QT and PC were neck and neck when 
the threshold was set to 5%. The proposal evidently outperformed 
the other two methods in all of the additive noise conditions that 
were tested: noise-free, white-noise, and turbine-noise. AC gener-
ally performed well when the turbine-noise level was high, and PC 
generally did so when the white-noise level was low. The evalu-
ation shows that the pitch detection performance of the proposed 
method performed excellently. Another indication for the pitch ac-
curacy is the speech quality of the reconstruction. It may be safe to 
assume that QT is relatively robust in high noise conditions.

Table 2: Validation Results of Preliminary Data
Features Recoverability Time GPE-20
PC N/A 0.046 6.589
AC N/A 0.127 5.448
QT12 Yes 0.058 5.740
MFCC No 0.012 N/A
FFT Yes 0.007 N/A

Test Samples
Figure 5a demonstrates the SQT approach in practice, whereby 
higher frequencies were assigned fewer quantization levels. Figure 
5b plots the samples of two waveform signals: the original and its 
twelve-tone reconstruction. The composition is no small feat, and 
its Root Mean Square (RMS) envelope is fair. The speaker traits, 
like accent, however, were less present, and that was expected 
since only a dozen components were extracted for this set of tests.

Experimental Settings
The selected evaluation dataset was called Frequency Determina-
tion Algorithm (FDA) Evaluation Database [25]. The fundamental 
frequencies of the FDA data are labeled at a 20 kHz sampling rate 
of a 5.53-minute audio of male and female speakers. To increase 
the difficulty of the pitch extraction, the sampling rate of the data 
was decreased to 8 kHz. The results were recorded at the minimal 
lag per method to decrease the implementation delay differences. 
A median filter whose size is three was appended the f0 extraction 
processes, which were conducted online in the Matlab platform 
(2019b) [26]. The average feature-extraction times for the SQT 
(this article), AC [11], and PC [10] methods were 1.34, 3.24, and 
1.16 seconds, respectively. The QT was constructed with Gaussian 
windows and M = 12, the first five of which were used for the pitch 
detection.

Table 3: Test Results of the FDA Data
Settings methods Error Metrics

Lag GPE-20 GPE-10 GPE-05 RMSE
No Noise QT 0.00 2.18 5.84 14.34 25.44

AC 0.00 4.34 8.03 18.28 45.84
DC 0.00 3.65 7.88 15.77 34.73

White-Noise dB20 QT 4.97 2.24 6.30 14.82 27.26
AC 11.00 4.40 8.92 19.08 48.88
DC 0.50 3.66 8.28 16.38 34.42

dB10 QT 0.97 2.66 10.32 18.81 38.68
AC 37.65 5.13 15.63 26.30 74.95
DC 29.87 3.91 13.67 23.25 44.97

dB0 QT 3.00 6.74 6.13 14.61 25.42
AC 56.40 11.89 8.39 18.51 45.77
DC 66.30 9.15 8.09 16.00 34.22

Tur-
bine-Noise

 

dB20 QT 4.39 2.46 6.13 14.61 25.42
AC 12.50 4.66 8.39 18.51 45.77
DC 16.10 3.80 8.09 16.00 34.22

dB10 QT 11.74 5.70 9.3213 17.532 32.11
AC 33.71 8.45 12.36 22.46 51.24
DC 59.71 7.55 11.89 20.23 41.14

dB0 QT 27.81 30.23 34.23 41.08 61.51
AC 35.30 30.34 34.99 45.68 77.97
DC 45.10 37.33 41.86 48.83 80.32
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The metrics are variant significance testing cases and a squared 
loss case; the gross pitch error (GPE), its lag, its significance 
(GPE-Threshold), and the Root Mean Square Error (MSE) are 
defined in Equation 17. Two types of noise signals, white noise 
and turbine noise, were added in three SNR cases: low (20dB), 
medium (10dB), and high (0dB) noise conditions. The metrics of 
the tests involving randomness are represented by the average of 
30 repetitions; each was determined at the most suitable GPE lags.

Discussion
This section discusses the limitations and analyzes the implications 
of the results. The results show that the speech intonation is indeed 
an essential feature. The pitch patterns are essential for emotion 
expression and recognition. However, they has been absent from 
the state-of-the-art speech synthesizers. For example, the voices 
in the OpenAI project hardly express any emotions. Furthermore, 
since the pitch unit is expressible in Hertz-per-microsecond, our 
cycle acceleration perspective is not only valid intrinsically but 
also mathematically. Additionally, the results show that the SQT 
pitch tracks are objectively superior to the recent alternatives in the 
Matlab toolbox. Also the SQT feature engineering is clearly robust 
in its feature reconstructions. Finally, the limitation of the study 
is that it included just two pitch track extractions, two quefrency 
scales, and two datasets. First, the two pitch track extractions were 
apparently better than several other pitch extractions under prelim-
inary test conditions, so the two were most likely representative of 
the methods in the literature but not necessarily so. Second, there 
might be scales other than 

                        Time (s)

(b)  Speech Reconstruciton of a ”Car” Utterance

Figure 5: Illustrative Example from the FDA Data  

the linear and the reciprocal spaces. For example, a trade-off be-
tween the two scales might be better than the reciprocal scale. 
Third, the harmonic shift may have been caused by the equipment, 
so it may not be from the source of the voice. Therefore, future 
work can include recordings of multiple microphones. Other rec-
ommendations for follow-up research include machine learning, 
multi- and distant speech recognition, and some of the communi-
cation parts were briefly mentioned in this article, which has sup-
plementary audio files [27]. For example, the MFCC and the SQT 
hyperspace can be compared in the speech emotion classification. 
Another example is that the deep learner may auto-encode speech 
signals using the reconstruction speech formula. The remainder of 
this section provides technical elaborations in retrospect to the pre-
vious sections. A case study highlights the findings, the end prod-
uct, and the significance of the fundamental frequency for speech 
signal processing.

Speech Depths
The medium of the air particles is equivalent to a low-pass chan-
nel; it attenuates the high frequencies of the utterances. Speech 
audio is also anti-aliased (or low-pass filtered) while it is acquired 
and stored. Because higher FFs spread the cepstral code to higher 
frequencies, each speech depth naturally has a speech resolution, 
not to be confused with the frequency resolution. The depth must 
be one of the f0 coordinates. The speech features correspond to the 
average of the repeated shape in the periodic series. It can be mod-
eled as h(t,f0) on the time domain, in which it exhibits a variation 
of a sine cardinal function, i.e., sinc, or modeled as H(f,f0) on the 
frequency domain, in which it can be approximated by Gaussian 
Mixture Models. The variability of the speech depth may have fos-
tered communications within household members and facilitated 
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This section discusses the limitations and analyzes the implications of the results. The results show that the 
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recognition. However, they has been absent from the state-of-the-art speech synthesizers. For example, the 

voices in the OpenAI project hardly express any emotions. Furthermore, since the pitch unit is expressible in 

Hertz-per-microsecond, our cycle acceleration perspective is not only valid intrinsically but also 

mathematically. Additionally, the results show that the SQT pitch tracks are objectively superior to the recent 

alternatives in the Matlab toolbox. Also the SQT feature engineering is clearly robust in its feature 

reconstructions. Finally, the limitation of the study is that it included just two pitch track extractions, two 

quefrency scales, and two datasets. First, the two pitch track extractions were apparently better than several 

other pitch extractions under preliminary test conditions, so the two were most likely representative of the 

methods in the literature but not necessarily so. Second, there might be scales other than the linear and the 
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language learning along one of the speech dimensions, since each 
speech depth happened to have a speech resolution and a cepstral 
band, and since a simple projection can align the speech features 
of different speakers’ characteristics. The speech depths are com-
monly associated with masculinity, femininity, and infancy. How-
ever, the overall majority of human beings naturally produce the 
resolution that is also a common characteristic of the youth voice.

Newborns first encounter blurred speech, and the low resolution 
perhaps helps humans acquire and model languages in a gradu-
al general-to-specific heuristic search, guiding the internal neural 
systems. Generally, increasing f0 prioritizes the voice over the 
voices with lesser ones; this is ascribable to the voice masking 
phenomena, which is caused by the fact that two time periods of a 
high f0 resemble a time period of a low f0, but not vice versa. (The 
utterances consist of pulse wavelets rather than sinusoids). For 
example, requiring more signal processing filters and listening to 
a conversation whose background is voices of unsatisfied depen-
dents require extra mental work to filter out high f0 interference. 
The unpleasant noise may further the survival of the species, pre-
venting child neglect. On the other hand, lowering the f0 expands 
its voice coverage since signals traveling on lower frequencies 
optimize their energy for long distance communications (like in 
open fields). Although the gender may have a degree of correlation 
because of the vocal folds’ lengths [28],

The association does not hold because of the existence of siz-
able minorities, which makes the majority of human voices have 
high pitch. Moreover, the voice generator can transit between the 
speech resolutions regardless of sex and age. For instance, parents 
tend to use infant-directed speech to promote communication and 
learning. The findings of [29] showed showed that infants who 
babble at an early age receive contingent feedback from social in-
teractions that foster language learning. Likewise, infants can pro-
duce adolescent-directed speech. The illustration of Figure 1 about 
the phenomena affirms previous speculations in the literature. For 
example, [30] and [31] mentioned that consensus of the two-di-
mension view of f0 was motivated by auditory expertise.

One may speculate about the underlying physical constraints that 
prompt the λ0 doubling; however, the teleport path, which is shown 
in Figure 3, indicates that the f0 has an additional dimension. A 
rotation around the second axis is called the height of the pitch and 
is believed to be 110 Hz, although this number is not exactly the 
same for every human being, especially with the environmental 
influence. A 2017 survey by Bernhardsson [32] in Github showed 
that the arithmetic population mean of f0 varies per language. 
Moreover, similar to speech production, human perception of 
speech does not considerably discriminate between the intonations 
that are one octave apart. The term pitch implies the angular posi-
tion, while the f0 refers to the measurement reading. The relation 
between the two terms is expressed mathematically in Equation 
18: the f0 is congruent to the pitch modulo height. f0 ≡ pitch (mod 
height)
= pitch + height · depth 

 height ≈ 110 depth ∈ {0.5, 1, 2, 4, 8}          (18)

Case Study
Figure 7 prints the spectrogram of four Wake-Up-Word (WUW) 
utterances from the WUWII Corpus [33]. The utterances are, from 
left to right, a female voice of ”Voyager,” a male voice of ”Voy-
ager,” another male voice of ”Operator,” and another female voice 
of ”Operator.” The last utterance ends with a noticeable tone. Each 
waveform of the four was normalized by its extrema before they 
were concatenated. Comparing the Hm (i.e., timbres) of the four ut-
terances, one may notice a shift in the intensities of the overtones. 
Based on the shift within the Mel-scale, a harmonic shift ψ can be 
approximated as in Equation 19. Figure 6 shows a partition of the 
frame data.

 Time Samples (ms)
Figure 6: Speech State Transition From a Phoneme at frame τ To 
a Pulse at 0.670 (s) 

Applying the transform (T) on the frames s (as in Equation 15) 
gives the normalizing sampled spectrogram S and the cepstrogram 
P. Applying Equations 16a and 16c on the cepstral similarity ex-
tracts the f0 path.

Figure 8 renders two cepstrograms of two configurations: fast (Fig-
ure 8a) and boosted or refined (Figure 8b). The common paramters 
of the two cases are fmin:100, fmax:300, c:160, d:2. The first option is 
economical in terms of its resource consumption (and faster than 
the latter). The configuration parameters of the first are N:7, M:3, 
Shift:0, σ:1.5. Observing three overtones (M = 3) turned out to 
be adequate for the pitch estimations (in a low-noise setting). The 
size of its matrix transform is 321 × 96. On the other hand, the 
parameters of the boosted configuration, whose transform size is 
321 × 320, are N:15, M:5, Shift:ψ, σ:1.0. Considering more har-
monic observations (M = 5), the second generates f0 readings that 
are sharper than the readings of the fast configuration.

The detection of the pitch track in Figure 8a has larger variances 
than the pitch track in Figure 8b. The large variances are due to 
the reduced quefrency resolution. Reducing the number of bins (N
+ 1) reduces the time complexity. Meanwhile, the refined results 
in the boosted case have a relatively large number of quantization 
levels, increasing the precision of the readings. It is worth noting 
that the refined cepstrgoram can be composed of two smaller ones; 
hence, the output quality can scale up with dynamic programming 
or boosting techniques. 
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Figure 7: Spectrogram of Two ”Voyager” and Two ”Operator” 
Utterances [33]

Figure 8: Cepstrograms’ Complexities

Additionally, one may notice that speech closure pulses can be lo-
cated from the sharp pitch patterns, and so averaging (smoothing) 
the pitch track was avoided so as not to distort the speech signals. 
Moreover, the path can be rendered discontinuous in the unvoiced 
intervals by applying a voice activity detection that utilizes the 
extracted pitch energies along the most vivid track. The extracted 
cepstrgorams illustrate that the voiced samples of different depths 
are linearly separable in the quefrency domain. Two speakers uti-
lized the quefrency channel between 155 and 300 Hz/s’, and two 
other speakers utilized the channel between 100 and 155 Hz/s’. 

In another similar example, the first and last two seconds of the 
case study (Figure 7) were added to the babbling (Figure 1a), and 
a high definition quefrency transform (sized 321 × 4096 with N:63, 
M:16, and σ:0.5) filtered the utterances from the congested audio 
signal that has three voices at a time. The cepstrgram of that exam-
ple is demonstrated in Figure 2b. The intelligibility of the recov-
ered speech correlated with the f0 as was expected. Nevertheless, 
based on Parseval’s theorem, the total energy in the time domain 
is comparable with the aggregated spectral energy, as in Equation 
20. The Root Mean Square (RMS), preferred for describing the 

audio time-frames, is the square root of energy. The theorem holds 
true only when the applied windows are rectangular, so the prox-
imity in the equation occurs when the frames and the transform 
are windowed. Also, the right hand side is the -norm of Hm since 
the denominator is already considered in the windowed transform 
(Equation 12). Figure 9 plots the two sides of the proximity to il-
lustrate the energies of the extracted pitch tracks. It shows that the 
increased number of harmonics along with the harmonic shift ψ 
increased the extracted pitch RMS and energies. The voice activity 
can be detected from the boosted case (Figure 9b) better than from 
the swift extraction (Figure 9a).

Figure 9: Energies of Total and Pitch Extractions
[!p]

The extracted samples, which compose a harmonically normalized 
spectrogram Hm, are depicted in Figure 10 for each of the two cas-
es. Given the signal model (of Equation 4), f0[t], and the two Hm[t], 
speech signals were reconstructed, and their regular spectrgorams 
are depicted in Figures 11. The depictions show that the extracted 
harmonic elements were placed back to their spectral locations. 
One can see that the discrete shift skips a few harmonic elements 
in the second and third voices to normalize the frequency scaling 
of the vocal tract. It is worth noting that the correlation between the 
f0 and the tract is a correlation between two glottal characteristics.
 

The more harmonic overtones, the higher the speech quality. If the 
minimal quefrency of the speech model is
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(b) Boosted Mode
Figure 11: Spectrograms of Reconstructed Speech Signals fmin = 50 
Hz, the maximal number of overtones within the bandwidth      = 4 
kHz is           = 80. Figure 12a depicts all Hm components in 4 kHz, 
and its corresponding spectrogram reconstruction is in Figure 13a. 
It recovers a spectorgram approximation of the original input sig-
nal (Figure 7). Another configuration is to subsample the speech 
spectral code to        =12 features as in Figure 12b. This reconstruc-
tion can be intelligible with a large number of bins.

The first two speech formants are within the first 16 overtones, 
as shown in Figure 13a. Needless to say, the significance of the 
harmonic digit decreases as the harmonic rank increases. Also, 

the f0 is included in the figure as the smallest tone. Since the first 
two utterances correspond to the wake-up-word ”Voyager,” while 
the last two do so to ”Operator,” one can conclude that the high 
depth adds extra speech details that may not be essential in differ-
entiating between the two speech utterances. Consequently, only 
the first speech features are usually considered. For example, the 
MFCC method includes the first 13 cepstral coefficients. However, 
in the standard MFCC procedure, the overtones with high ranks 
are averaged or interfered with. This is because its Mel-Scale is 
applied to the downsampled spectrograms, shown in Figure 13b. 
For that reason, the MFCC does not align the harmonic ranks. In 
the figure, the eight harmonics of the first utterance are mapped to 
the fifteenth harmonics of the second utterance. One possible nor-
malization is depicted in Figures 12c and 13c. The normalization 
aligns the similar features of the similar utterances by considering 
an equal number of harmonics. Additionally, the ψ function in-
creased the normalization even more, and it became more resilient 
to the quantization error than the subsampling of Figures 12b and 
13b. Finally, digitized 8-level Hm and 32-level f0 may be sufficient 
for machine learning. If the number of harmonics (M) is 12 and the 
frame rate is fr = 100fps, the two levels aggregate to (M · log2(8) 
+ log2(32)) · fr = 4.1kbps (kilobit-per-second), which is a reduced 
transmission bandwidth.

Spans of Language and Intelligence
The generation and recognition of spoken languages are sophisti-
cated processes. Since the intelligence of a species can function as 
a means of its survival, the two processes can be genetically opti-
mized during a lengthy selective reproduction phase, as languag-
es interconnect with and boost intelligence. For example, having 
been bestowed control over their own breaths, species like dol-
phins, elephants, and birds have been able to extend their senses 
beyond their lines of sight and share alerts and information within 
the kind. For instance, whales communicate at long distances and 
navigate their surroundings, transmitting sound units and receiv-
ing sonar echos. The utilization of the spoken units is a founding 
module for intelligence just as the human utilization of written al-
phabetic and numerical symbols is a basis for written knowledge, 
commerce, and civilization. Human languages come in several 
forms, and each has a countable number of units (or letters). In the 
spoken one, the phoneme is the unit of speech.

The ability to understand logic and the ability to comprehend a se-
quential series of events must have been, to a certain degree, built 
upon the primal ability of recognizing sensory data, such as speech 
processing. The former ability is equivalent to the latter ability 
when the domain of the speech spans multiple days as opposed to 
minutes. Some may argue that some individuals learn to walk first 
while some talk first. Even so, human language acquisition be-
gins much earlier with quasi-resonant vocalizations, according to 
Psychologist Rachel [34]. Moreover, according to Linguist Noam 
[35], there exists an innate Language Acquisition Device (LAD) 
in the human brain that pre-positions the ability to acquire linguis-
tic concepts, such as nouns and verbs. It is true that the tuneful 
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pattern is not exclusive to humans; however, the speech ability 
has been vital to humankind [36]. Our hypothetical reasoning is 
that graceful recognition of temporal sequences also enabled the 
comprehension of the more-complex sequences that have many 
events. When these were optimized (in succeeding iterative genet-
ic mutations), intellect possibly emerged naturally in the species. 
Constituting a self-aware agent, hierarchical spans of language are 
levels for intelligence. Increasing the contrast of visualization can 
extend the attention spans hindered due to developmental disor-
ders [37]. Additionally, magnetic resonance imaging (MRI) has 
revealed that both the processing of language and the ability of us-
ing tools stimulate similar neural areas [38]. Undoubtedly, speech 
signal processing is part of decision-making processes.

Having been blessed with automation, human populations flour-
ished. For instance, individuals merited more labor rights when 
steam engines were employed in the agriculture industry, but the 
recent technological leaps may require safe domestic machines 
that add the human component to the autonomous world. Since 
the acoustic agents (or companions) are expected to comprehend 
meanings and interact not only intellectually but also to form 
bonds with human agents, the artificial agent would first have to 
receive and generate a voice in a similar manner to humankind, al-
though not necessarily by biological means. A human-like learning 
phase may occur in digital systems with a specific signal acquisi-
tion formula.

Paralinguistic Intonation
To obtain natural speech utterances, the harmonic features have to 
be combined with natural f0 patterns, which can be regarded either 
a discontinuous or a continuous discrete function f0[t], as in Figure 
14. The fundamental frequency (f0) is the main speech feature, vi-
tal in natural language processing, especially in languages where 
speech stresses play a major role in defining the speech parts and

Figure 13: Spectrograms of Reconstructed Speech Corresponding 
Respectively to the Cases in Figure 12
 
grammar. Additionally, modeling English grammar would lean on 
the f0[t] patterns.

Intonation patterns, sometimes marked with diacritics, are essen-
tial in word recognition and are common in Eastern languages. 
According to Albert [39], the vocal communications may convey 
four times more information than the verbal communications. For 
instance, the double consonants in the Korean language such as: 
ga, ka, and gaa, are written differently because they represent dif-
ferent vocal track states. However, because of the frequency mod-
ulation, gaa naturally has higher voice components than ka and ga 
have according to Sun [40]. In other words, the cepstral domain 
is more expressive than the spectral domain. Other examples are 
the tashd¯ıd emphasis in Arabic, the acute accentuation in Greek, 
and the compound words in English. For instance, the stressed 
syllable in ”thermometer” is just as important as its phoneme se-
quence. Moreover, the regular pattern of the f0 is a reduction since 
it correlates with the breathing pattern. For instance, adults breath 
slower and so naturally do their glottises move more slowly. The 
general pattern was shown in previous publications, according to 
which also the emotions, such as happiness and sadness, correlate 
with the pitch pattern [41]. Utterances normally de-accelerate to-
ward local minima. In contrast, f0 increments appear while append-
ing upcoming expressions. The f0 function holds clues for several 
grammar components: punctuation periods, clauses, and stresses. 
A persistent upward trend may imply a preparation; the accelerat-
ing is salient in the regularly de-accelerating pattern. Exclamation 
points and question marks are slightly similar; the former is a (lin-
ear) trend across the utterance, while the latter is an f0 suffix (usual-
ly an exponential one). Additionally, the speech emphasis is a short 
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grammar. Additionally, modeling English grammar would lean on the f0[t] patterns. 

Intonation patterns, sometimes marked with diacritics, are essential in word recognition and are common in 

Eastern languages. According to Albert [39], the vocal communications may convey four times more 

information than the verbal communications. For instance, the double consonants in the Korean language such 

as: ga, ka, and gaa, are written differently because they represent different vocal track states. However, because 

of the frequency modulation, gaa naturally has higher voice components than ka and ga have according to Sun 

[40]. In other words, the cepstral domain is more expressive than the spectral domain. Other examples are the 

tashd¯ıd emphasis in Arabic, the acute accentuation in Greek, and the compound words in English. For 

instance, the stressed syllable in ”thermometer” is just as important as its phoneme sequence. Moreover, the 

regular pattern of the f0 is a reduction since it correlates with the breathing pattern. For instance, adults breath 

slower and so naturally do their glottises move more slowly. The general pattern was shown in previous 

publications, according to which also the emotions, such as happiness and sadness, correlate with the pitch 

pattern [41]. Utterances normally de-accelerate toward local minima. In contrast, f0 increments appear while 

appending upcoming expressions. The f0 function holds clues for several grammar components: punctuation 

periods, clauses, and stresses. A persistent upward trend may imply a preparation; the accelerating is salient 

in the regularly de-accelerating pattern. Exclamation points and question marks are slightly similar; the former 

is a (linear) trend across the utterance, while the latter is an f0 suffix (usually an exponential one). Additionally, 

the speech emphasis is a short up-down bounce, which is the most frequent pattern. A varying f0 can possibly 

grasp attention as the auditory focuses of the listeners are more likely to intersect with the speaker’s tone. 

Such an intersection maximizes the reception of the speech. That is, words uttered with bouncing tones do 

sound emphasized as they widen in the quefrency domain. Ample pitch patterns would have to be analyzed 

for conclusions. 
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up-down bounce, which is the most frequent pattern. A varying f0  
can possibly grasp attention as the auditory focuses of the listen-
ers are more likely to intersect with the speaker’s tone. Such an 
intersection maximizes the reception of the speech. That is, words 
uttered with bouncing tones do sound emphasized as they widen 
in the quefrency domain. Ample pitch patterns would have to be 
analyzed for conclusions.

The verbs and the nouns have different syllable stresses although 
they may have similar phoneme sequences. The utterances of neu-
tral statements and wake-up-word requests diverge naturally in the 
f0 pattern. The f0 highlights some parts of speech, and this is crucial 
for machine learning and language understanding. This is because 
the f0 is a primary component in natural languages.

Conclusion
This work refines the quefrency definition as a unit of acceleration, 
measured in Hz/µs, and the f0 is a primary speech feature, not sepa-
rable from the spectral energies. While the commonplace frequen-
cy banking does not make the MFCC features reconstructable, the 
proposed method adjusts the frequency banking implicitly in the 
frequency responses of the windows to make the features recon-
structable. The cepstral domain is adequate when it is configured 
as in the proposed approach since the windowing operator con-
volves with the frequency domain and attenuates its magnitudes 
exponentially. Furthermore, the proposed method calculates the 
pitch and its spectrum at the same time; it is more efficient than an 
equivalent combination of other state-of-the-art methods.

The findings confirm experts’ speculations, such that the f0 has two 
dimensions: depth height and intonation class. The two dimen-
sions are considerable because speakers sometimes gear between 
the depths almost instantly. While the depth determines the speech 
resolution, the intonation is crucial for Natural Language Process-
ing (NLP) and Wake-Up-Word (WUW) systems since it commu-
nicates urgency and breath patterns. The speech resolutions are 
the result of the stationarity, the speech depths, and band-limited 
speech channels, limiting the number of the speech components.

The f0 intonation clues primitive language. It may be evident that 
the language expressed in the intonation precedes the shaping ca-
pability of the vocal tract. Like facial expressions, the pitch pat-
terns could be prehistoric and universal. The proposed approach 
addresses several challenges in order to elevate speech processing 
to the comprehending level. It is crucial that ASR systems effort-
lessly detect and compose speech in resolutions that conserve en-
ergy, optimize the features’ SNR, and preserve the speech compo-
nents during extraction.

The proposed Speech Quefrency Transform (SQT) is suitable for 
artificial intelligence processing. The proposed method achieved 
a relatively very low Mean Square Error (MSE) via the frequen-
cy demodulation assumption. The transform expands the speech 
samples into a hyperspace whose axes correspond to pitch, har-
monic spectra, and frequency-based anti-aliasing. The intent of the 

dimension expansion is to increase the data separability for the 
speech cluster analysis. Whenever the ASR is attuned to an f0 car-
rier, the quality of the extract is high since the background noise 
is attenuated. Distant- and multi-speech detection and extraction 
are expected to be more feasible with the provided method. For 
example, a heuristic acoustic model may cache recent utteranc-
es to gradually increase observations as language and contextual 
models require for an observation instance. For fast processors, 
the first five harmonica, in which the first formant usually resides, 
are sufficient. For speech normalization, the first twelve harmon-
ica, conveying the first two speech formants, are so. The method 
is compatible with high performance computing since it consists 
of matrix operations. The SQT method attenuates the background 
noise, and its input can be reconstructed.
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